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Abstract

A computer vision system has been implemented that can recognize three-
dimensional objects from unknown viewpoints in single gray-scale images.
Unlike most other approaches, the recognition is accomplished without any
attempt to reconstruct depth information bottom-up from the visual input.
Instead, three other mechanisms are used that can bridge the gap between
the two-dimensional image and knowledge of three-dimensional objects.
First, a process of perceptual organization is used to form groupings and
structures in the image that are likely to be invariant over a wide range of
viewpoints. Second, a probabilistic ranking method is used to reduce the
size of the search space during model based matching. Finally, a process of
spatial correspondence brings the projections of three-dimensional models
into direct correspondence with the image by solving for unknown view-
point and model parameters. A high level of robustness in the presence
of occlusion and missing data can be achieved through full application of
a viewpoint consistency constraint. It is argued that similar mechanisms
and constraints form the basis for recognition in human vision.

This paper has been published in Artificial Intelligence, 31, 3 (March 1987), pp. 355–395.
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1 Introduction

Much recent research in computer vision has been aimed at the reconstruction of depth
information from the two-dimensional visual input. An assumption underlying some
of this research is that the recognition of three-dimensional objects can most easily be
carried out by matching against reconstructed three-dimensional data. However, there
is reason to believe that this is not the primary pathway used for recognition in human
vision and that most practical applications of computer vision could similarly be per-
formed without bottom-up depth reconstruction. Although depth measurement has an
important role in certain visual problems, it is often unavailable or is expensive to ob-
tain. General-purpose vision must be able to function effectively even in the absence
of the extensive information required for bottom-up reconstruction of depth or other
physical properties. In fact, human vision does function very well at recognizing im-
ages, such as simple line drawings, that lack any reliable clues for the reconstruction
of depth prior to recognition. This capability also parallels many other areas in which
human vision can make use of partial and locally ambiguous information to achieve re-
liable identifications. This paper presents several methods for bridging the gap between
two-dimensional images and knowledge of three-dimensional objects without any pre-
liminary derivation of depth. Of equal importance, these methods address the critical
problem of robustness, with the ability to function in spite of missing data, occlusion,
and many forms of image degradation.

How is it possible to recognize an object from its two-dimensional projection when
we have no prior knowledge of the viewpoint from which we will be seeing it? An im-
portant role is played by the process of perceptual organization, which detects group-
ings and structures in the image that are likely to be invariant over wide ranges of view-
points. While it is true that the appearance of a three-dimensional object can change
completely as it is viewed from different viewpoints, it is also true that many aspects
of an object’s projection remain invariant over large ranges of viewpoints (examples in-
clude instances of connectivity, collinearity, parallelism, texture properties, and certain
symmetries). It is the role of perceptual organization to detect those image groupings
that are unlikely to have arisen by accident of viewpoint or position. Once detected,
these groupings can be matched to corresponding structures in the objects through a
knowledge-based matching process. It is possible to use probabilistic reasoning to rank
the potential matches in terms of their predicted reliability, thereby focusing the search
on the most reliable evidence present in a particular image.

Unfortunately, the matches based on viewpoint-invariant aspects of each object are
by their nature only partially reliable. Therefore, they are used simply as “trigger fea-
tures” to initiate a search process and viewpoint-dependent analysis of each match. A
quantitative method is used to simultaneously determine the best viewpoint and object
parameter values for fitting the projection of a three-dimensional model to given two-
dimensional features. This method allows a few initial hypothesized matches to be ex-
tended by making accurate quantitative predictions for the locations of other object fea-
tures in the image. This provides a highly reliable method for verifying the presence of
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Figure 1: On the left is a diagram of a commonly accepted model for visual recogni-
tion based upon depth reconstruction. This paper instead presents the model shown on
the right, which makes use of prior knowledge of objects and accurate verification to
interpret otherwise ambiguous image data.

a particular object, since it can make use of the spatial information in the image to the
full degree of available resolution. The final judgement as to the presence of the object
can be based on only a subset of the predicted features, since the problem is usually
greatly overconstrained due to the large number of visual predictions from the model
compared to the number of free parameters. Figure 1 shows a diagram of these com-
ponents and contrasts them with methods based upon depth reconstruction.

These methods for achieving recognition have been combined in a fuctioning vi-
sion system named SCERPO (for Spatial Correspondence, Evidential Reasoning, and
Perceptual Organization). This initial implementation uses simplified components at a
number of levels, for example by performing matching only between straight line seg-
ments rather than arbitrary curves. However, even this initial system exhibits many
forms of robustness, with the ability to identify objects from any viewpoint in the face
of partial occlusion, missing features, and a complex background of unrelated image
features. The current system has a significant level of performance relative to other
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model-based vision systems, including those that are based upon the accurate deriva-
tion of depth measurements prior to recognition. In addition, it provides a framework
for incorporating numerous potential improvements in image description, perceptual
grouping, knowledge indexing, object modeling, and parameter solving, with resulting
potential improvements in performance. Many of the components of this system can
be related to corresponding capabilities of human vision, as will be described at the rel-
evant points in this paper. The following section examines the psychological validity
of the central goal of the system, which is to perform recognition directly from single
two-dimensional images.

2 Role of depth reconstruction in human vision

There is a widespread assumption within the computer vision and psychology commu-
nities that the recognition of three-dimensional objects is based on an initial derivation
of depth measurements from the two-dimensional image [11, 22]. However, this as-
sumption seems to be based more upon the perceived difficulty of achieving recognition
from a two-dimensional projection than from any convincing psychological data. In
this paper we will argue that human capabilities for recognition are much more general
than this restricted model would suggest, and that in fact the need for depth reconstruc-
tion is the exception rather than the rule. It is true that human vision contains a num-
ber of capabilities for the bottom-up derivation of depth measurements, such as stereo
and motion interpretation, and these presumably have important functions. However,
biological visual systems have many objectives, so it does not follow that these com-
ponents are central to the specific problem of visual recognition. In fact, the available
evidence would seem to strongly suggest the opposite.

One difficulty with these methods for depth reconstruction is that the required in-
puts are often unavailable or require an unacceptably long interval of time to obtain.
Stereo vision is only useful for objects within a restricted portion of the visual field and
range of depths for any given degree of eye vergence, and is never useful for distant ob-
jects. At any moment, most parts of a scene will be outside of the limited fusional area.
Motion information is available only when there is sufficient relative motion between
observer and object, which in practice is also usually limited to nearby objects. Recog-
nition times are usually so short that it seems unlikely that the appropriate eye vergence
movements or elapsed time measurements could be taken prior to recognition even for
those cases in which they may be useful. Depth measurements from shading or texture
are apparently restricted to special cases such as regions of approximately uniform re-
flectance or regular texture, and they lack the quantitative accuracy or completeness of
stereo or motion.

Secondly, human vision exhibits an excellent level of performance in recognizing
images—such as simple line drawings—in which there is very little potential for the
bottom-up derivation of depth information. Biederman [4] describes an experiment in
which almost identical reaction times (about 800 ms) and error rates were obtained for
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recognition of line drawings as compared with full-color slides of the same objects from
the same viewpoints. Whatever mechanisms are being used for line-drawing recogni-
tion have presumably developed from their use in recognizing three-dimensional scenes.
The common assumption that line-drawing recognition is a learned or cultural phenom-
ena is not supported by the evidence. In a convincing test of this conjecture, Hochberg
and Brooks [15] describe the case of a 19-month-old human baby who had had no previ-
ous exposure to any kinds of two-dimensional images, yet was immediately able to rec-
ognize ordinary line drawings of known objects. It is true that there has been some re-
search on the bottom-up derivation of depth directly from line drawings or the edges de-
tected in a single image [2, 3, 27], including previous research by the author [20]. How-
ever, these methods usually lead to sparse, under-constrained relationships in depth
rather than to something resembling Marr’s 21

2
-D sketch. In addition, these methods

apply only to special cases and it is often not possible to tell which particular infer-
ence applies to a particular case. For example, one often-discussed inference is the use
of perspective convergence to derive the orientation of lines that are parallel in three-
dimensions; however, given a number of lines in the image that are converging to a
common point, there is usually no effective way to distinguish convergence due to per-
spective effects from the equally common case of lines that are converging to a common
point in three-dimensions. In this paper we will make use of many of the same infer-
ences that have previously been proposed for deriving depth, but they will instead be
used to generate two-dimensional groupings in the image that are used directly to index
into a knowledge base of three-dimensional objects.

