Constraint Satisfaction Problems

- Given a set of variables, each with a set of possible values (a domain), assign a value to each variable that either
 - satisfies some set of constraints: satisfiability problems "hard constraints"
 - minimizes some cost function, where each assignment of values to variables has some cost: optimization problems
 —
 "soft constraints"
- Many problems are a mix of hard and soft constraints.

Relationship to Search

- The path to a goal isn't important, only the solution is.
- Many algorithms exploit the multi-dimensional nature of the problems.
- There are no predefined starting nodes.
- Often these problems are huge, with thousands of variables, so systematically searching the space is infeasible.
- For optimization problems, there are no well-defined goal nodes.

Posing a Constraint Satisfaction Problem

A CSP is characterized by

- A set of variables V_1, V_2, \dots, V_n .
- Each variable V_i has an associated domain \mathbf{D}_{V_i} of possible values.
- For satisfiability problems, there are constraint relations on various subsets of the variables which give legal combinations of values for these variables.
- A solution to the CSP is an *n*-tuple of values for the variables that satisfies all the constraint relations.

Example: scheduling activities

- Variables: A, B, C, D, E that represent the starting times of various activities.
- Domains: $\mathbf{D}_A = \{1, 2, 3, 4\}, \ \mathbf{D}_B = \{1, 2, 3, 4\}, \ \mathbf{D}_C = \{1, 2, 3, 4\}, \ \mathbf{D}_D = \{1, 2, 3, 4\}, \ \mathbf{D}_E = \{1, 2, 3, 4\}$
- Constraints:

$$(B \neq 3) \land (C \neq 2) \land (A \neq B) \land (B \neq C) \land$$
$$(C < D) \land (A = D) \land (E < A) \land (E < B) \land$$
$$(E < C) \land (E < D) \land (B \neq D).$$

Generate-and-Test Algorithm

- Generate the assignment space $\mathbf{D} = \mathbf{D}_{V_1} \times \mathbf{D}_{V_2} \times \ldots \times \mathbf{D}_{V_n}$. Test each assignment with the constraints.
- Example:

$$\begin{aligned} \mathbf{D} &= \mathbf{D}_{A} \times \mathbf{D}_{B} \times \mathbf{D}_{C} \times \mathbf{D}_{D} \times \mathbf{D}_{E} \\ &= \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} \\ &\times \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} \\ &= \{\langle 1, 1, 1, 1, 1 \rangle, \langle 1, 1, 1, 1, 2 \rangle, ..., \langle 4, 4, 4, 4, 4 \rangle\}. \end{aligned}$$

 Generate-and-test is always exponential in the number of variables.

Backtracking Algorithms

- Systematically explore D by instantiating the variables one at a time
- evaluate each constraint predicate as soon as all its variables are bound
- any partial assignment that doesn't satisfy the constraint can be pruned.

Example Assignment $A=1 \land B=1$ is inconsistent with constraint $A \neq B$ regardless of the value of the other variables.

CSP as Graph Searching

A CSP can be represented as a graph-searching algorithm:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment X₁ = v₁,..., X_k = v_k.
 Select a variable Y that isn't assigned in N.
 For each value y_i ∈ dom(Y) there is a neighbour X₁ = v₁,..., X_k = v_k, Y = y_i if this assignment is consistent with the constraints on these variables.
- The start node is the empty assignment.
- A goal node is a total assignment that satisfies the constraints.

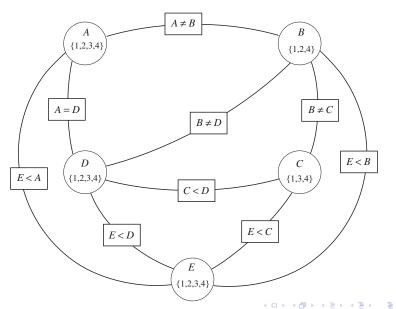
Consistency Algorithms

- Idea: prune the domains as much as possible before selecting values from them.
- A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.
- Example: $\mathbf{D}_B = \{1, 2, 3, 4\}$ isn't domain consistent as B = 3 violates the constraint $B \neq 3$.

Constraint Network

- There is a oval-shaped node for each variable.
- There is a rectangular node for each constraint relation.
- There is a domain of values associated with each variable node.
- There is an arc from variable X to each relation that involves X.

Example Constraint Network



Arc Consistency

- An arc $\langle X, r(X, \overline{Y}) \rangle$ is arc consistent if, for each value $x \in dom(X)$, there is some value $\overline{y} \in dom(\overline{Y})$ such that $r(x, \overline{y})$ is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- If an arc $\langle X, r(X, \overline{Y}) \rangle$ is *not* arc consistent, all values of X in dom(X) for which there is no corresponding value in $dom(\overline{Y})$ may be deleted from dom(X) to make the arc $\langle X, r(X, \overline{Y}) \rangle$ consistent.

Arc Consistency Algorithm

- The arcs can be considered in turn making each arc consistent.
- An arc $\langle X, r(X, \overline{Y}) \rangle$ needs to be revisited if the domain of one of the Y's is reduced.
- Three possible outcomes (when all arcs are arc consistent):
 - ▶ One domain is empty ⇒ no solution
 - ► Each domain has a single value ⇒ unique solution
 - ➤ Some domains have more than one value ⇒ there may or may not be a solution

Finding solutions when AC finishes

- If some domains have more than one element ⇒ search
- Split a domain, then recursively solve each half.
- We only need to revisit arcs affected by the split.
- It is often best to split a domain in half.