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Abstract

A computer vision system has been implemented that can recognize three-
dimensional objectsfromunknown viewpointsin single gray-scaleimages.
Unlike most other approaches, the recognitionisaccomplished without any
attempt to reconstruct depth information bottom-up from the visual inpti.
Instead, three other mechanisms are used that can bridge the gap between
the two-dimensional image and knowledge of three-dimensional objects.
First, a process of perceptual organization is used to form groupings and
structures in the image that are likely to be invariant over a wide range of
viewpoints. Second, a probabilistic ranking method is used to reduce the
Size of the search space during model based matching. Finally, aprocess of
spatial correspondence bringsthe projections of three-dimensional models
into direct correspondence with the image by solving for unknown view-
point and model parameters. A high level of robustness in the presence
of occlusion and missing data can be achieved through full application of
a viewpoint consistency constraint. It is argued that Smilar mechanisms
and constraints form the basis for recognition in human vision.

This paper has been publishedin Artificia Intelligence, 31, 3 (March 1987), pp. 355-395.



1 Introduction

Much recent research in computer vision has been aimed at the reconstruction of depth
information from the two-dimensional visual input. An assumption underlying some
of thisresearch is that the recognition of three-dimensional objects can most easily be
carried out by matching against reconstructed three-dimensional data. However, there
isreason to believe that thisis not the primary pathway used for recognition in human
vision and that most practical applications of computer vision could similarly be per-
formed without bottom-up depth reconstruction. Although depth measurement has an
important role in certain visual problems, it is often unavailable or is expensive to ob-
tain. General-purpose vision must be able to function effectively even in the absence
of the extensive information required for bottom-up reconstruction of depth or other
physical properties. In fact, human vision does function very well at recognizing im-
ages, such as smple line drawings, that lack any reliable clues for the reconstruction
of depth prior to recognition. This capability also parallels many other areas in which
human vision can make use of partial and locally ambiguousinformationto achievere-
liableidentifications. This paper presents several methodsfor bridging the gap between
two-dimensional images and knowledge of three-dimensional objectswithout any pre-
liminary derivation of depth. Of equal importance, these methods address the critical
problem of robustness, with the ability to function in spite of missing data, occlusion,
and many forms of image degradation.

How isit possible to recognize an object from itstwo-dimensional projection when
we have no prior knowledge of the viewpoint from which we will be seeing it? Anim-
portant role is played by the process of perceptual organization, which detects group-
ingsand structuresin theimagethat arelikely to beinvariant over wideranges of view-
points. While it is true that the appearance of a three-dimensional object can change
completely asit is viewed from different viewpoints, it is also true that many aspects
of an object’sprojection remaininvariant over large rangesof viewpoints (examplesin-
cludeinstances of connectivity, collinearity, parallelism, texture properties, and certain
symmetries). It isthe role of perceptual organization to detect those image groupings
that are unlikely to have arisen by accident of viewpoint or position. Once detected,
these groupings can be matched to corresponding structures in the objects through a
knowl edge-based matching process. Itispossibleto use probabilistic reasoning to rank
the potential matchesin terms of their predicted reliability, thereby focusing the search
on the most reliable evidence present in a particular image.

Unfortunately, the matches based on viewpoint-invariant aspects of each object are
by their nature only partially reliable. Therefore, they are used smply as “trigger fea-
tures’ to initiate a search process and viewpoint-dependent analysis of each match. A
guantitative method is used to simultaneously determine the best viewpoint and object
parameter values for fitting the projection of athree-dimensional model to given two-
dimensional features. This method allows afew initial hypothesized matchesto be ex-
tended by making accurate quantitative predictionsfor thelocations of other object fea-
turesin theimage. This providesahighly reliable method for verifying the presence of
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Figure 1: On the left is adiagram of a commonly accepted model for visual recogni-
tion based upon depth reconstruction. This paper instead presents the model shown on
the right, which makes use of prior knowledge of objects and accurate verification to
interpret otherwise ambiguous image data.

aparticular object, since it can make use of the spatial information in the image to the
full degree of available resolution. The fina judgement as to the presence of the object
can be based on only a subset of the predicted features, since the problem is usually
greatly overconstrained due to the large number of visual predictions from the model
compared to the number of free parameters. Figure 1 shows a diagram of these com-
ponents and contrasts them with methods based upon depth reconstruction.

These methods for achieving recognition have been combined in a fuctioning vi-
sion system named SCERPO (for Spatial Correspondence, Evidential Reasoning, and
Perceptual Organization). Thisinitial implementation uses smplified componentsat a
number of levels, for example by performing matching only between straight line seg-
ments rather than arbitrary curves. However, even this initial system exhibits many
forms of robustness, with the ability to identify objects from any viewpoint in the face
of partial occlusion, missing features, and a complex background of unrelated image
features. The current system has a significant level of performance relative to other



model-based vision systems, including those that are based upon the accurate deriva-
tion of depth measurements prior to recognition. In addition, it provides a framework
for incorporating numerous potential improvements in image description, perceptual
grouping, knowledge indexing, object modeling, and parameter solving, with resulting
potential improvementsin performance. Many of the components of this system can
be related to corresponding capabilities of human vision, aswill be described at therel-
evant pointsin this paper. The following section examines the psychological validity
of the central goal of the system, which isto perform recognition directly from single
two-dimensional images.

2 Roleof depth reconstruction in human vision

Thereisawidespread assumption within the computer vision and psychology commu-
nitiesthat the recognition of three-dimensional objectsisbased on aninitia derivation
of depth measurements from the two-dimensional image [11, 22]. However, this as-
sumption seemsto be based more upon the perceived difficulty of achieving recognition
from a two-dimensional projection than from any convincing psychological data. In
this paper we will argue that human capabilities for recognition are much more general
than this restricted model would suggest, and that in fact the need for depth reconstruc-
tion is the exception rather than the rule. It is true that human vision contains a num-
ber of capabilities for the bottom-up derivation of depth measurements, such as stereo
and motion interpretation, and these presumably have important functions. However,
biological visual systems have many objectives, so it does not follow that these com-
ponents are central to the specific problem of visual recognition. In fact, the available
evidence would seem to strongly suggest the opposite.

One difficulty with these methods for depth reconstruction is that the required in-
puts are often unavailable or require an unacceptably long interval of time to obtain.
Stereo visionisonly useful for objectswithin arestricted portion of thevisual field and
range of depthsfor any given degreeof eye vergence, and isnever useful for distant ob-
jects. At any moment, most parts of ascene will be outside of thelimited fusional area.
Motion information is available only when there is sufficient relative motion between
observer and object, which in practiceis also usually limited to nearby objects. Recog-
nition timesare usually so short that it seems unlikely that the appropriate eye vergence
movements or elapsed time measurements could be taken prior to recognition even for
those cases in which they may be useful. Depth measurements from shading or texture
are apparently restricted to special cases such asregions of approximately uniform re-
flectance or regular texture, and they lack the quantitative accuracy or completeness of
stereo or motion.