Finally, and of most relevance for many applications of computer vision, there has
been no clear demonstration of the value of depth information for performing recog-
nition even when it is available. The recognition of objects from complete depth im-
ages, such as those produced by a laser scanner, has not been shown to be easier than
for systems that begin only with the two-dimensional image. This paper will describe
methods for directly comparing the projection of three-dimensional representations to
the two-dimensional image without the need for any prior depth information. Since
the final verification of an interpretation can be performed by comparing the projected
knowledge with each available image to the full accuracy of the data, there is nothing
to be gained at this stage from any depth information that is derivative from the origi-
nal images. The one remaining issue is whether there is some way in which the depth
information can significantly speed the search for the correct knowledge to compare to
the image.

Of course, none of the above is meant to imply that depth recovery is an unimpor-
tant problem or lacks a significant role in human vision. Depth information may be
crucial for the initial stages of visual learning or for acquiring certain types of knowl-
edge about unfamiliar structures. It is also clearly useful for making precise measure-
ments as an aid to manipulation or obstacle avoidance. Recognition may sometimes
leave the precise position in depth undetermined if the absolute size of an object is un-
known. Human stereo vision, with its narrow fusional range for a given degree of eye
vergence, seems to be particularly suited to making these precise depth measurements
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for selected nearby objects as an aid to manipulation and bodily interaction. However,
it seems likely that the role of depth recovery in common instances of recognition has
been overstated.

3 Solving for spatial correspondence

Many areas of artificial intelligence are aimed at the interpretation of data by finding
consistent correspondences between the data and prior knowledge of the domain. In
this paper, we will begin by defining the consistency conditions for judging correspon-
dence between image data and three-dimensional knowledge. Unlike many other ar-
eas of artificial intelligence, an important component of this knowledge is quantitative
spatial information that requires specific mathematical techniques for achieving corre-
spondence. The particular constraint that we wish to apply can be stated as follows:

The viewpoint consistency constraint: The locations of all projected model
features in an image must be consistent with projection from a single view-
point.

The effective application of this constraint will allow a few initial matches to be boot-
strapped into quantitative predictions for the locations of many other features, leading
to the reliable verification or rejection of the initial matches. Later sections of this pa-
per will deal with the remaining problems of recognition, which involve the generation
of primitive image structures to provide initial matches to the knowledge base and the
algorithms and control structures to actually perform the search process.

The physical world is three-dimensional, but a camera’s image contains only a two-
dimensional projection of this reality. It is straightforward mathematically to describe
the process of projection from a three-dimensional scene model to a two-dimensional
image, but the inverse problem is considerably more difficult. It is common to remark
that this inverse problem is underconstrained, but this is hardly the source of difficulty
in the case of visual recognition. In the typical instance of recognition, the combina-
tion of image data and prior knowledge of a three-dimensional model results in a highly
overconstrained solution for the unknown projection and model parameters. In fact,
we must rely upon the overconstrained nature of the problem to make recognition ro-
bust in the presence of missing image data and measurement errors. So it is not the
lack of constraints but rather their interdependent and non-linear nature that makes the
problem of recovering viewpoint and scene parameters difficult. The difficulty of this
problem has been such that few vision systems have made use of quantitative spatial
correspondence between three-dimensional models and the image. Instead it has been
common to rely on qualitative topological forms of correspondence, or else to produce
three-dimensional depth measurements that can be matched directly to the model with-
out having to account for the projection process.

Our goal, then, is to carry out a quantitative form of spatial reasoning to provide a
two-way link between image measurements and the object model. Matches between
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the model and some image features can be used to constrain the three-dimensional po-
sition of the model and its components, which in turn leads to further predictions for
the locations of model features in the image, leading to more matches and more con-
straints. The problem of generating the few initial matches to begin this process will
be dealt with in later sections of this paper. Here we will describe the spatial reasoning
process that relates the image measurements to three-dimensional constraints.

The precise problem we wish to solve is the following: given a set of known corre-
spondences between three-dimensional points on a model and points in a two-dimensional
image, what are the values of the unknown projection and model parameters that will
result in the projection of the given model points into the corresponding image points.
The unknown parameters might include the position and orientation of the object in
three dimensions, the focal length of the camera, and various degrees of freedom in the
model description, such as articulations or variable dimensions. We will later extend
this problem description to allow for the least-squares solution of overdetermined con-
straints, and to allow for matches between corresponding lines (without concern for the
position of endpoints) rather than just points.

There has been some previous work on solving for the position of a rigid three-
dimensional object given matches between points on the model and points in the im-
age. This problem must be solved in order to bring photographs into correspondence
with mapping data in the field of photogrammetry. An analytic solution, known as the
Church method, is presented in the photogrammetry literature [31], but this solution
involves nonlinear equations which must themselves be solved by iterative numerical
methods. The current preferred technique in photogrammetry is to use the same lin-
earization and iterative methods that will serve as our starting point in this paper. Fis-
chler and Bolles [9] have presented another analytic solution to the problem, but one
which also requires iterative numerical solution. In addition, they have presented use-
ful information on the conditions under which multiple solutions can arise. A different
approach was taken in the ACRONYM computer vision system [6], which used a gen-
eral symbolic equation solver to place bounds on projection and model parameters from
image measurements. However, the equations for the general projection problem were
often much too difficult for exact solution, so sub-optimal bounds would be produced
that failed to apply the information inherent in the viewpoint consistency constraint.

The approach taken in this paper will be to linearize the projection equations and
apply Newton’s method for the necessary number of iterations. A reparameterization of
these equations is used to simplify the calculation of the necessary derivatives. This al-
lows us to efficiently solve not only the basic rigid-body problem studied in photogram-
metry, but also to extend the method to variable model parameters and forms of corre-
spondence other than the matching of points. Figure 2 illustrates the sequence of steps
involved in applying Newton’s method to this problem.
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Figure 2: Three steps in the application of Newton’s method to achieve spatial corre-
spondence between 2-D image segments and the projection of a 3-D object model.

3.1 Application of Newton’s method

Following standard practice in computer graphics, we can describe the projection of a
three-dimensional model point p into a two-dimensional image point (u; v) with the
following equations:

(x; y; z) = R(p � t)

(u; v) =

 
fx

z
;
fy

z

!

where t is a 3-D translation vector and R is a rotation matrix which transform p in the
original model coordinates into a point (x; y; z) in camera-centered coordinates. These
are combined in the second equation with a parameter f proportional to the camera
focal length to perform perspective projection into an image point (u; v).

Our task is to solve for t, R, and possibly f , given a number of model points and
their corresponding locations in an image. In order to apply Newton’s method, we must
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be able to calculate the partial derivatives of u and vwith respect to each of the unknown
parameters. However, it is difficult to calculate these partial derivatives for this stan-
dard form of the projection equation. In particular, this formulation does not describe
how to represent the rotation R in terms of its three underlying parameters. Many pre-
vious attempts to solve the viewpoint determination problem have treated the rotation
as consisting of more than three parameters, which leads to the requirement for more
image data than is actually needed and to poor techniques for handling errors.

The partial derivatives with respect to the translation parameters can be most easily
calculated by first reparameterizing the projection equations to express the translations
in terms of the camera coordinate system rather than model coordinates. This can be
described by the following equations:

(x; y; z) = Rp

(u; v) =

 
fx

z +Dz

+Dx;
fy

z +Dz

+Dy

!

Here the variablesR and f remain the same as in the previous transform, but the vector t
has been replaced by the parametersDx,Dy andDz . The two transforms are equivalent
[under an affine approximation] when

t = R�1

"
� Dx(z +Dz)

f
; � Dy(z +Dz)

f
; �Dz

#T

In the new parameterization, Dx and Dy simply specify the location of the object on
the image plane andDz specifies the distance of the object from the camera. As will be
shown below, this formulation makes the calculation of partial derivatives with respect
to the translation parameters almost trivial.

