• A Constraint Satisfaction problem consists of:

- a set of variables
- ▶ a set of possible values, a domain for each variable
- a set of constraints amongst subsets of the variables (relations)
- The aim is to find a set of assignments that satisfies all constraints, or to find all such assignments.

白 ト イヨト イヨト

Example: crossword puzzle

at, be, he, it, on, eta, hat, her, him, one, desk, dove, easy, else, help, kind, soon, this, dance, first, fuels, given, haste, loses, sense, sound, think, usage

個 と く ヨ と く ヨ と …

Two ways to represent the crossword as a CSP

- First representation:
 - nodes represent word positions: 1-down...6-across
 - domains are the words
 - constraints specify that the letters on the intersections must be the same.
- Dual representation:
 - nodes represent the individual squares
 - domains are the letters
 - constraints specify that the words must fit

向下 イヨト イヨト

• First representation:

- nodes represent the chains and regions
- domains are the scene objects
- constraints correspond to the intersections and adjacency
- Dual representation:
 - nodes represent the intersections
 - domains are the intersection labels
 - constraints specify that the chains must have same marking

伺 ト イヨト イヨト

- Idea: eliminate the variables one-by-one passing their constraints to their neighbours
- Variable Elimination Algorithm:
 - If there is only one variable, return the intersection of the (unary) relations that contain it
 - Select a variable X
 - Join the relations in which X appears, forming relation R_1
 - Project R_1 onto its variables other than X, forming R_2
 - Replace all of the relations in which X_i appears by R_2
 - Recursively solve the simplified problem, forming R_3
 - Return R_1 joined with R_3

伺 とう ヨン うちょう

- When there is a single variable remaining, if it has no values, the network was inconsistent.
- The variables are eliminated according to some elimination ordering
- Different elimination orderings result in different size relations being generated.

ヨット イヨット イヨッ

Example network

æ

Example: arc-consistent network

・ロト ・回ト ・ヨト ・ヨト

Э

Example: eliminating C

	<i>r</i> ₁ : <i>C</i> 7	<i>⊢ E</i>	C	Ε	r ₂ : C	> D	С	D	
			3	2			3	2	
			3	4			4	2	
			4	2			4	3	
			4	3		1			
<i>r</i> 3 :	$r_1 \bowtie r_2$	C	D	Ε	r_4 : $\pi_{\{}$	D,E} <i>r</i> 3	D	Ε	
		3	2	2			2	2	
		3	2	4			2	3	
		4	2	2			2	4	
		4	2	3			3	2	
		4	3	2			3	3	
		4	3	3	⊶ ne	w const	nstraint		

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Resulting network after eliminating C

(1日) (日) (日)

Э