Integrity Constraints

- In the electrical domain, what if we predict that a light should be on, but observe that it isn't?
 What can we conclude?
- We will expand the definite clause language to include integrity constraints which are rules that imply false, where false is an atom that is false in all interpretations.
- This will allow us to make conclusions from a contradiction.
- A definite clause knowledge base is always consistent.
 This won't be true with the rules that imply false.

Horn clauses

• An integrity constraint is a clause of the form

$$false \leftarrow a_1 \wedge \ldots \wedge a_k$$

- where the a_i are atoms and *false* is a special atom that is false in all interpretations.
- A Horn clause is either a definite clause or an integrity constraint.

Negative Conclusions

- Negations can follow from a Horn clause KB.
- The negation of α , written $\neg \alpha$ is a formula that
 - \blacktriangleright is true in interpretation I if α is false in I, and
 - is false in interpretation I if α is true in I.
- Example:

$$\mathit{KB} = \left\{ egin{array}{l} \mathit{false} \leftarrow \mathit{a} \wedge \mathit{b}. \\ \mathit{a} \leftarrow \mathit{c}. \\ \mathit{b} \leftarrow \mathit{c}. \end{array}
ight. \qquad \mathit{KB} \models \neg \mathit{c}.$$

Disjunctive Conclusions

- Disjunctions can follow from a Horn clause KB.
- The disjunction of α and β , written $\alpha \vee \beta$, is
 - rue in interpretation I if α is true in I or β is true in I (or both are true in I).
 - false in interpretation I if α and β are both false in I.
- Example:

$$KB = \left\{ egin{array}{l} \textit{false} \leftarrow a \wedge b. \\ a \leftarrow c. \\ b \leftarrow d. \end{array}
ight\} \qquad KB \models \neg c \vee \neg d.$$

Questions and Answers in Horn KBs

- An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.
- A conflict of KB is a set of assumables that, given KB imply false.
- A minimal conflict is a conflict such that no strict subset is also a conflict.

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$KB = \left\{ egin{array}{l} {\it false} \leftarrow {\it a} \wedge {\it b}. \ {\it a} \leftarrow {\it c}. \ {\it b} \leftarrow {\it d}. \ {\it b} \leftarrow {\it e}. \end{array}
ight.
ight.$$

- $\{c,d\}$ is a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e, h\}$ is a conflict

Using Conflicts for Diagnosis

- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
- A light can't be both lit and dark. An outlet can't be both live and dead:

```
false \leftarrow dark\_l_1 \& lit\_l_1.
false \leftarrow dark\_l_2 \& lit\_l_2.
false \leftarrow dead\_p_1 \& live\_p_2.
```

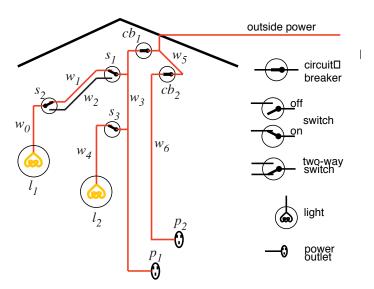
Assume the individual components are working correctly:

```
assumable ok_{-}l_{1}. assumable ok_{-}s_{2}.
```

. . .

• Suppose switches s_1 , s_2 , and s_3 are all up: up_s_1 . up_s_2 . up_s_3 .