Secondly, human vision exhibits an excellent level of performance in recognizing
images—such as simple line drawings—in which there is very little potential for the
bottom-up derivation of depth information. Biederman [4] describes an experiment in
which almost identical reaction times (about 800 ms) and error rates were obtained for



recognition of linedrawings ascompared with full-color lides of the same objectsfrom
the same viewpoints. Whatever mechanisms are being used for line-drawing recogni-
tion have presumably devel oped fromtheir usein recognizing three-dimensional scenes.
The common assumption that line-drawing recognitionisalearned or cultural phenom-
enais not supported by the evidence. In aconvincing test of this conjecture, Hochberg
and Brooks[ 15] describethe case of a19-month-old human baby who had had no previ-
ous exposureto any kinds of two-dimensional images, yet wasimmediately ableto rec-
ognize ordinary line drawings of known objects. It istrue that there has been somere-
search on the bottom-up derivation of depth directly from linedrawingsor the edgesde-
tected inasingleimage|[2, 3, 27], including previousresearch by theauthor [20]. How-
ever, these methods usually lead to sparse, under-constrained relationships in depth
rather than to something resembling Marr’s 21-D sketch. In addition, these methods
apply only to special cases and it is often not possible to tell which particular infer-
ence appliesto a particular case. For example, one often-discussed inferenceisthe use
of perspective convergence to derive the orientation of lines that are parallel in three-
dimensions; however, given a number of lines in the image that are converging to a
common point, thereisusually no effective way to distinguish convergence dueto per-
spective effectsfrom theequally common case of linesthat are converging to acommon
point in three-dimensions. In this paper we will make use of many of the same infer-
ences that have previously been proposed for deriving depth, but they will instead be
used to generate two-dimensional groupingsintheimage that are used directly to index
into a knowledge base of three-dimensional objects.

Finally, and of most relevance for many applications of computer vision, there has
been no clear demonstration of the value of depth information for performing recog-
nition even when it is available. The recognition of objects from complete depth im-
ages, such as those produced by alaser scanner, has not been shown to be easier than
for systems that begin only with the two-dimensional image. This paper will describe
methods for directly comparing the projection of three-dimensional representations to
the two-dimensional image without the need for any prior depth information. Since
the final verification of an interpretation can be performed by comparing the projected
knowledge with each available image to the full accuracy of the data, there is nothing
to be gained at this stage from any depth information that is derivative from the origi-
nal images. The one remaining issue is whether there is some way in which the depth
information can significantly speed the search for the correct knowledge to compareto
the image.

Of course, none of the above is meant to imply that depth recovery is an unimpor-
tant problem or lacks a significant role in human vision. Depth information may be
crucial for theinitial stages of visual learning or for acquiring certain types of knowl-
edge about unfamiliar structures. It isalso clearly useful for making precise measure-
ments as an aid to manipulation or obstacle avoidance. Recognition may sometimes
leave the precise position in depth undetermined if the absolute size of an object is un-
known. Human stereo vision, with its narrow fusional range for a given degree of eye
vergence, seems to be particularly suited to making these precise depth measurements
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for selected nearby objects as an aid to manipulation and bodily interaction. However,
it seems likely that the role of depth recovery in common instances of recognition has
been overstated.

3 Solvingfor spatial correspondence

Many areas of artificial intelligence are aimed at the interpretation of data by finding
consistent correspondences between the data and prior knowledge of the domain. In
this paper, we will begin by defining the consistency conditionsfor judging correspon-
dence between image data and three-dimensional knowledge. Unlike many other ar-
eas of artificial intelligence, an important component of this knowledge is quantitative
gpatial information that requires specific mathematical techniques for achieving corre-
spondence. The particular constraint that we wish to apply can be stated as follows:

Theviewpoint consistency constraint: Thelocationsof all projected model
featuresin animage must be consistent with projectionfromasingle view-
point.

The effective application of this constraint will allow afew initial matches to be boot-
strapped into quantitative predictions for the locations of many other features, leading
to the reliable verification or rejection of theinitial matches. Later sections of this pa-
per will deal with the remaining problems of recognition, which involvethe generation
of primitiveimage structures to provide initial matches to the knowledge base and the
algorithms and control structuresto actually perform the search process.

The physical world isthree-dimensional, but acamera simage contains only atwo-
dimensional projection of thisreality. It is straightforward mathematically to describe
the process of projection from a three-dimensional scene model to a two-dimensional
image, but the inverse problem is considerably more difficult. It iscommon to remark
that thisinverse problem is underconstrained, but thisis hardly the source of difficulty
in the case of visual recognition. In the typical instance of recognition, the combina-
tion of image data and prior knowledge of athree-dimensional model resultsinahighly
overconstrained solution for the unknown projection and model parameters. In fact,
we must rely upon the overconstrained nature of the problem to make recognition ro-
bust in the presence of missing image data and measurement errors. So it is not the
lack of constraints but rather their interdependent and non-linear nature that makes the
problem of recovering viewpoint and scene parameters difficult. The difficulty of this
problem has been such that few vision systems have made use of quantitative spatial
correspondence between three-dimensional models and the image. Instead it has been
common to rely on qualitative topological formsof correspondence, or else to produce
three-dimensional depth measurementsthat can be matched directly to the model with-
out having to account for the projection process.

Our goal, then, isto carry out a quantitative form of spatial reasoning to provide a
two-way link between image measurements and the object model. Matches between
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the model and some image features can be used to constrain the three-dimensional po-
sition of the model and its components, which in turn leads to further predictions for
the locations of model features in the image, leading to more matches and more con-
straints. The problem of generating the few initial matches to begin this process will
be dealt with in later sections of this paper. Here we will describe the spatial reasoning
process that relates the image measurements to three-dimensional constraints.

The precise problem we wish to solveisthefollowing: given a set of known corre-
spondences between three-dimensional pointson amodel and pointsinatwo-dimensional
image, what are the values of the unknown projection and model parameters that will
result in the projection of the given model pointsinto the corresponding image points.
The unknown parameters might include the position and orientation of the object in
three dimensions, thefocal length of the camera, and various degrees of freedom in the
model description, such as articulations or variable dimensions. We will later extend
this problem description to allow for the least-squares sol ution of overdetermined con-
straints, and to alow for matches between corresponding lines (without concern for the
position of endpoints) rather than just points.

There has been some previous work on solving for the position of arigid three-
dimensional object given matches between points on the model and pointsin the im-
age. This problem must be solved in order to bring photographs into correspondence
with mapping data in the field of photogrammetry. An analytic solution, known as the
Church method, is presented in the photogrammetry literature [31], but this solution
involves nonlinear equations which must themselves be solved by iterative numerical
methods. The current preferred technique in photogrammetry is to use the same lin-
earization and iterative methods that will serve as our starting point in this paper. Fis-
chler and Bolles [9] have presented another analytic solution to the problem, but one
which aso requiresiterative numerical solution. In addition, they have presented use-
ful information on the conditions under which multiple solutions can arise. A different
approach wastakeninthe ACRONY M computer vision system [6], which used agen-
eral symbolic equation solver to place bounds on projection and model parametersfrom
image measurements. However, the equationsfor the general projection problem were
often much too difficult for exact solution, so sub-optimal bounds would be produced
that failed to apply the information inherent in the viewpoint consistency constraint.