We are still left with the problem of representing the rotation R in terms of its three
underlying parameters. Our solution to this second problem is based on the realization
that the Newton method does not in fact require an explicit representation of the indi-
vidual parameters. All that is needed is some way to modify the original rotation in
mutually orthogonal directions and a way to calculate partial derivatives of image fea-
tures with respect to these correction parameters. Therefore, we have chosen to take
the initial specification of R as given and add to it incremental rotations �x, �y and �z
about the x, y and z axes of the current camera coordinate system. In other words, we
maintain R in the form of a 3x3 matrix rather than in terms of 3 explicit parameters,
and the corrections are performed by prefix matrix multiplication with correction ro-
tation matrices rather than by adding corrections to some underlying parameters. It is
fast and easy to compose rotations, and these incremental rotations are approximately
independent of one another if they are small. The Newton method is now carried out by
calculating the optimum correction rotations ��x;��y and ��z to be made about the
camera-centered axes. The actual corrections are performed by creating matrices for
rotations of the given magnitudes about the respective coordinate axes and composing
these new rotations with R.
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x y z

�x 0 �z y

�y z 0 �x

�z �y x 0

Figure 3: The partial derivatives of x; y and z (the coordinates of rotated model points)
with respect to counterclockwise rotations �’s (in radians) about the coordinate axes.

Another advantage of using the�’s as our convergence parameters is that the deriva-
tives of x, y, and z (and therefore of u and v) with respect to them can be expressed in
a strikingly simple form. For example, the derivative of x at a point (x; y) with respect
to a counter-clockwise rotation of �z about the z axis is simply�y. This follows from
the fact that (x; y; z) = (r cos �z; r sin�z; z), where r is the distance of the point from
the z axis, and therefore @x=@�z = �r sin�z = �y. The table in Figure 3 gives these
derivatives for all combinations of variables.

Given this parameterization it is now straightforward to accomplish our original ob-
jective of calculating the partial derivatives of u and v with respect to each of the origi-
nal camera parameters. For example, our new projection transform above tells us that:

u =
fx

z +Dz

+Dx

so
@u

@Dx

= 1

Also,
@u

@�y
=

f

z +Dz

@x

@�y
� fx

(z +Dz)2
@z

@�y

but, from the table in Figure 3, we know that

@x

@�y
= z and

@z

@�y
= �x

and, for simplicity, we will substitute

c =
1

z +Dz

giving,
@u

@�y
= fcz + fc2x2 = fc(z + cx2)
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u v

Dx 1 0

Dy 0 1

Dz �fc2x �fc2y

�x �fc2xy �fc(z + cy2)

�y fc(z + cx2) fc2xy

�z �fcy fcx

f cx cy

Figure 4: The partial derivatives of u and v with respect to each of the camera viewpoint
parameters.

Similarly,
@u

@�z
=

f

z +Dz

@x

@�z
= �fcy:

All the other derivatives can be calculated in a similar way. The table in Figure 4 gives
the derivatives of u and v with respect to each of the seven parameters of our camera
model, again substituting c = (z +Dz)

�1 for simplicity.
Our task on each iteration of the multi-dimensional Newton convergence will be to

solve for a vector of corrections

h = [�Dx;�Dy;�Dz;��x;��y;��z]

If the focal length is unknown, then �f would also be added to this vector. Given the
partial derivatives of u and v with respect to each variable parameter, the application of
Newton’s method is straightforward. For each point in the model which should match
against some corresponding point in the image, we first project the model point into the
image using the current parameter estimates and then measure the error in its position
compared to the given image point. The u and v components of the error can be used
independently to create separate linearized constraints. For example, making use of the
u component of the error, Eu, we create an equation which expresses this error as the
sum of the products of its partial derivatives times the unknown error-correction values:

@u

@Dx

�Dx +
@u

@Dy

�Dy +
@u

@Dz

�Dz +
@u

@�x
��x +

@u

@�y
��y +

@u

@�z
��z = Eu

Using the same point we create a similar equation for its v component, so for each point
correspondence we derive two equations. From three point correspondences we can de-
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rive six equations and produce a complete linear system which can be solved for all six
camera model corrections. After each iteration the corrections should shrink by about
one order of magnitude, and no more than a few iterations should be needed even for
high accuracy.

Unknown model parameters, such as variable lengths or angles, can also be incor-
porated. In the worst case, we can always calculate the partial derivatives with respect
to these parameters by using standard numerical techniques that slightly perturb the
parameters and measure the resulting change in projected locations of model points.
However, in most cases it is possible to specify the three-dimensional directional deriva-
tive of model points with respect to the parameters, and these can be translated into
image derivatives through projection. Examples of the solution for variable model pa-
rameters simultaneously with solving for viewpoint have been presented in previous
work [18].

In most applications of this method we will be given more correspondences between
model and image than are strictly necessary, and we will want to perform some kind of
best fit. In this case the Gauss least-squares method can easily be applied. The matrix
equations described above can be expressed more compactly as

Jh = e

where J is the Jacobian matrix containing the partial derivatives, h is the vector of un-
known corrections for which we are solving, and e is the vector of errors measured in
the image. When this system is overdetermined, we can perform a least-squares fit of
the errors simply by solving the corresponding normal equations:

JTJh = JTe

where JTJ is square and has the correct dimensions for the vector h.

3.2 Making use of line-to-line correspondences

Another important extension to the basic algorithm is to allow it to use line-to-line cor-
respondences in addition to point-to-point ones. This is important in practice because
low-level vision routines are relatively good at finding the transverse locations of lines
but are much less certain about exactly where the lines terminate. Line terminations
may also be widely displaced due to occlusion, shadows, or various sources of failure
in the low-level edge detection algorithms. Therefore, we should express our errors in
terms of the distance of one line from another, rather than in terms of the error in the
locations of points. The solution is to measure as our errors the perpendicular distance
of selected points on the model line from the corresponding line in the image, and to
then take the derivatives in terms of this distance rather than in terms of u and v.

In order to express the perpendicular distance of a point from a line it is useful to first
express the image line as an equation of the following form, in which m is the slope:
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�mp
m2 + 1

u+
1p

m2 + 1
v = d

In this equation d is the perpendicular distance of the line from the origin. If we sub-
stitute some point (u0; v 0) into the left side of the equation and calculate the new value
of d for this point (call it d0), then the perpendicular distance of this point from the line
is simply d � d0. What is more, it is easy to calculate the derivatives of d0 for use in
the convergence, since the derivatives of d0 are just a linear combination of the deriva-
tives of u and v as given in the above equation, and we already know how to calculate
the u and v derivatives from the solution given for using point correspondences. The
result is that each line-to-line correspondence we are given between model and image
gives us two equations for our linear system—the same amount of information that is
conveyed by a point-to-point correspondence. Figure 2 illustrates the measurement of
these perpendicular errors between matching model lines and image lines.

The same basic method could be used to extend the matching to arbitrary curves
rather than just straight line segments. In this case, we would assume that the curves
are locally linear and would minimize the perpendicular separation at selected points
as in the straight line case, using iteration to compensate for non-linearities. For curves
that are curving tightly with respect to the current error measurements, it would be nec-
essary to match points on the basis of orientation and curvature in addition to simple
perpendicular projection. However, the current implementation of SCERPO is limited
to the matching of straight line segments, so these extensions to include the matching
of arbitrary curves remain to be implemented.

3.3 The use of parameter determination for matching

The mathematical methods for parameter determination presented above need to be in-
tegrated into a matching algorithm that can extend a few initial matches and return a
reliable answer as to the presence or absence of the object at the hypothesized location.
Some of the implementation details that must be worked out include the choice of a rep-
resentation for object models, the calculation of a starting viewpoint to initiate Newton
iteration, and the methods for making use of the initial parameter determination to gen-
erate new matches between image and object features.

The object models used in the current implementation of SCERPO consist simply
of a set of 3-D line segments. A primitive form of hidden line elimination is performed
by attaching a visibility specification to each line segment. The visibility specifica-
tion contains a boolean combination of hemispheres from which the segment is visible.
Each hemisphere of directions is represented by a unit vector, so that the visibility of
the segment can be very efficiently computed by simply checking the sign of the dot
product of this vector with the vector pointing to the camera position. It is important
that the visibility calculation be fast, as it is performed in the inner loop of the matching
process. However, this form of hidden line elimination is only an approximation, since
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it does not allow for partial occlusion of a line segment or for calculating occlusion
between objects. It would also need to be extended to allow for models with variable
internal parameters. As with other parts of the matching process, we rely upon the over-
all robustness of the system in the face of missing or extra features to compensate for
occasional errors in hidden-line determination.

