Belief network inference

Three main approaches to determine posterior distributions in
belief networks:
e Exploiting the structure of the network to eliminate (sum
out) the non-observed, non-query variables one at a time.
@ Search-based approaches that enumerate some of the
possible worlds, and estimate posterior probabilities from
the worlds generated.
@ Stochastic simulation where random cases are generated
according to the probability distributions.
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A factor is a representation of a function from a tuple of
random variables into a number.
We will write factor f on variables Xi,..., X; as f(Xi,..., X).
We can assign some or all of the variables of a factor:
o f(Xi=w,Xs,...,X;), where vy € dom(Xi), is a factor
on Xp,..., X;.
o f(Xi=w,Xo=vo,...,X;=V;) is a number that is the
value of f when each X; has value v;.
The former is also written as (X1, Xz, ..., Xj)x, =, €etc.
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Example factors

Y Z[val
X Y Z]val 101
t ot t 101 (Xx=t Vv, 2){t f |09
t t f 109 f t 102
t f t [02 f flos
r(X,Y.Z){t f f |08
f t t (04
f t f |06 Y | val
f f t 103 r(X:t, Y, Z:f): t 109
f f f |07 f |08

r(X=t, Y=f,Z=f) =08
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Multiplying factors

The product of factor f(X,Y) and (Y, Z), where Y are

the variables in common, is the factor (f; x £)(X,Y,Z)
defined by:

(AxB)(X,Y.Z) = (X, V)H(Y,2).
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Multiplying factors example

A B | val
t t |01 A B C| val
fi: |t f |09 t t t |0.03
f t |02 t t f |0.07
f f 108 t f t |054
fixh: |t f f |0.36
B C | val f t t |0.06
t t |03 f t f |0.14
HL:lt f |07 f f t |0.48
f t |06 f f f 032

f f |04
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Summing out variables

We can sum out a variable, say X; with domain {vq,..., v},
from factor f(Xi,...,X;), resulting in a factor on X,..., X;
defined by:

(Z f)(XZv s 7)<J)

= f(X1:V1,...,)<j)+"'+f(Xlzvk,...,)g')
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Summing out a variable example

A B C| val

t t t |0.03

t t f |0.07 A C| val

t f t |054 t t | 057
1t f f 036 Yghi|t f 043

f t t |0.06 f t | 054

f t f |0.14 f f |0.46

f f t |0.48

f f f 1032
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If we want to compute the posterior probability of Z given
evidence Yi=vi A ... A Yj=v;:
P(Z|Y1:V1,..., Y:VJ)
P(Z Yl—Vl,...,)/J:VJ')

So the computation reduces to the probability of
P(Z, Y1:v1,...,Yj:vj).
We normalize at the end.
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Probability of a conjunction

Suppose the variables of the belief network are Xi, ..., X,.
To compute P(Z, Y1 Vi, ..., Y;=v;), we sum out the other
variables, 7y, ..., Zy = { X4y, ..., Xo} —{Z} —{V1,..., Y;}.
We order the Z; into an elimination ordering.

_ Z Z P(Xi,... ,Xn)levh---,Yj:Vj'

Zk Zl
- Z ZHP X|parents ))Yl—v1, SYj=vj-
Zy i=1
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

@ How can we compute ab + ac efficiently?
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

@ How can we compute ab + ac efficiently?

@ Distribute out the a giving a(b + ¢)
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

@ How can we compute ab + ac efficiently?

@ Distribute out the a giving a(b + ¢)

o How can we compute 3, ], P(Xj|parents(X;))
efficiently?
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

@ How can we compute ab + ac efficiently?

@ Distribute out the a giving a(b + ¢)

o How can we compute 3, ], P(Xj|parents(X;))
efficiently?

@ Distribute out those factors that don't involve Z;.
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Variable elimination algorithm

To compute P(Z|Y1=w A ...AYj=Vj):
e Construct a factor for each conditional probability.
@ Set the observed variables to their observed values.

@ Sum out each of the other variables (the {71, ..., Z})
according to some elimination ordering.

@ Multiply the remaining factors. Normalize by dividing the
resulting factor f(Z) by >, f(Z).
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Summing out a variable

To sum out a variable Z; from a product fq, ..., f, of factors:
@ Partition the factors into

> those that don’t contain Z;, say f1,...,f;,
> those that contain Z;, say fii1,...,f

We know:

Zﬂx---xfk:ﬂx---xfix Zﬁ+1x---xfk
Z Z

@ Explicitly construct a representation of the rightmost
factor. Replace the factors f;11,..., fi by the new factor.
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Variable elimination example

]
B c P(A) elim A £(B)
v Pl 1
> i P(C) i
P(D|BC) 3 “'™* £(BDE)
vy B e }
F P(F|D)
\G P(G|FE)
SN PHIG) ) lbﬁ” A(6)
L P6) } = £(6)
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