The approach taken in this paper will be to linearize the projection equations and
apply Newton’smethod for the necessary number of iterations. A reparameterization of
these equationsisused to simplify the calcul ation of the necessary derivatives. Thisal-
lowsusto efficiently solve not only the basic rigid-body problem studied in photogram-
metry, but also to extend the method to variable model parametersand forms of corre-
spondence other than the matching of points. Figure 2 illustrates the sequence of steps
involved in applying Newton's method to this problem.
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Figure 2: Three steps in the application of Newton’s method to achieve spatia corre-
spondence between 2-D image segments and the projection of a 3-D object model.

3.1 Application of Newton’s method

Following standard practice in computer graphics, we can describe the projection of a
three-dimensional model point p into a two-dimensional image point (u, v) with the
following equations:

(z,y,2) = R(p —t)
(u,v) = (f_x7 &)

z z

where t isa 3-D trandation vector and R isarotation matrix which transform p in the
original model coordinatesinto apoint (., v, z) in camera-centered coordinates. These
are combined in the second equation with a parameter f proportiona to the camera
focal length to perform perspective projection into an image point (u, v).

Our task isto solvefor t, R, and possibly f, given a number of model points and
their corresponding locationsin animage. Inorder to apply Newton’s method, we must
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beableto calculatethepartial derivativesof « and v with respect to each of the unknown
parameters. However, it is difficult to calculate these partia derivatives for this stan-
dard form of the projection equation. In particular, this formulation does not describe
how to represent the rotation £ interms of its three underlying parameters. Many pre-
vious attempts to solve the viewpoint determination problem have treated the rotation
as consisting of more than three parameters, which leads to the requirement for more
image data than is actually needed and to poor techniquesfor handling errors.

The partial derivativeswith respect to the trand ation parameters can be most easily
calculated by first reparameterizing the projection equations to express the translations
in terms of the camera coordinate system rather than model coordinates. This can be
described by the following equations:

(z,y,2) = Rp
J Ty
= D, D
(u,v) (Z‘I’Dz —I_ Z_I_DZ —I_ Y

Herethevariables k and f remainthe sameasintheprevioustransform, but thevector t
has been replaced by the parameters D, D, and D... Thetwo transformsare equivalent
[under an affine approximation] when

D.(z+D.)  Dy(z+D,) ]T
[ 9 _DZ
/ /
In the new parameterization, D,, and D, ssimply specify the location of the object on
theimage planeand D. specifiesthe distance of the object from the camera. Aswill be
shown below, thisformulation makes the calculation of partial derivatives with respect
to the trand ation parameters almost trivial.

We are still left with the problem of representing therotation R intermsof itsthree
underlying parameters. Our solution to this second problem isbased on the realization
that the Newton method does not in fact require an explicit representation of the indi-
vidual parameters. All that is needed is some way to modify the original rotation in
mutually orthogonal directionsand away to calculate partial derivatives of image fea-
tures with respect to these correction parameters. Therefore, we have chosen to take
theinitial specification of £ as given and add to it incremental rotations ¢.., ¢, and ¢,
about the =, y and = axes of the current camera coordinate system. In other words, we
maintain R in the form of a 3x3 matrix rather than in terms of 3 explicit parameters,
and the corrections are performed by prefix matrix multiplication with correction ro-
tation matrices rather than by adding corrections to some underlying parameters. Itis
fast and easy to compose rotations, and these incremental rotations are approximately
independent of one another if they are small. The Newton method isnow carried out by
calculating the optimum correction rotations A¢.., A¢, and A¢, to be made about the
camera-centered axes. The actual corrections are performed by creating matrices for
rotations of the given magnitudes about the respective coordinate axes and composing
these new rotations with R.

t=R! [—
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Figure 3: The partia derivativesof =, y and = (the coordinates of rotated model points)
with respect to counterclockwise rotations ¢’s (in radians) about the coordinate axes.

Another advantage of using the ¢’ sas our convergence parametersisthat thederiva-
tivesof x, y, and ~ (and therefore of « and v) with respect to them can be expressed in
astrikingly smpleform. For example, the derivative of = at apoint («, y) with respect
to a counter-clockwise rotation of ¢. about the > axisissimply —y. Thisfollowsfrom
the fact that (=, y, z) = (r cos ¢., rsin ¢., z), wherer isthe distance of the point from
the ~ axis, and therefore 0= /0¢. = —rsin ¢, = —y. Thetablein Figure 3 gives these
derivativesfor all combinations of variables.

Giventhisparameterizationitisnow straightforward to accomplish our original ob-
jective of calculating the partial derivatives of « and v with respect to each of the origi-
nal camera parameters. For example, our new projection transform above tells usthat:

__J=
v z+ D, +De
0 0
u
oD, !
Also,
du f oz fx 0z

06, ~ z+D.06, (z+D.)? 0o,
but, from the table in Figure 3, we know that

= 2z and — = —x

9%, 0,

and, for smplicity, we will substitute

B 1
= z+ D,
giving,
Ju = fez+ fe*x? = fe(z + cx?)
I,
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Figure4: The partial derivativesof « and v with respect to each of the cameraviewpoint
parameters.

Similarly,

Ou f oz

96, - 23 D.os, - I
All the other derivatives can be calculated in asimilar way. Thetablein Figure 4 gives
the derivatives of « and v with respect to each of the seven parameters of our camera
model, again substituting ¢ = (z + D.)~! for smplicity.

Our task on each iteration of the multi-dimensional Newton convergence will beto

solve for a vector of corrections

h=[AD,,ADy,AD,, A¢,, Ap,, A¢.]

If thefocal length is unknown, then A f would also be added to this vector. Given the
partia derivativesof « and v with respect to each variable parameter, the application of
Newton's method is straightforward. For each point in the model which should match
against some corresponding point in theimage, wefirst project the model point into the
image using the current parameter estimates and then measure the error in its position
compared to the given image point. The « and v components of the error can be used
independently to create separate linearized constraints. For example, making use of the
u component of the error, F,, we create an equation which expresses this error as the
sum of the productsof itspartial derivativestimesthe unknown error-correctionval ues:

ou ou ou Ju Ju Ju
— — —— A¢y + —A¢, + —A
aDIADIJr aDyADer aDZADZJr 90, be + 9o, by + 9o

Using the same point we create asimilar equation for itsv component, so for each point
correspondence we derivetwo equations. From threepoint correspondenceswe can de-

sz:Eu
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rive six equations and produce a complete linear system which can be solved for all six
cameramodel corrections. After each iteration the corrections should shrink by about
one order of magnitude, and no more than a few iterations should be needed even for
high accuracy.