As with all applications of Newton’s method, convergence of the viewpoint solv-
ing algorithm is guaranteed only for starting positions that are “sufficiently close” to the
final solution. Fortunately, in this problem several of the parameters (scaling and trans-
lation in the image plane) are exactly linear, while the other parameters (rotation and
perspective effects) are approximately linear over wide ranges of values. In practice,
we have found that as long as the orientation parameters are within 60 degrees of their
correct values, almost any values can be chosen for the other parameters. Reasonable
estimates of the viewpoint parameters can be easily computed from the same matches
that will be used for convergence. Since most parts of the model are only visible from a
limited range of viewpoints, we can select an orientation in depth that is consistent with
this range for each object feature being matched. Orientation in the image plane can be
estimated by causing any line on the model to project to a line with the orientation of
the matching line in the image. Similarly, translation can be estimated by bringing one
model point into correspondence with its matching image point. Scale (i.e., distance
from the camera) can be estimated by examining the ratios of lengths of model lines
to their corresponding image lines. The lines with the minimum value of this ratio are
those that are most parallel to the image plane and have been most completely detected,
so this ratio can be used to roughly solve for scale under this assumption. These esti-
mates for initial values of the viewpoint parameters are all fast to compute and produce
values that are typically much more accurate than needed to assure convergence. Fur-
ther improvements in the range of convergence could be achieved through the applica-
tion of standard numerical techniques, such as damping [8].

A more difficult problem is the possible existence of multiple solutions. Fischler
and Bolles [9] have shown that there may be as many as four solutions to the problem of
matching three image points to three model points. Many of these ambiguities will not
occur in practice, given the visibility constraints attached to the model, since they in-
volve ranges of viewpoints from which the image features would not be visible. Also, in
most cases the method will be working with far more than the minimum amount of data,
so the overconstrained problem is unlikely to suffer from false local minima during the
least-squares process. However, when working with very small numbers of matches, it
may be necessary to run the process from several starting positions in an attempt to find
all of the possible solutions. Given several starting positions, only a couple of iterations
of Newton’s method on each solution are necessary to determine whether they are con-
verging to the same solution and can therefore be combined for subsequent processing.
Finally, it should be remembered that the overall system is designed to be robust against
instances of missing data or occlusion, so an occasional failure of the viewpoint deter-
mination should lead only to an incorrect rejection of a single match and an increase in
the amount of search rather than a final failure in recognition.
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3.4 Extending the initial set of matches

Once the initial set of hypothesized matches has been used to solve for the viewpoint pa-
rameters, this estimate of viewpoint can be used to predict the locations of other model
features in the image and thereby extend the match. The predictions of these image lo-
cations can be obtained by simply projecting the model edges onto the image using the
current set of viewpoint parameters. The more difficult problem is to select matches
in the image that are consistent with these predictions. Rather than setting arbitrary
thresholds on the error range within which image segments must fall to be considered
in agreement with a predicted model segment, a probabilistic approach is taken. First,
each segment is projected, and the image data structure is searched to select potential
matches. All line segments in the image are indexed according to location and orien-
tation, so this search can be carried out efficiently. Each potential match is assigned a
value giving the probability that a randomly placed image segment would agree with
the prediction to within the measured difference in length, orientation and trasverse po-
sition. The probability calculation uses the same assumptions and formalisms as are
used for the perceptual organization evaluations to be described in the next section. The
lower this probability of accidental agreement, the more likely it is that the match is
correct.

After evaluating each potential match for a given prediction, the top-ranked match
is assigned a higher probability of being mistaken if the second-ranked match has a
similar evaluation. The purpose of this penalty is to avoid committing ourselves to ei-
ther choice of an ambiguous match if there is some less ambiguous alternative from
some other model prediction. At each stage of the iteration we select only matches with
a probability of being accidental of less than 0.01, or else we select the single lowest
probability match from all of the model predictions. These are then added to the least-
squares solution to update the estimate of viewpoint. By the time a number of the most
reliable matches have been found, the viewpoint estimation will be based on a substan-
tial amount of data and should be accurate enough to choose correctly between the more
ambiguous alternatives. The set of matches is repeatedly extended in this way until no
more can be found. This iterative matching procedure has the appealing property of
using the easy cases to provide better viewpoint estimates to disambiguate the more
difficult situations, yet it avoids the expense of search and backtracking.

The final accuracy of the viewpoint determination procedure could probably be im-
proved by attempting to discard the points that deviate the most from the least-squares
solution and reconverging on the remaining data. This would allow the system to con-
verge on a consensus viewpoint estimate that was not influenced by the largest errors
in modeling or feature detection. However, this procedure remains to be implemented.

The final judgement as to the presence of the object is based simply on the degree
to which the final viewpoint estimate is overconstrained. Since only three edges are
needed to solve for viewpoint, each further match adds to the verification of the pres-
ence of the object. In addition, the least-squares solution provides an estimate of the
standard deviation of the error. Given sufficiently detailed models, correct instances of
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recognition should be greatly overconstrained even in the face of partial occlusion and
other missing features, so the precise threshold for rejection should be unimportant. In
the examples that are presented at the end of this paper, correct matches typically had
over 20 image segments in close agreement with the model, while incorrect matches
seldom found more than 7 matching segments.

4 Perceptual organization

The methods for achieving spatial correspondence presented in the previous section en-
force the powerful constraint that all parts of an object’s projection must be consistent
with a single viewpoint. This constraint allows us to bootstrap just a few initial matches
into a complete set of quantitative relationships between model features and their image
counterparts, and therefore results in a reliable decision as to the correctness of the orig-
inal match. The problem of recognition has therefore been reduced to that of providing
tentative matches between a few image features and an object model. The relative ef-
ficiency of the viewpoint solution means that only a small percentage of the proposed
matches need to be correct for acceptable system performance. In fact, when matching
to a single, rigid object, one could imagine simply taking all triplets of nearby line seg-
ments in the image and matching them to a few sets of nearby segments on the model.
However, this would clearly result in unacceptable amounts of search as the number
of possible objects increases, and when we consider the capabilities of human vision
for making use of a vast database of visual knowledge it is obvious that simple search
is not the answer. This initial stage of matching must be based upon the detection of
structures in the image that can be formed bottom-up in the absence of domain knowl-
edge, yet must be of sufficient specificity to serve as indexing terms into a database of
objects.

Given that we often have no prior knowledge of viewpoint for the objects in our
database, the indexing features that are detected in the image must reflect properties of
the objects that are at least partially invariant with respect to viewpoint. This means
that it is useless to look for features at particular sizes or angles or other properties that
are highly dependent upon viewpoint. A second constraint on these indexing features
is that there must be some way to distinguish the relevant features from the dense back-
ground of other image features which could potentially give rise to false instances of the
structure. Through an accident of viewpoint or position, three-dimensional elements
that are unrelated in the scene may give rise to seemingly significant structures in the
image. Therefore, an important function of this early stage of visual grouping is to dis-
tinguish as accurately as possible between these accidental and significant structures.
We can summarize the conditions that must be satisfied by perceptual grouping opera-
tions as follows:

The viewpoint invariance condition: Perceptual features must remain
stable over a wide range of viewpoints of some corresponding three-dimensional
structure.
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Figure 5: This figure illustrates the human ability to spontaneously detect certain group-
ings from among an otherwise random background of similar elements. This figure
contains three non-random groupings resulting from parallelism, collinearity, and end-
point proximity (connectivity).

The detection condition: Perceptual features must be sufficiently con-
strained so that accidental instances are unlikely to arise.

Although little-studied by the computational vision community, the perceptual or-
ganization capabilities of human vision seem to exhibit exactly these properties of de-
tecting viewpoint invariant structures and calculating varying degrees of significance
for individual instances. These groupings are formed spontaneously and can be de-
tected immediately from among large numbers of individual elements. For example,
people will immediately detect certain instances of clustering, connectivity, collinear-
ity, parallelism, and repetitive textures when shown a large set of otherwise randomly
distributed image elements (see Figure 5). This grouping capability of human vision
was studied by the early Gestalt psychologists [29] and is also related to research in
texture description [21, 32]. Unfortunately, this important component of human vision
has been missing from almost all computer vision systems, presumably because there
has been no clear computational theory for the role of perceptual organization in the
overall fuctioning of vision.

A basic goal underlying research on perceptual organization has been to discover
some principle that could unify the various grouping phenomena of human vision. The
Gestaltists thought that this underlying principle was some basic ability of the human
mind to proceed from the whole to the part, but this lacked a computational or predic-
tive formulation. Later research summarized many of the Gestaltists’ results with the
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observation that people seem to perceive the simplest possible interpretation for any
given data [14]. However, any definition of simplicity has depended entirely on the
language that is used for description, and no single language has been found to encom-
pass the range of grouping phenomena. Greater success has been achieved by basing
the analysis of perceptual organization on a functional theory which assumes that the
purpose of perceptual organization is to detect stable image groupings that reflect ac-
tual structure of the scene rather than accidental properties [30]. This parallels other
areas of early vision in which a major goal is to identify image features that are stable
under changes in imaging conditions.