Electrical Environment



Representing the Electrical Environment

	$lit_{-}l_{1} \leftarrow live_{-}w_{0} \wedge ok_{-}l_{1}.$
	$live_w_0 \leftarrow live_w_1 \wedge up_s_2 \wedge ok_s_2.$
$light_{-}l_{1}$.	$live_w_0 \leftarrow live_w_2 \wedge down_s_2 \wedge ok_s_2.$
$light_{-l_2}$.	$live_w_1 \leftarrow live_w_3 \wedge up_s_1 \wedge ok_s_1.$
up_s_1 .	$live_w_2 \leftarrow live_w_3 \wedge down_s_1 \wedge ok_s_1.$
up_s_2 .	$lit_{-}l_{2} \leftarrow live_{-}w_{4} \wedge ok_{-}l_{2}.$
up_s_3 .	$live_w_4 \leftarrow live_w_3 \wedge up_s_3 \wedge ok_s_3.$
live outside.	$livep_1 \leftarrow livew_3$.
nve_satsiae.	$live_w_3 \leftarrow live_w_5 \wedge ok_cb_1$.
	$livep_2 \leftarrow livew_6$.
	$live_w_6 \leftarrow live_w_5 \land ok_cb_2$.
	live $w_{\scriptscriptstyle E} \leftarrow$ live outside.

• If the user has observed l_1 and l_2 are both dark:

$$dark_{-}l_{1}$$
. $dark_{-}l_{2}$.

• There are two minimal conflicts:

$$\{ok_cb_1, ok_s_1, ok_s_2, ok_l_1\}$$
 and $\{ok_cb_1, ok_s_3, ok_l_2\}.$

You can derive:

$$\neg ok_cb_1 \lor \neg ok_s_1 \lor \neg ok_s_2 \lor \neg ok_l_1$$

 $\neg ok_cb_1 \lor \neg ok_s_3 \lor \neg ok_l_2$.

• Either cb_1 is broken or there is one of six double faults.

Diagnoses

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
- Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.
- Example: For the proceeding example there are seven minimal diagnoses: {ok_cb_1}, {ok_s_1, ok_s_3}, {ok_s_1, ok_l_2}, {ok_s_2, ok_s_3},...

Recall: top-down consequence finding

To solve the query $?q_1 \wedge \ldots \wedge q_k$: $ac := "yes \leftarrow q_1 \wedge \ldots \wedge q_k"$ repeat $\textbf{select} \text{ atom } a_i \text{ from the body of } ac;$ $\textbf{choose} \text{ clause } C \text{ from } KB \text{ with } a_i \text{ as head};$ $\text{replace } a_i \text{ in the body of } ac \text{ by the body of } C$ until ac is an answer.

Implementing conflict finding: top down

- Query is false.
- Don't select an atom that is assumable.
- Stop when all of the atoms in the body of the generalised query are assumable:
 - this is a conflict

Example

$$false \leftarrow a.$$

$$a \leftarrow b \& c$$
.

$$b \leftarrow d$$
.

$$b \leftarrow e$$
.

$$c \leftarrow f$$
.

$$c \leftarrow g$$
.

$$e \leftarrow h \& w$$
.

$$e \leftarrow g$$
.

$$w \leftarrow f$$
.

assumable d, f, g, h.

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A \rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C = \{\langle a, \{a\} \rangle : a \text{ is assumable} \}.$
- If there is a rule $h \leftarrow b_1 \wedge \ldots \wedge b_m$ such that for each b_i there is some A_i such that $\langle b_i, A_i \rangle \in C$, then $\langle h, A_1 \cup \ldots \cup A_m \rangle$ can be added to C.
- If $\langle a, A_1 \rangle$ and $\langle a, A_2 \rangle$ are in C, where $A_1 \subset A_2$, then $\langle a, A_2 \rangle$ can be removed from C.
- If $\langle false, A_1 \rangle$ and $\langle a, A_2 \rangle$ are in C, where $A_1 \subseteq A_2$, then $\langle a, A_2 \rangle$ can be removed from C.

Bottom-up Conflict Finding Code

```
C:=\{\langle a,\{a\}\rangle: a \text{ is assumable }\};
repeat

select clause "h\leftarrow b_1\wedge\ldots\wedge b_m" in T such that \langle b_i,A_i\rangle\in C for all i and there is no \langle h,A'\rangle\in C or \langle false,A'\rangle\in C such that A'\subseteq A where A=A_1\cup\ldots\cup A_m; C:=C\cup\{\langle h,A\rangle\} Remove any elements of C that can now be pruned; until no more selections are possible
```