Unknown model parameters, such as variable lengths or angles, can aso be incor-
porated. Inthe worst case, we can always calculate the partial derivatives with respect
to these parameters by using standard numerical techniques that dightly perturb the
parameters and measure the resulting change in projected locations of model points.
However, inmost casesit ispossibleto specify thethree-dimensional directiona deriva
tive of model points with respect to the parameters, and these can be trandated into
image derivatives through projection. Examples of the solution for variable model pa-
rameters ssimultaneously with solving for viewpoint have been presented in previous
work [18].

In most applicationsof thismethod wewill be given more correspondences between
model and image than are strictly necessary, and we will want to perform some kind of
best fit. In this case the Gauss | east-squares method can easily be applied. The matrix
equations described above can be expressed more compactly as

Jh=e

where J isthe Jacobian matrix containing the partial derivatives, h isthe vector of un-
known corrections for which we are solving, and e is the vector of errors measured in
theimage. When this system is overdetermined, we can perform aleast-squares fit of
the errors ssimply by solving the corresponding normal equations:

JTJh = J%e

where J7J is square and has the correct dimensions for the vector h.

3.2 Making use of line-to-line correspondences

Another important extension to the basic algorithmisto allow it to use line-to-line cor-
respondences in addition to point-to-point ones. Thisisimportant in practice because
low-level vision routinesarerelatively good at finding the transverse locations of lines
but are much less certain about exactly where the lines terminate. Line terminations
may also be widely displaced due to occlusion, shadows, or various sources of failure
in the low-level edge detection algorithms. Therefore, we should express our errorsin
terms of the distance of one line from another, rather than in terms of the error in the
locations of points. The solution isto measure as our errorsthe perpendicular distance
of selected points on the model line from the corresponding line in the image, and to
then take the derivativesin terms of this distance rather than in terms of « and v.

In order to expressthe perpendicul ar distance of apointfromalineitisuseful tofirst
express the image line as an equation of the following form, in which m isthe slope:
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—m 1

u + v=d
m24+1 m2+1

In this equation d is the perpendicular distance of the line from the origin. If we sub-
stitute some point («’, v*) into the left side of the equation and calculate the new value
of d for thispoint (cal it d'), then the perpendicular distance of this point fromtheline
issmply d — d'. What ismore, it is easy to calculate the derivatives of d’ for usein
the convergence, since the derivativesof d’ arejust alinear combination of the deriva-
tives of v and v as given in the above equation, and we already know how to calculate
the « and v derivatives from the solution given for using point correspondences. The
result is that each line-to-line correspondence we are given between model and image
gives us two equations for our linear system—the same amount of information that is
conveyed by a point-to-point correspondence. Figure 2 illustrates the measurement of
these perpendicular errors between matching model lines and image lines.

The same basic method could be used to extend the matching to arbitrary curves
rather than just straight line segments. In this case, we would assume that the curves
arelocally linear and would minimize the perpendicular separation at selected points
asinthestraight line case, using iteration to compensate for non-linearities. For curves
that are curving tightly with respect to the current error measurements, it would be nec-
essary to match points on the basis of orientation and curvature in addition to smple
perpendicular projection. However, the current implementation of SCERPO islimited
to the matching of straight line segments, so these extensions to include the matching
of arbitrary curvesremain to be implemented.

3.3 Theuseof parameter determination for matching

The mathematical methodsfor parameter determination presented above need to bein-
tegrated into a matching algorithm that can extend a few initial matches and return a
reliable answer asto the presence or absence of the object at the hypothesized location.
Some of the implementation details that must be worked out includethe choice of arep-
resentation for object models, the cal culation of a starting viewpoint to initiate Newton
iteration, and the methods for making use of theinitial parameter determination to gen-
erate new matches between image and object features.

The object models used in the current implementation of SCERPO consist simply
of aset of 3-D linesegments. A primitiveform of hidden line elimination is performed
by attaching a visibility specification to each line segment. The visibility specifica-
tion contains aboolean combination of hemispheres from which the segmentisvisible.
Each hemisphere of directionsis represented by a unit vector, so that the visibility of
the segment can be very efficiently computed by ssmply checking the sign of the dot
product of this vector with the vector pointing to the camera position. It isimportant
that thevisibility calculation befast, asit is performedin theinner loop of the matching
process. However, thisform of hidden line elimination is only an approximation, since
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it does not alow for partial occlusion of aline segment or for calculating occlusion
between objects. 1t would also need to be extended to allow for models with variable
internal parameters. Aswith other parts of the matching process, werely upon the over-
all robustness of the system in the face of missing or extrafeatures to compensate for
occasional errorsin hidden-line determination.

As with al applications of Newton’s method, convergence of the viewpoint solv-
ing algorithmisguaranteed only for starting positionsthat are*” sufficiently close” to the
final solution. Fortunately, in thisproblem severa of the parameters (scaling and trans-
lation in the image plane) are exactly linear, while the other parameters (rotation and
perspective effects) are approximately linear over wide ranges of values. In practice,
we have found that as long as the orientation parameters are within 60 degrees of their
correct values, almost any values can be chosen for the other parameters. Reasonable
estimates of the viewpoint parameters can be easily computed from the same matches
that will be used for convergence. Since most parts of the model are only visiblefroma
[imited range of viewpoints, we can select an orientation in depth that is consistent with
thisrangefor each object feature being matched. Orientation in theimage plane can be
estimated by causing any line on the model to project to aline with the orientation of
the matching linein theimage. Similarly, trandation can be estimated by bringing one
model point into correspondence with its matching image point. Scale (i.e., distance
from the camera) can be estimated by examining the ratios of lengths of model lines
to their corresponding image lines. The lines with the minimum value of thisratio are
thosethat are most parallel to theimage plane and have been most completely detected,
so thisratio can be used to roughly solve for scale under this assumption. These esti-
matesfor initial values of the viewpoint parametersareall fast to compute and produce
values that are typically much more accurate than needed to assure convergence. Fur-
ther improvementsin the range of convergence could be achieved through the applica-
tion of standard numerical techniques, such as damping [8].