4.1 Derivation of grouping operations

Given these functional goals, the computational specification for perceptual organiza-
tion is to differentiate groupings that arise from the structure of a scene from those that
arise due to accidents of viewpoint or positioning. This does not lead to a single metric
for evaluating the significance of every image grouping, since there are many factors
that contribute to estimating the probability that a particular grouping could have arisen
by accident. However, by combining these various factors and making use of estimates
of prior probabilities for various classes of groupings, it is possible to derive a computa-
tional account for the various classes of grouping phenomena. An extensive discussion
of these issues has been presented by the author in previous work [19], but here we will
examine the more practical question of applying these methods to the development of
a particular vision system. We will simplify the problem by looking only at groupings
of straight line segments detected in an image and by considering only those groupings
that are based upon the properties of proximity, parallelism, and collinearity.

A strong constraint on perceptual organization is provided by the viewpoint invari-
ance condition, since there are only a relatively few types of two-dimensional image
relations that are even partially invariant with respect to changes in viewpoint of a three-
dimensional scene. For example, it would be pointless to look for lines that form a right
angle in the image, since even if it is common to find lines at right angles in the three-
dimensional scene they will project to right angles in the image only from highly re-
stricted viewpoints. Therefore, even if an approximate right angle were detected in the
image, there would be little basis to expect that it came from a right angle in the scene
as opposed to lines at any other three-dimensional angle. Compare this to finding lines
at a 180 degree angle to one another (i.e., that are collinear). Since collinear lines in
the scene will project to collinear lines in the image from virtually all viewpoints, we
can expect many instances of collinearity in the image to be due to collinearity in three
dimensions. Likewise, proximity and parallelism are both preserved over wide ranges
of viewpoint. It is true that parallel lines in the scene may converge in the image due to
perspective, but many instances of parallelism occupy small visual angles so that the
incidence of approximate parallelism in the image can be expected to be much higher
than simply those instances that arise accidentally. In summary, the requirement of par-
tial invariance with respect to changes in viewpoint greatly restricts the classes of image
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relations that can be used as a basis for perceptual organization.
If we were to detect a perfectly precise instance of, say, collinearity in the image,

we could immediately infer that it arose from an instance of collinearity in the scene.
That is because the chance of perfect collinearity arising due to an accident of viewpoint
would be vanishingly small. However, real image measurements include many sources
of uncertainty, so our estimate of significance must be based on the degree to which the
ideal relation is achieved. The quantitative goal of perceptual organization is to calcu-
late the probability that an image relation is due to actual structure in the scene. We can
estimate this by calculating the probability of the relation arising to within the given de-
gree of accuracy due to an accident of viewpoint or random positioning, and assuming
that otherwise the relation is due to structure in the scene. This could be made more ac-
curate by taking into account the prior probability of the relation occurring in the scene
through the use of Bayesian statistics, but this prior probability is seldom known with
any precision.

4.2 Grouping on the basis of proximity

We will begin the analysis of perceptual organization by looking at the fundamental im-
age relation of proximity. If two points are close together in the scene, then they will
project to points that are close together in the image from all viewpoints. However, it
is also possible that points that are widely separated in the scene will project to points
arbitrarily close together in the image due to an accident of viewpoint. Therefore, as
with all of the cases in which we attempt to judge the significance of perceptual group-
ings, we will consider a grouping to be significant only to the extent that it is unlikely
to have arisen by accident.

An important example of the need to evaluate proximity is when attempting to form
connectivity relations between line segments detected in an image. The proximity of
the endpoints of two line segments may be due to the fact that they are connected or
close together in the three-dimensional scene, or it may be due to a simple accident of
viewpoint. We must calculate for each instance of proximity between two endpoints the
probability that it could have arisen from unrelated lines through an accident of view-
point. Since we often have no prior knowledge regarding the scene and since the view-
point is typically unrelated to the structure of the three-dimensional objects, there is lit-
tle basis for picking a biased background distribution of image features against which
to judge significance. Therefore, this calculation will be based upon the assumption of
a background of line segments that is uniformly distributed in the image with respect
to orientation, position, and scale.

Given these assumptions, the expected number of endpoints, N , within a radius r of
a given endpoint is equal to the average density of endpoints per unit area, d, multiplied
by the area of a circle with radius r (see Figure 6):

N = d�r2
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Figure 6: Measurements that are used to calculate the probablity that instances of prox-
imity, parallelism, or collinearity could arise by accident from randomly distributed line
segments.

For values of N much less than 1, the expected number is approximately equal to the
probability of the relation arising accidentally. Therefore, significance varies inversely
with N . It also follows that significance is inversely proportional to the square of the
separation between the two endpoints.

However, the density of endpoints, d, is not independent of the length of the line
segments that are being considered. Assuming that the image is uniform with respect
to scale, changing the size of the image by some arbitrary scale factor should have no
influence on our evaluation of the density of line segments of a given length. This scale
independence requires that the density of lines of a given length vary inversely accord-
ing to the square of their length, since halving the size of an image will decrease its area
by a factor of 4 and decrease the lengths of each segment by a factor of 2. The same
result can be achieved by simply measuring the proximity r between two endpoints as
proportional to the length of the line segments which participate in the relation. If the
two line segments are of different lengths, the higher expected density of the shorter
segment will dominate that of the longer segment, so we will base the calculation on
the minimum of the two lengths. The combination of these results leads to the follow-
ing evaluation metric. Given a separation r between two endpoints belonging to line
segments of minimum length l:
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N =
2D�r2

l2

We are still left with a unitless constant,D, specifying the scale-independent density
of line segments (the factor 2 accounts for the fact that there are 2 endpoints for each
line segment). Since the measures of significance will be used mostly to rank groupings
during the search process, the value chosen for a constant factor is of little importance
because it will have no influence on the rankings. However, for our experiments we
have somewhat arbitrarily assigned D the value 1. In fact, given a fairly dense set of
segments with independent orientations and positions, and given the constraint that they
do not cross one another, this scale independent measure will have a value close to 1.

This formula does a reasonable job of selecting instances of endpoint proximity that
seem perceptually significant. Our concern with uniformity across changes in scale has
had an important practical impact on the algorithm. It means that the algorithm will
correctly pick out large-scale instances of connectivity between long segments, even
if there are many short segments nearby which would otherwise mask the instance of
endpoint proximity. This capability for detecting groupings at multiple scales is an im-
portant aspect of perceptual organization in human vision.

4.3 Grouping on the basis of parallelism

A similar measure can be used to decide whether an approximate instance of parallelism
between two lines in the image is likely to be non-accidental in origin. Let l1 be the
length of the shorter line and l2 be the length of the longer line. In order to measure
the average separation s between the two lines, we calculate the perpendicular distance
from the longer line to the midpoint of the shorter line. As in the case for evaluating
proximity, we assume that the density of line segments of length greater than l1 is d =
D=l2

1
, for a scale-independent constant D. Then, the expected number of lines within

the given separation of the longer line will be the area of a rectangle of length l2 and
width 2smultiplied by the density of lines of length at least l1. Let � be the magnitude of
the angular difference in radians between the orientations of the two lines. Assuming a
uniform distribution of orientations, only 2�=� of a set of lines will be within orientation
� of a given line. Therefore, the expected number of lines within the given separation
and angular difference will be:

E =

 
2sl2D

l2
1

! 
2�

�

!
=

4D�sl2

�l2
1

As in the previous case, we assign D the value 1 and assume that significance is in-
versely proportional to E.
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4.4 Grouping on the basis of collinearity

Measuring the probability that an instance of collinearity has arisen by accident shares
many features in common with the case of parallelism. In both cases, the ideal relation
would involve two line segments with the same orientation and with zero separation
perpendicular to the shared orientation. However, in the case of parallelism the line
segments are presumed to overlap in the direction parallel to their orientation, whereas
in collinearity the segments are expected to be separated along the direction of their
orientation with an intervening gap. Let g be the size of this gap (the separation of the
endpoints). As in the case of parallelism, let s be the perpendicular distance from the
midpoint of the shorter line segment, l1, to the extension of the longer line segment,
l2. These bounds determine a rectangular region of length g + l1 and width 2s within
which other lines would have the same degree of proximity. Therefore, by analogy in
other respects with the case of parallelism, we get

E =
4D�s(g + l1)

�l2
1

Notice that this measure is independent of the length of the longer line segment, which
seems intuitively correct when dealing with collinearity.