A more difficult problem is the possible existence of multiple solutions. Fischler
and Bolles[9] have shown that there may be as many asfour solutionsto the problem of
matching threeimage pointsto three model points. Many of these ambiguitieswill not
occur in practice, given the visibility constraints attached to the model, since they in-
volverangesof viewpointsfromwhich theimagefeatureswould not bevisible. Also,in
most cases the method will beworking with far more than the minimum amount of data,
so the overconstrained problem isunlikely to suffer fromfalse local minimaduring the
least-squares process. However, when working with very small numbers of matches, it
may be necessary to run the process from several starting positionsin an attempt to find
all of the possible solutions. Given severa starting positions, only acouple of iterations
of Newton's method on each solution are necessary to determinewhether they are con-
verging to the same solution and can therefore be combined for subsequent processing.
Finally, it should beremembered that the overall system isdesigned to berobust against
instances of missing data or occlusion, so an occasiona failure of the viewpoint deter-
mination should lead only to an incorrect rejection of asingle match and an increasein
the amount of search rather than afinal failure in recognition.
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3.4 Extendingtheinitial set of matches

Oncetheinitial set of hypothesi zed matches hasbeen used to solvefor the viewpoint pa-
rameters, this estimate of viewpoint can be used to predict the locations of other model
featuresin theimage and thereby extend the match. The predictionsof these imagelo-
cations can be obtained by ssmply projecting the model edges onto the image using the
current set of viewpoint parameters. The more difficult problem is to select matches
in the image that are consistent with these predictions. Rather than setting arbitrary
thresholds on the error range within which image segments must fall to be considered
in agreement with a predicted model segment, a probabilistic approach istaken. First,
each segment is projected, and the image data structure is searched to select potential
matches. All line segments in the image are indexed according to location and orien-
tation, so this search can be carried out efficiently. Each potential match is assigned a
value giving the probability that a randomly placed image segment would agree with
the prediction to within the measured differencein length, orientation and trasverse po-
stion. The probability calculation uses the same assumptions and formalisms as are
used for the perceptual organization eval uationsto be described in the next section. The
lower this probability of accidental agreement, the more likely it is that the match is
correct.

After evaluating each potential match for a given prediction, the top-ranked match
is assigned a higher probability of being mistaken if the second-ranked match has a
similar evaluation. The purpose of this penalty isto avoid committing ourselvesto ei-
ther choice of an ambiguous match if there is some less ambiguous alternative from
some other model prediction. At each stage of theiteration we select only matcheswith
a probability of being accidental of less than 0.01, or else we select the single lowest
probability match from all of the model predictions. These are then added to the least-
sguares solution to update the estimate of viewpoint. By the time a number of the most
reliable matches have been found, the viewpoint estimation will be based on a substan-
tial amount of dataand should be accurate enough to choose correctly between themore
ambiguous alternatives. The set of matchesisrepeatedly extended in thisway until no
more can be found. This iterative matching procedure has the appealing property of
using the easy cases to provide better viewpoint estimates to disambiguate the more
difficult situations, yet it avoids the expense of search and backtracking.

Thefinal accuracy of the viewpoint determination procedure could probably beim-
proved by attempting to discard the pointsthat deviate the most from the least-squares
solution and reconverging on the remaining data. Thiswould allow the system to con-
verge on a consensus viewpoint estimate that was not influenced by the largest errors
in modeling or feature detection. However, this procedure remainsto be implemented.

The final judgement as to the presence of the object is based simply on the degree
to which the final viewpoint estimate is overconstrained. Since only three edges are
needed to solve for viewpoint, each further match adds to the verification of the pres-
ence of the object. In addition, the least-squares solution provides an estimate of the
standard deviation of the error. Given sufficiently detailed models, correct instances of
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recognition should be greatly overconstrained even in the face of partial occlusion and
other missing features, so the precise threshold for rejection should be unimportant. In
the examples that are presented at the end of this paper, correct matches typically had
over 20 image segments in close agreement with the model, while incorrect matches
seldom found more than 7 matching segments.

4 Perceptual organization

The methodsfor achieving spatial correspondence presented in the previous section en-
force the powerful constraint that all parts of an object’s projection must be consistent
with asingle viewpoint. Thisconstraint allowsusto bootstrapjust afew initial matches
into acompleteset of quantitativerel ationshi ps between model featuresand theirimage
counterparts, and thereforeresultsin areliabledecision asto the correctness of theorig-
inal match. The problem of recognition hastherefore been reduced to that of providing
tentative matches between a few image features and an object model. The relative ef-
ficiency of the viewpoint solution means that only a small percentage of the proposed
matches need to be correct for acceptable system performance. In fact, when matching
toasingle, rigid object, one could imagine simply taking all triplets of nearby line seg-
ments in the image and matching them to afew sets of nearby segments on the model.
However, this would clearly result in unacceptable amounts of search as the number
of possible objects increases, and when we consider the capabilities of human vision
for making use of avast database of visual knowledge it is obviousthat smple search
is not the answer. This initial stage of matching must be based upon the detection of
structuresin the image that can be formed bottom-up in the absence of domain knowl-
edge, yet must be of sufficient specificity to serve as indexing termsinto a database of
objects.

Given that we often have no prior knowledge of viewpoint for the objects in our
database, the indexing features that are detected in the image must reflect properties of
the objects that are at least partially invariant with respect to viewpoint. This means
that it isuseless to look for features at particular sizes or angles or other propertiesthat
are highly dependent upon viewpoint. A second constraint on these indexing features
isthat there must be some way to distinguish the relevant features from the dense back-
ground of other imagefeatureswhich could potentially giverisetofalseinstances of the
structure. Through an accident of viewpoint or position, three-dimensional elements
that are unrelated in the scene may give rise to seemingly significant structuresin the
image. Therefore, an important function of thisearly stage of visual groupingistodis-
tinguish as accurately as possible between these accidental and significant structures.
We can summarize the conditions that must be satisfied by perceptual grouping opera-
tionsasfollows:

The viewpoint invariance condition: Perceptual features must remain
stableover awiderange of viewpointsof some corresponding three-dimensional
structure.
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Figure5: Thisfigureillustratesthe human ability to spontaneoudly detect certain group-
ings from among an otherwise random background of similar elements. This figure
contains three non-random groupings resulting from parallelism, collinearity, and end-
point proximity (connectivity).

The detection condition: Perceptual features must be sufficiently con-
strained so that accidental instances are unlikely to arise.

Although little-studied by the computational vision community, the perceptual or-
ganization capabilities of human vision seem to exhibit exactly these properties of de-
tecting viewpoint invariant structures and calculating varying degrees of significance
for individual instances. These groupings are formed spontaneously and can be de-
tected immediately from among large numbers of individual elements. For example,
people will immediately detect certain instances of clustering, connectivity, collinear-
ity, parallelism, and repetitive textures when shown alarge set of otherwise randomly
distributed image elements (see Figure 5). This grouping capability of human vision
was studied by the early Gestalt psychologists [29] and is aso related to research in
texture description [21, 32]. Unfortunately, thisimportant component of human vision
has been missing from almost all computer vision systems, presumably because there
has been no clear computational theory for the role of perceptual organization in the
overall fuctioning of vision.

A basic goal underlying research on perceptual organization has been to discover
some principlethat could unify the various grouping phenomenaof human vision. The
Gestaltists thought that this underlying principle was some basic ability of the human
mind to proceed from the whole to the part, but thislacked a computational or predic-
tive formulation. Later research summarized many of the Gestaltists' results with the
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observation that people seem to perceive the smplest possible interpretation for any
given data [14]. However, any definition of simplicity has depended entirely on the
language that is used for description, and no single language has been found to encom-
pass the range of grouping phenomena. Greater success has been achieved by basing
the analysis of perceptual organization on a functional theory which assumes that the
purpose of perceptual organization is to detect stable image groupings that reflect ac-
tual structure of the scene rather than accidental properties[30]. This parallels other
areas of early vison in which amajor goal is to identify image featuresthat are stable
under changes in imaging conditions.