4.5 Implementation of the grouping operations

The subsections above have presented methods for calculating the significance of se-
lected relationships between given pairs of straight line segments. The most obvious
way to use these to detect all significant groupings in the image would be to test every
pair of line segments and retain only those pairs which have high levels of significance.
However, the complexity of this process would be O(n2) for n line segments, which is
too high for practical use in complex scenes.

One method for limiting the complexity of this process is to realize that proxim-
ity is an important variable in all of the significance measures. Since significance de-
creases with the square of separation, two small segments that are widely separated in
the image are unlikely to produce significant groupings regardless of their other charac-
teristics (constraints on measurement accuracy limit the contribution that orientation or
other measurements can make to judging significance). Therefore, complexity can be
limited by searching only a relatively small region surrounding each segment for can-
didates for grouping. Since proximity is judged relative to the size of the component
features, the size of the region that must be searched is proportional to the length of the
line segment from which we are initiating the search. In order to make efficient use of
these restrictions, all segments in the image should be indexed in a grid-like data struc-
ture according to the position of each endpoint. For further efficiency, the segments
in each element of this position matrix can be further indexed according to orientation
and length. The use of this index allows all groupings with interesting levels of signif-
icance to be detected in time that is essentially linear in the number of features. It is
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Figure 7: This illustrates the steps of a scale-independent algorithm for subdividing a
curve into its most perceptually significant straight line segments. The input curve is
shown in (a) and the final segmentation is given in (f).

interesting to note that human vision also seems to limit the complexity of grouping in
a similar way, although human vision apparently uses a more sophisticated method that
also takes account of the local density of features [19].

4.6 Segmentation of linked points into straight line segments

The examples above have dealt with the grouping of line segments. However, the deriva-
tion of the line segments themselves is a very important segmentation problem that is
based upon detecting significant instances of collinearity among edge points. Most
common edge detection methods produce linked lists of points as their output (e.g.,
points which lie on the zero-crossing of an image convolved with a second-derivative
operator). In order to carry out the higher forms of perceptual organization described
above, these linked points must be grouped into line or curve descriptions that make
explict the significiant curvilinear structures at all scales. The author has previously
described a method for finding straight-line and constant-curvature segmentations at
multiple scales and for measuring their significance [19, Chap. 4]. However, here we
will use a simplified method that selects only the single highest-significance line rep-
resentation at each point along the curve.

The significance of a straight line fit to a list of points can be estimated by calcu-
lating the ratio of the length of the line segment divided by the maximum deviation of
any point from the line (the maximum deviation is always assumed to be at least two
pixels in size to account for limitations on measurement accuracy). This measure will
remain constant as the scale of the image is changed, and it therefore provides a scale-
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independent measure of significance that places no prior expectations on the allowable
deviations. This significance measure is then used in a modified version of the recursive
endpoint subdivision method (see Figure 7). A segment is recursively subdivided at the
point with maximum deviation from a line connecting its endpoints (Figure 7 (b,c)).
This process is repeated until each segment is no more than 4 pixels in length, produc-
ing a binary tree of possible subdivisions. This representation is similar to the strip trees
described by Ballard [1]. Then, unwinding the recursion back up the tree, a decision
is made at each junction as to whether to replace the current lower-level description
with the single higher-level segment. The significance of every subsegment is calcu-
lated by its length-to-deviation ratio mentioned above (Figure 7 (d)). If the maximum
significance of any of the subsegments is greater than the significance of the complete
segment, then the subsegments are returned. Otherwise the single segment is returned.
The procedure will return a segment covering every point along the curve (Figure 7
(e)). Finally, any segments with a length-to-deviation ratio less than 4 are discarded.

This algorithm is implemented in only 40 lines of Lisp code, yet it does a reasonable
job of detecting the most perceptually significant straight line groupings in the linked
point data. An advantage compared to the methods traditionally used in computer vi-
sion (which usually set some prior threshold for the amount of “noise” to be removed
from a curve), is that it will tend to find the same structures regardless of the size at
which an object appears in an image. In addition, it will avoid breaking up long lines
if its shorter constituents do not appear to have a stronger perceptual basis.

5 The SCERPO vision system

The methods of spatial correspondence and perceptual organization described above
have been combined to produce a functioning system for recognizing known three-
dimensional objects in single gray-scale images. In order to produce a complete system,
other components must also be included to perform low-level edge detection, object
modeling, matching, and control functions. Figure 8 illustrates the various components
and the sequence of information flow. Figures 9 to 16 show an example of the differ-
ent stages of processing for an image of a randomly jumbled bin of disposable razors.
Recognition was performed without any assumptions regarding orientation, position or
scale of the objects; however, the focal length of the camera was specified in advance.

In order to provide the initial image features for input to the perceptual grouping
process, the first few levels of image analysis in SCERPO use established methods of
edge detection. The 512�512 pixel image shown in Figure 9 was digitized from the
output of an inexpensive vidicon television camera. This image was convolved with a
Laplacian of Gaussian function (� = 1:8 pixels) as suggested by the Marr-Hildreth [23]
theory of edge detection. Edges in the image should give rise to zero-crossings in this
convolution, but where the intensity gradient is low there will also be many other zero-
crossings that do not correspond to significant intensity changes in the image. There-
fore, the Sobel gradient operator was used to measure the gradient of the image follow-
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Figure 8: The components of the SCERPO vision system and the sequence of compu-
tation.

ing the r2G convolution, and this gradient value was retained for each point along a
zero-crossing as an estimate of the signal-to-noise ratio. Figure 10 shows the resulting
zero-crossings in which the brightness of each point along the zero-crossings is propor-
tional to the magnitude of the gradient at that point.

These initial steps of processing were performed on a VICOM image processor un-
der the Vsh software facility developed by Robert Hummel and Dayton Clark [7]. The
VICOM can perform a 3�3 convolution against the entire image in a single video frame
time. The Vsh software facility allowed the 18�18 convolution kernel required for our
purposes to be automatically decomposed into 36 of the 3�3 primitive convolutions
along with the appropriate image translations and additions. More efficient implemen-
tations which apply a smaller Laplacian convolution kernel to the image followed by
iterated Gaussian blur were rejected due to their numerical imprecision. The VICOM
is used only for the steps leading up to Figure 10, after which the zero-crossing image is
transferred to a VAX 11/785 running UNIX 4.3 for subsequent processing. A program
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Figure 9: The original image of a bin of disposable razors, taken at a resolution of
512�512 pixels.

Figure 10: The zero-crossings of a r2G convolution. Grey levels are proportional to
gradient magnitude at the zero-crossing.
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Figure 11: Straight line segments derived from the zero-crossing data of Figure 10 by
a scale-independent segmentation algorithm.

written in C reads the zero-crossing image and produces a file of linked edge points
along with the gradient magnitude at each point. All other components are written in
Franz Lisp.

The next step of processing is to break the linked lists of zero-crossings into per-
ceptually significant straight line segments, using the algorithm described in the previ-
ous section. Segments are retained only if the average gradient magnitude along their
length is above a given threshold. It is much better to apply this threshold following
segmentation than to the original zero-crossing image, since it prevents a long edge
from being broken into shorter segments when small portions dip below the gradient
threshold. The results of performing these operations are shown in Figure 11. The
recognition problem now consists of searching among this set of about 300 straight line
segments for subsets that are each spatially consistent with model edges projected from
a single viewpoint.

The straight line segments are indexed according to endpoint locations and orien-
tation. Then a sequence of procedures is executed to detect significant instances of
collinearity, endpoint proximity (connectivity), and parallelism. Each instance of these
relations is assigned a level of significance using the formulas given above in the sec-
tion on perceptual organization. Pointers are maintained from each image segment to
each of the other segments with which it forms a significant grouping. These primi-
tive relations could be matched directly against corresponding structures on the three-
dimensional object models, but the search space for this matching would be large due
to the substantial remaining level of ambiguity. The size of the search space can be re-
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Figure 12: The most highly-ranked perceptual groupings detected from among the set
of line segments. There is some overlap between groupings.

duced by first combining the primitive relations into larger, more complex structures.
The larger structures are found by searching among the graph of primitive relations

for specific combinations of relations which share some of the same line segments. For
example, trapezoid shapes are detected by examining each pair of parallel segments for
proximity relations to other segments which have both endpoints in close proximity to
the endpoints of the two parallel segments. Parallel segments are also examined to de-
tect other segments with proximity relations to their endpoints which were themselves
parallel. Another higher-level grouping is formed by checking pairs of proximity re-
lations that are close to one another to see whether the four segments satisfy Kanade’s
[16] skewed symmetry relation (i.e., whether the segments could be the projection of
segments that are bilaterally symmetric in three-space). Since each of these compound
structures is built from primitive relations that are themselves viewpoint-invariant, the
larger groupings also reflect properties of a three-dimensional object that are invariant
over a wide range of viewpoints. The significance value for each of the larger structures
is calculated by simply multiplying together the probabilities of non-accidentalness for
each component. These values are used to rank all of the groupings in order of de-
creasing significance, so that the search can begin with those groupings that are most
perceptually significant and are least likely to have arisen through some accident. Fig-
ure 12 shows a number of the most highly-ranked groupings that were detected among
the segments of Figure 11. Each of the higher-level groupings in this figure contains
four line segments, but there is some overlap in which a single line segment partici-
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pates in more than one of the high-level groupings.
Even after this higher-level grouping process, the SCERPO system clearly makes

use of simpler groupings than would be needed by a system that contained large num-
bers of object models. When only a few models are being considered for matching,
it is possible to use simple groupings because even with the resulting ambiguity there
are only a relatively small number of potential matches to examine. However, with
large numbers of object models, it would be necessary to find more complex viewpoint-
invariant structures that could be used to index into the database of models. The best
approach would be to make use of some form of evidential reasoning to combine prob-
abilistic information from multiple sources to limit the size of the search space. This
approach has been outlined by the author in earlier work [19, Chap. 6].

5.1 Model matching

The matching process consists of individually comparing each of the perceptual group-
ings in the image against each of the structures of the object model which is likely to
give rise to that form of grouping. For each of these matches, the verification proce-
dure is executed to solve for viewpoint, extend the match, and return an answer as to
whether the original match was correct. Given the large number of potential matches
and their varied potential for success, it is important to make use of a ranking method
to select the most promising matches first. For example, every straight line detected in
the image is a form of grouping that could be matched against every straight edge of the
model, but this would involve a large amount of search. In general, the more complex
a grouping is the fewer potential matches it will have against the model. Therefore, the
only matches that are considered in the current implementation are those that involve
image groupings that contain at least 3 line segments. This also has the important re-
sult that such a grouping will generally contain enough information to solve exactly
for viewpoint from the initial match, which provides tight constraints to speed up the
operation of the verification procedure.

A more precise specification of the optimal ordering for the search process could
be stated as follows. In order to minimize the search time, we would like to order our
consideration of hypotheses according to decreasing values of Pk=Wk, where Pk is the
probability that a particular hypothesis for the presence of object k is correct, and Wk

is the amount of work required to verify or refute it. In general, increased complexity
of a grouping will lead to fewer potential matches against different object features, and
therefore will increase the probabilityPk that any particular match is correct. However,
this probability is also very dependent upon the particular set of objects that are being
considered, since some features will function more effectively to discriminate among
one particular set of objects than in another set. The most effective way to determine
the optimal values of Pk for each potential match would be through the use of a learn-
ing procedure in which the actual probability values are refined through experience in
performing the recognition task. These probability adjustments would in essence be
strengthening or weakening associations between particular image features and partic-
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ular objects. These object-specific values would be multiplied by the probability that a
grouping is non-accidental to determine the final estimate ofPk . TheWk could be simi-
larly learned through experience. The current implementation of SCERPO simply uses
the complexity of a grouping as a crude estimate for these desired ranking parameters.

In order to speed the runtime performance of the matching process, the viewpoint-
invariant groupings that each model can produce in the image are precomputed off-line.
The model is simply checked for three-dimensional instances of the three primitive im-
age relations that are detected during the perceptual grouping process: i.e., connectiv-
ity, collinearity, and parallelism. No attempt is made to find approximate instances of
these relations, so in essence the relations are implicitly specified by the user during
model input. These relations are then grouped into the same types of larger structures
that are created during the perceptual grouping process, and are stored in separate lists
according to the type of the grouping. Any rotational symmetries or other ambiguities
are used to create new elements in the lists of possible matches. The runtime matching
process therefore consists only of matching each image grouping against each element
of a precomputed list of model groupings of the same type.

One important feature of this matching process is that it is opportunistic in its ability
to find and use the most useful groupings in any particular image. Given that there is no
prior knowledge of specific occlusions, viewpoint, amount of noise, or failures in the
detection process, it is important to use a run-time ranking process that selects among
the actual groupings that are found in any particular image in order to make use of those
that are most likely to be non-accidental. Since each view of an object is likely to give
rise to many characteristic perceptual groupings in an image, it is usually possible to
find features to initiate the search process even when a substantial portion of the object
is occluded. The current implementation of SCERPO is at a rather simple level in terms
of the sophistication of perceptual grouping and matching, and as should be clear from
the above discussion there are many opportunities for making these processes faster
and more complete. As more types of groupings and other viewpoint-invariant features
are added, the number of possible matches would increase, but the expected amount of
search required for a successful match would decrease due to the increased specificity
of the matches with the highest rankings.

The implementation of the viewpoint-solving and verification process has already
been described in detail in an earlier section. This is the most robust and reliable com-
ponent of the system, and its high level of performance in extending and verifying a
match can compensate for many weaknesses at the earlier stages. The low probability
of false positives in this component means that failure at the earlier levels tends to result
simply in an increased search space rather than incorrect matches. Figure 13 shows the
three-dimensional model that was used for matching against the image data. Figure 14
shows the final set of successful matches between particular viewpoints of this model
and sets of image segments. Once a particular instance of an object has been identified,
the matched image segments are marked to indicate that they may no longer participate
in any further matches. Any groupings which contain one of these marked segments
are ignored during the continuation of the matching process. Therefore, as instances of
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Figure 13: The three-dimensional wire-frame model of the razor shown from a single
viewpoint.

Figure 14: Successful matches between sets of image segments and particular view-
points of the model.
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Figure 15: Successfully matched image segments superimposed upon the original im-
age.

the object are recognized, the search space can actually decrease for recognition of the
remaining objects in the image.

Since the final viewpoint estimate is performed by a least-squares fit to greatly over-
constrained data, its accuracy can be quite high. Figure 15 shows the set of successfully
matched image segments superimposed upon the original image. Figure 16 shows the
model projected from the final calculated viewpoints, also shown superimposed upon
the original image. The model edges in this image are drawn with solid lines where
there is a matching image segment and with dotted lines over intervals where no corre-
sponding image segment could be found. The accuracy of the final viewpoint estimates
could be improved by returning to the original zero-crossing data or even the original
image for accurate measurement of particular edge locations. However, the existing
accuracy should be more than adequate for typical tasks involving mechanical manip-
ulation.

The current implementation of SCERPO is designed as a research and demonstra-
tion project, and much further work would be required to develop the speed and gener-
ality needed for many applications. Relatively little effort has been devoted to minimiz-
ing computation time. The image processing components require only a few seconds
of computation on the VICOM image processor, but then the image must be transferred
to a VAX 11/785 running UNIX 4.3 for further processing. It requires about 20 seconds
for a program written in C to read the zero-crossing image and output a file of linked
edge points. This file is read by a Franz Lisp routine, and all subsequent processing
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Figure 16: The model projected onto the image from the final calculated viewpoints.
Model edges are shown dotted where there was no match to a corresponding image
segment.

is performed within the Franz Lisp virtual memory environment. Segmentation into
straight lines requires 25 seconds, indexing and grouping operations require about 90
seconds and the later stages of matching and verification took 65 seconds for this ex-
ample. There are numerous ways in which the code could be improved to reduce the
required amount of computation time if this were a major goal. Careful design of data
structures would allow fast access of image segments according to predicted positions,
lengths, and orientations. Each iteration of the crucial viewpoint-solving process re-
quires at most several hundred floating point operations, so there is reason to believe
that a carefully coded version of the basic search loop could run at high rates of speed.

6 Directions for future research

The most obvious direction in which to extend the current system is to generalize the
object models to include many new types of visual knowledge. These extensions could
include the modeling of moveable articulations, optional components, and other vari-
able parameters in the models. The section above on solving for spatial correspondence
described methods for incorporating these extensions during the viewpoint-solving and
matching process. However, further research is required to determine the optimal or-
der in which to solve for individual parameters. Imagine, for example, that we had a
generic model of the human face. The model would include small ranges of variation
for the size and position of every feature, as well as many optional components such
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as a beard or glasses. However, given some tentative correspondences for say, the eyes
and nose, we could use the expectation of bilateral symmetry and the most tightly con-
strained dimensions of our model to solve for approximate viewpoint. This would then
suggest quite tightly constrained regions in which to search for other features, such as
ears, chin, eyebrows, etc., each of which could be used to derive better estimates of
viewpoint and the other parameters. The resulting values of these parameters could
then be mapped into a feature space and used to identify particular individuals, which
in turn may lead to further detailed constraints and expectations. Some mechanisms for
ordering these constraints were incorporated into the ACRONYM system [6].