4.1 Derivation of grouping oper ations

Given these functional goals, the computational specification for perceptual organiza-
tion isto differentiate groupingsthat arise from the structure of a scene from those that
arise due to accidents of viewpoint or positioning. Thisdoes not lead to asingle metric
for evaluating the significance of every image grouping, since there are many factors
that contributeto estimating the probability that a particular grouping could have arisen
by accident. However, by combining these variousfactorsand making use of estimates
of prior probabilitiesfor various classes of groupings, it is possibleto derive acomputa-
tional account for the various classes of grouping phenomena. An extensive discussion
of these issues has been presented by the author in previouswork [19], but here we will
examine the more practical question of applying these methods to the development of
aparticular vision system. We will simplify the problem by looking only at groupings
of straight line segments detected in an image and by considering only those groupings
that are based upon the properties of proximity, parallelism, and collinearity.

A strong constraint on perceptual organizationis provided by the viewpoint invari-
ance condition, since there are only arelatively few types of two-dimensional image
relationsthat are even partially invariant with respect to changesin viewpoint of athree-
dimensional scene. For example, it would be pointlessto look for linesthat formaright
anglein theimage, since even if it iscommon to find lines at right anglesin the three-
dimensional scene they will project to right angles in the image only from highly re-
stricted viewpoints. Therefore, even if an approximate right angle were detected in the
image, there would be little basis to expect that it came from aright angle in the scene
as opposed to lines at any other three-dimensional angle. Comparethisto finding lines
at a 180 degree angle to one another (i.e., that are collinear). Since collinear linesin
the scene will project to collinear lines in the image from virtually all viewpoints, we
can expect many instances of collinearity in the image to be dueto collinearity inthree
dimensions. Likewise, proximity and parallelism are both preserved over wide ranges
of viewpoint. Itistruethat parallel linesin the scene may convergein theimage dueto
perspective, but many instances of parallelism occupy small visual angles so that the
incidence of approximate parallelism in the image can be expected to be much higher
than simply those instancesthat arise accidentally. In summary, the requirement of par-
tial invariance with respect to changesin viewpoint greatly restrictsthe classes of image
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relations that can be used as a basis for perceptual organization.

If we were to detect a perfectly precise instance of, say, collinearity in the image,
we could immediately infer that it arose from an instance of collinearity in the scene.
That isbecause the chance of perfect collinearity arising dueto an accident of viewpoint
would be vanishingly small. However, real image measurementsinclude many sources
of uncertainty, so our estimate of significance must be based on the degreeto which the
ideal relation is achieved. The quantitative goal of perceptual organizationisto calcu-
late the probability that an imagerelation is dueto actual structurein the scene. We can
estimate thisby cal culating the probability of therelation arising to within the given de-
gree of accuracy due to an accident of viewpoint or random positioning, and assuming
that otherwisetherelation isdueto structurein the scene. This could be made more ac-
curate by taking into account the prior probability of the relation occurringin the scene
through the use of Bayesian statistics, but this prior probability is seldom known with
any precision.

4.2 Groupingon the basis of proximity

Wewill begintheanalysisof perceptual organization by |ooking at the fundamental im-
age relation of proximity. If two points are close together in the scene, then they will
project to points that are close together in the image from all viewpoints. However, it
isalso possible that points that are widely separated in the scene will project to points
arbitrarily close together in the image due to an accident of viewpoint. Therefore, as
with al of the cases in which we attempt to judge the significance of perceptual group-
ings, we will consider a grouping to be significant only to the extent that it is unlikely
to have arisen by accident.

Animportant example of the need to evaluate proximity iswhen attempting to form
connectivity relations between line segments detected in an image. The proximity of
the endpoints of two line segments may be due to the fact that they are connected or
close together in the three-dimensional scene, or it may be due to a ssimple accident of
viewpoint. Wemust calcul ate for each instance of proximity between two endpointsthe
probability that it could have arisen from unrelated lines through an accident of view-
point. Sincewe often have no prior knowledge regarding the scene and since the view-
point istypically unrelated to the structure of the three-dimensional objects, thereislit-
tle basis for picking a biased background distribution of image features against which
to judge significance. Therefore, this calculation will be based upon the assumption of
a background of line segments that is uniformly distributed in the image with respect
to orientation, position, and scale.

Given these assumptions, the expected number of endpoints, /V, withinaradiusr of
agiven endpointisequal to the average density of endpointsper unit area, d, multiplied
by the area of acircle with radius r (see Figure 6):

N = drr?
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Figure6: Measurementsthat are used to cal cul ate the probablity that instances of prox-
imity, parallelism, or collinearity could arise by accident from randomly distributed line
segments.

For values of N much less than 1, the expected number is approximately equal to the
probability of therelation arising accidentally. Therefore, significance variesinversely
with N. It also follows that significance isinversely proportional to the square of the
separation between the two endpoints.

However, the density of endpoints, d, is not independent of the length of the line
segments that are being considered. Assuming that the image is uniform with respect
to scale, changing the size of the image by some arbitrary scale factor should have no
influence on our evaluation of the density of line segments of agiven length. Thisscale
independence requiresthat the density of linesof agiven length vary inversely accord-
ing to the square of their length, since halving the size of animage will decreaseitsarea
by afactor of 4 and decrease the lengths of each segment by afactor of 2. The same
result can be achieved by simply measuring the proximity » between two endpoints as
proportional to the length of the line segments which participate in the relation. If the
two line segments are of different lengths, the higher expected density of the shorter
segment will dominate that of the longer segment, so we will base the calculation on
the minimum of the two lengths. The combination of these results leads to the follow-
ing evaluation metric. Given a separation  between two endpoints belonging to line
segments of minimum length /:
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Wearedtill left with aunitlessconstant, 1D, specifying the scale-independent density
of line segments (the factor 2 accounts for the fact that there are 2 endpoints for each
line segment). Sincethe measures of significancewill be used mostly to rank groupings
during the search process, the value chosen for a constant factor is of little importance
because it will have no influence on the rankings. However, for our experiments we
have somewhat arbitrarily assigned D the value 1. In fact, given afairly dense set of
segmentswithindependent orientationsand positions, and giventhe constraint that they
do not cross one another, this scale independent measure will have avaue close to 1.

Thisformuladoes areasonablejob of sel ecting instances of endpoint proximity that
seem perceptually significant. Our concern with uniformity across changesin scale has
had an important practical impact on the algorithm. It means that the algorithm will
correctly pick out large-scale instances of connectivity between long segments, even
if there are many short segments nearby which would otherwise mask the instance of
endpoint proximity. This capability for detecting groupingsat multiple scalesisan im-
portant aspect of perceptual organization in human vision.