The current implementation of SCERPO has used only an edge-based description
of the image because that is a comparatively reliable and well-researched form of image
analysis. But the same framework could incorporate many other dimensions of com-
parison between model and image, including areas such as surface modeling, texture,
color, and shading properties. Further research would be required to detect viewpoint-
invariant aspects of these properties during bottom-up image analysis. Many of the
modeling and predictive aspects of these problems have been developed for use in com-
puter graphics, but it may be necessary to find faster ways to perform these computa-
tions for use in a computer vision system.

Once a number of different sources of information are used to achieve the optimal
ordering of the search process, it is necessary to make use of general methods for com-
bining multiple sources of evidence. The use of evidential reasoning for this problem
has been discussed elsewhere by the author in some detail [19, Chap. 6]. These meth-
ods make use of prior estimates for the probability of the presence of each object, and
then update these estimates as each new source of evidence is uncovered. Sources of
evidence might include particular perceptual groupings, colors, textures, and contex-
tual information. Context plays an important role in general vision, since most scenes
will contain some easily-identified objects which then provide a great deal of informa-
tion regarding size, location, and environment which can greatly ease the recognition
of more difficult components of the scene. Evidential reasoning also provides an op-
portunity to incorporate a significant form of learning, since the conditional probability
estimates can be continuously adjusted towards their optimal values as a system gains
experience with its visual environment. In this way associations could be automatically
created between particular objects and the viewpoint-invariant features to which they
are likely to give rise in the image.

The psychological implications of this research are also deserving of further study.
Presumably human vision does not perform a serial search of the type used in the SCERPO
system. Instead, the brief time required for typical instances of recognition indicates
that any search over a range of possible objects and parameters must be occurring in
parallel. Yet even the human brain does not contain enough computational power to
search over every possible object at every viewpoint and position in the image. This can
be demonstrated by the fact that even vague non-visual contextual clues can decrease
the length of time required to recognize degraded images [17]. Presumably, if a com-
plete search were being performed in every instance, any top-down clues that narrowed
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the search would have little effect. Given that the search is proceeding in parallel, the
mechanisms used for ranking the search in SCERPO would instead be used to select a
number of possibilities to explore in parallel, limited according to the available compu-
tational resources. This model for the recognition process suggests many psychophys-
ical experiments in which average recognition times could be measured for different
combinations of image data and contextual information. Some important experimen-
tal results relating recognition time to the availability of various image and contextual
clues have been reported by Biederman [4].

7 Related research on model-based vision

The methods used in the SCERPO system are based on a considerable body of previous
research in model-based vision. The pathbreaking early work of Roberts [24] demon-
strated the recognition of certain polyhedral objects by exactly solving for viewpoint
and object parameters. Matching was performed by searching for correspondences be-
tween junctions found in the scene and junctions of model edges. Verification was then
based upon exact solution of viewpoint and model parameters using a method that re-
quired seven point-to-point correspondences. Unfortunately, this work was poorly in-
corporated into later vision research, which instead tended to emphasize non-quantitative
and much less robust methods such as line-labeling.

The ACRONYM system of Brooks [6] used a general symbolic constraint solver
to calculate bounds on viewpoint and model parameters from image measurements.
Matching was performed by looking for particular sizes of elongated structures in the
image (known as ribbons) and matching them to potentially corresponding parts of the
model. The bounds given by the constraint solver were then used to check the con-
sistency of all potential matches of ribbons to object components. While providing an
influential and very general framework, the actual calculation of bounds for such gen-
eral constraints was mathematically difficult and approximations had to be used that did
not lead to exact solutions for viewpoint. In practice, prior bounds on viewpoint were
required which prevented application of the system to full three-dimensional ranges of
viewpoints.

Goad [12] has described the use of automatic programming methods to precom-
pute a highly efficient search path and viewpoint-solving technique for each object to
be recognized. Recognition is performed largely through exhaustive search, but pre-
computation of selected parameter ranges allows each match to place tight viewpoint
constraints on the possible locations of further matches. Although the search tree is
broad at the highest levels, after about 3 levels of matching the viewpoint is essentially
constrained to a single position and little further search is required. The precomputa-
tion not only allows the fast computation of the viewpoint constraints at runtime, but it
also can be used at the lowest levels to perform edge-detection only within the predicted
bounds and at the minimum required resolution. This research has been incorporated
in an industrial computer vision system by Silma Inc. which has the remarkable capa-
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bility of performing all aspects of three-dimensional object recognition within as little
as 1 second on a single microprocessor. Because of their extreme runtime efficiency,
these precomputation techniques are likely to remain the method of choice for indus-
trial systems dealing with small numbers of objects.

Other closely related research on model-based vision has been performed by Shi-
rai [26] and Walter & Tropf [28]. There has also been a substantial amount of research
on the interpretation of range data and matching within the three-dimensional domain.
While we have argued here that most instances of recognition can be performed without
the preliminary reconstruction of depth, there may be industrial applications in which
the measurement of many precise three-dimensional coordinates is of sufficient impor-
tance to require the use of a scanning depth sensor. Grimson & Lozano-Pérez [13] have
described the use of three-dimensional search techniques to recognize objects from range
data, and describe how these same methods could be used with tactile data, which nat-
urally occurs in three-dimensional form. Further significant research on recognition
from range data has been carried out by Bolles et al. [5] and Faugeras [10]. Schwartz &
Sharir [25] have described a fast algorithm for finding an optimal least-squares match
between arbitrary curve segments in two or three dimensions. This method has been
combined with the efficient indexing of models to demonstrate the recognition of large
numbers of two-dimensional models from their partially obscured silhouettes. This
method also shows much promise for extension to the three-dimensional domain us-
ing range data.

8 Conclusions

One goal of this paper has been to describe the implementation of a particular computer
vision system. However, a more important objective for the long-term development of
this line of research has been to present a general framework for attacking the problem
of visual recognition. This framework does not rely upon any attempt to derive depth
measurements bottom-up from the image, although this information could be used if it
were available. Instead, the bottom-up description of an image is aimed at producing
viewpoint-invariant groupings of image features that can be judged unlikely to be ac-
cidental in origin even in the absence of specific information regarding which objects
may be present. These groupings are not used for final identification of objects, but
rather serve as “trigger features” to reduce the amount of search that would otherwise
be required. Actual identification is based upon the full use of the viewpoint consis-
tency constraint, and maps the object-level data right back to the image level without
any need for the intervening grouping constructs. This interplay between viewpoint-
invariant analysis for bottom-up processing and viewpoint-dependent analysis for top-
down processing provides the best of both worlds in terms of generality and accurate
identification. Many other computer vision systems have experienced difficulties be-
cause they attempt to use viewpoint-specific features early in the recognition process
or because they attempt to identify an object simply on the basis of viewpoint-invariant
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characteristics. The many quantitative constraints generated by the viewpoint consis-
tency analysis allow for robust performance even in the presence of only partial image
data, which is one of the most basic hallmarks of human vision.

There has been a tendency in computer vision to concentrate on the low-level as-
pects of vision because it is presumed that good data at this level is prerequisite to
reasonable performance at the higher levels. However, without any widely accepted
framework for the higher levels, the development of the low level components is pro-
ceeding in a vacuum without an explicit measure for what would constitute success.
This situation encourages the idea that the purpose of low-level vision should be to re-
cover explict physical properties of the scene, since this goal can at least be judged in
its own terms. But recognition does not depend on physical properties so much as on
stable visual properties. This is necessary so that recognition can occur even in the ab-
sence of the extensive information that would be required for the bottom-up physical
reconstruction of the scene. If a widely accepted framework could be developed for
high-level visual recognition, then it would provide a whole new set of criteria for eval-
uating work at the lower levels. We have suggested examples of such criteria in terms
of viewpoint invariance and the ability to distinguish significant features from acciden-
tal instances. If such a framework were adopted, then rapid advances could be made in
recognition capabilities by independent research efforts to incorporate many new forms
of visual information.
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