N =

4.3 Groupingon thebasis of parallelism

A similar measure can be used to deci de whether an approximateinstance of parallelism
between two lines in the image is likely to be non-accidental in origin. Let /; be the
length of the shorter line and /, be the length of the longer line. In order to measure
the average separation s between the two lines, we cal cul ate the perpendicul ar distance
from the longer line to the midpoint of the shorter line. Asin the case for evaluating
proximity, we assume that the density of line segments of length greater than /; isd =
D/I13, for a scale-independent constant 1. Then, the expected number of lines within
the given separation of the longer line will be the area of arectangle of length /; and
width 2s multiplied by thedensity of linesof length at least /;. Let § bethe magnitude of
the angular differencein radians between the orientations of the two lines. Assuming a
uniformdistribution of orientations, only 26 /7 of aset of lineswill bewithin orientation
¢ of agiven line. Therefore, the expected number of lines within the given separation
and angular difference will be:

(ZSZQD) (20) 4D08l2

E = 3 — = 72

3 7T mli

As in the previous case, we assign D the value 1 and assume that significance is in-
versely proportional to £.
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4.4 Groupingon thebasis of collinearity

Measuring the probability that an instance of collinearity has arisen by accident shares
many featuresin common with the case of parallelism. In both cases, theideal relation
would involve two line segments with the same orientation and with zero separation
perpendicular to the shared orientation. However, in the case of parallelism the line
segments are presumed to overlap in the direction parallel to their orientation, whereas
in collinearity the segments are expected to be separated along the direction of their
orientation with an intervening gap. Let ¢ be the size of this gap (the separation of the
endpoints). Asin the case of parallelism, let s be the perpendicular distance from the
midpoint of the shorter line segment, /;, to the extension of the longer line segment,
[5. These bounds determine a rectangular region of length ¢ + {; and width 2s within
which other lines would have the same degree of proximity. Therefore, by analogy in
other respects with the case of parallelism, we get

4D0s(g + 1)

wl?
Notice that this measureisindependent of the length of the longer line segment, which
seems intuitively correct when dealing with collinearity.

FE =

4.5 Implementation of the grouping operations

The subsections above have presented methods for calculating the significance of se-
lected relationships between given pairs of straight line segments. The most obvious
way to use these to detect all significant groupingsin theimage would be to test every
pair of line segments and retain only those pairswhich have high levels of significance.
However, the complexity of this processwould be O(r?) for n line segments, whichis
too high for practical usein complex scenes.

One method for limiting the complexity of this process is to realize that proxim-
ity is an important variablein all of the significance measures. Since significance de-
creases with the square of separation, two small segments that are widely separated in
theimage are unlikely to produce significant groupingsregardless of their other charac-
teristics (constraints on measurement accuracy limit the contribution that orientation or
other measurements can make to judging significance). Therefore, complexity can be
limited by searching only arelatively small region surrounding each segment for can-
didates for grouping. Since proximity is judged relative to the size of the component
features, the size of the region that must be searched is proportional to the length of the
line segment from which we areinitiating the search. In order to make efficient use of
theserestrictions, all segmentsin the image should be indexed in agrid-like data struc-
ture according to the position of each endpoint. For further efficiency, the segments
in each element of this position matrix can be further indexed according to orientation
and length. The use of thisindex allows all groupings with interesting levels of signif-
icance to be detected in time that is essentially linear in the number of features. Itis
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Figure 7: Thisillustrates the steps of a scale-independent algorithm for subdividing a
curve into its most perceptually significant straight line segments. The input curveis
shown in (&) and the final segmentation isgivenin (f).

interesting to note that human vision also seemsto limit the complexity of groupingin
asimilar way, athough human vision apparently uses amore sophisticated method that
also takes account of thelocal density of features[19].

4.6 Segmentation of linked pointsinto straight line ssgments

The examplesabove havedealt with the grouping of linesegments. However, thederiva-
tion of the line segments themselvesis a very important segmentation problem that is
based upon detecting significant instances of collinearity among edge points. Most
common edge detection methods produce linked lists of points as their output (e.g.,
points which lie on the zero-crossing of an image convolved with a second-derivative
operator). In order to carry out the higher forms of perceptua organization described
above, these linked points must be grouped into line or curve descriptions that make
explict the significiant curvilinear structures at all scales. The author has previously
described a method for finding straight-line and constant-curvature segmentations at
multiple scales and for measuring their significance [19, Chap. 4]. However, here we
will use a smplified method that selects only the single highest-significance line rep-
resentation at each point along the curve.

The significance of a straight linefit to alist of points can be estimated by calcu-
lating the ratio of the length of the line segment divided by the maximum deviation of
any point from the line (the maximum deviation is always assumed to be at least two
pixelsin size to account for limitations on measurement accuracy). This measure will
remain constant as the scale of the image is changed, and it therefore provides a scale-
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independent measure of significance that places no prior expectations on the allowable
deviations. Thissignificance measureisthen usedinamodified version of therecursive
endpoint subdivision method (see Figure 7). A segment isrecursively subdivided at the
point with maximum deviation from a line connecting its endpoints (Figure 7 (b,c)).
This processis repeated until each segment is no more than 4 pixelsin length, produc-
ing abinary tree of possible subdivisions. Thisrepresentationissimilar tothestrip trees
described by Ballard [1]. Then, unwinding the recursion back up the tree, a decision
is made at each junction as to whether to replace the current lower-level description
with the single higher-level segment. The significance of every subsegment is calcu-
lated by its length-to-deviation ratio mentioned above (Figure 7 (d)). If the maximum
significance of any of the subsegmentsis greater than the significance of the complete
segment, then the subsegments are returned. Otherwise the single segment is returned.
The procedure will return a segment covering every point along the curve (Figure 7
(e)). Finaly, any segments with alength-to-deviation ratio less than 4 are discarded.

Thisalgorithmisimplemented in only 40 linesof Lisp code, yet it does areasonable
job of detecting the most perceptually significant straight line groupingsin the linked
point data. An advantage compared to the methods traditionally used in computer vi-
sion (which usually set some prior threshold for the amount of “noise” to be removed
from a curve), is that it will tend to find the same structures regardless of the size at
which an object appearsin an image. In addition, it will avoid breaking up long lines
if its shorter constituents do not appear to have a stronger perceptual basis.

5 The SCERPO vision system

The methods of spatia correspondence and perceptual organization described above
have been combined to produce a functioning system for recognizing known three-
dimensional objectsinsinglegray-scaleimages. Inorder to produce acomplete system,
other components must also be included to perform low-level edge detection, object
modeling, matching, and control functions. Figure8 illustratesthe various components
and the sequence of information flow. Figures 9 to 16 show an example of the differ-
ent stages of processing for an image of arandomly jumbled bin of disposable razors.
Recognition was performed without any assumptions regarding orientation, position or
scale of the objects; however, the focal length of the camera was specified in advance.

In order to provide the initial image features for input to the perceptual grouping
process, the first few levels of image analysis in SCERPO use established methods of
edge detection. The 512x512 pixel image shown in Figure 9 was digitized from the
output of an inexpensive vidicon television camera. Thisimage was convolved with a
Laplacian of Gaussian function (o = 1.8 pixels) assuggested by the Marr-Hildreth[23]
theory of edge detection. Edgesin the image should give rise to zero-crossingsin this
convolution, but wherethe intensity gradient islow therewill also be many other zero-
crossings that do not correspond to significant intensity changes in the image. There-
fore, the Sobel gradient operator was used to measure the gradient of theimage follow-
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Figure 8: The components of the SCERPO vision system and the sequence of compu-
tation.

ing the V2@ convolution, and this gradient value was retained for each point along a
zero-crossing as an estimate of the signal-to-noiseratio. Figure 10 shows the resulting
zero-crossingsinwhich the brightness of each point along the zero-crossingsis propor-
tional to the magnitude of the gradient at that point.

Theseinitial steps of processing were performed on aVICOM image processor un-
der the Vsh software facility developed by Robert Hummel and Dayton Clark [7]. The
VICOM can performa3x 3 convolution against the entireimagein asinglevideo frame
time. The Vsh softwarefacility allowed the 18 x 18 convolution kernel required for our
purposes to be automatically decomposed into 36 of the 3x3 primitive convolutions
along with the appropriate image trand ations and additions. More efficient implemen-
tations which apply a smaller Laplacian convolution kernel to the image followed by
iterated Gaussian blur were rejected due to their numerical imprecision. The VICOM
isused only for the stepsleading up to Figure 10, after which the zero-crossingimageis
transferred to aVAX 11/785 running UNIX 4.3 for subsequent processing. A program
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Figure 9: The original image of a bin of disposable razors, taken at a resolution of
512x 512 pixels.
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Figure 10: The zero-crossings of a V2 convolution. Grey levels are proportional to
gradient magnitude at the zero-crossing.
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Figure 11: Straight line segments derived from the zero-crossing data of Figure 10 by
a scale-independent segmentation algorithm.

written in C reads the zero-crossing image and produces a file of linked edge points
along with the gradient magnitude at each point. All other components are written in
Franz Lisp.

The next step of processing is to break the linked lists of zero-crossings into per-
ceptually significant straight line segments, using the algorithm described in the previ-
ous section. Segments are retained only if the average gradient magnitude along their
length is above a given threshold. It is much better to apply this threshold following
segmentation than to the original zero-crossing image, since it prevents a long edge
from being broken into shorter segments when small portions dip below the gradient
threshold. The results of performing these operations are shown in Figure 11. The
recognition problem now consists of searching among this set of about 300 straight line
segmentsfor subsets that are each spatially consistent with model edges projected from
asingle viewpoint.

The straight line segments are indexed according to endpoint locations and orien-
tation. Then a sequence of procedures is executed to detect significant instances of
collinearity, endpoint proximity (connectivity), and parallelism. Each instance of these
relationsis assigned alevel of significance using the formulas given above in the sec-
tion on perceptual organization. Pointers are maintained from each image segment to
each of the other segments with which it forms a significant grouping. These primi-
tive relations could be matched directly against corresponding structures on the three-
dimensional object models, but the search space for this matching would be large due
to the substantial remaining level of ambiguity. The size of the search space can bere-
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Figure 12: The most highly-ranked perceptual groupings detected from among the set
of line segments. Thereis some overlap between groupings.

duced by first combining the primitive relations into larger, more complex structures.
Thelarger structures are found by searching among the graph of primitiverelations
for specific combinations of relationswhich share some of the same line segments. For
exampl e, trapezoid shapes are detected by examining each pair of parallel segmentsfor
proximity relations to other segments which have both endpointsin close proximity to
the endpoints of the two parallel segments. Parallel segments are also examined to de-
tect other segments with proximity relationsto their endpoints which were themselves
parallel. Another higher-level grouping is formed by checking pairs of proximity re-
lations that are close to one another to see whether the four segments satisfy Kanade's
[16] skewed symmetry relation (i.e., whether the segments could be the projection of
segmentsthat are bilaterally symmetric in three-space). Since each of these compound
structuresis built from primitive relations that are themselves viewpoint-invariant, the
larger groupings also reflect properties of athree-dimensional object that are invariant
over awiderangeof viewpoints. The significancevaluefor each of thelarger structures
is calculated by simply multiplying together the probabilities of non-accidentalnessfor
each component. These values are used to rank all of the groupings in order of de-
creasing significance, so that the search can begin with those groupings that are most
perceptually significant and areleast likely to have arisen through some accident. Fig-
ure 12 shows a number of the most highly-ranked groupingsthat were detected among
the segments of Figure 11. Each of the higher-level groupings in this figure contains
four line segments, but there is some overlap in which a single line segment partici-
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pates in more than one of the high-level groupings.

Even after this higher-level grouping process, the SCERPO system clearly makes
use of smpler groupings than would be needed by a system that contained large num-
bers of object models. When only a few models are being considered for matching,
it is possible to use simple groupings because even with the resulting ambiguity there
are only a relatively small number of potential matches to examine. However, with
large numbersof object models, it would be necessary to find more complex viewpoint-
invariant structures that could be used to index into the database of models. The best
approach would be to make use of some form of evidential reasoning to combine prob-
abilistic information from multiple sources to limit the size of the search space. This
approach has been outlined by the author in earlier work [19, Chap. 6].

5.1 Mode matching

The matching process consists of individually comparing each of the perceptual group-
ings in the image against each of the structures of the object model which is likely to
giverise to that form of grouping. For each of these matches, the verification proce-
dure is executed to solve for viewpoint, extend the match, and return an answer as to
whether the original match was correct. Given the large number of potential matches
and their varied potential for success, it isimportant to make use of a ranking method
to select the most promising matchesfirst. For example, every straight line detected in
theimageisaform of grouping that could be matched against every straight edge of the
model, but this would involve a large amount of search. In general, the more complex
agroupingisthe fewer potential matchesit will have against the model. Therefore, the
only matches that are considered in the current implementation are those that involve
image groupings that contain at least 3 line segments. This aso has the important re-
sult that such a grouping will generally contain enough information to solve exactly
for viewpoint from the initial match, which provides tight constraints to speed up the
operation of the verification procedure.

A more precise specification of the optimal ordering for the search process could
be stated as follows. In order to minimize the search time, we would like to order our
consideration of hypotheses according to decreasing values of P, /W, where P, isthe
probability that a particular hypothesis for the presence of object % is correct, and W,
is the amount of work required to verify or refuteit. In general, increased complexity
of agrouping will lead to fewer potential matches against different object features, and
thereforewill increase the probability P, that any particular match iscorrect. However,
this probability is also very dependent upon the particular set of objects that are being
considered, since some features will function more effectively to discriminate among
one particular set of objectsthan in another set. The most effective way to determine
the optimal values of P, for each potential match would be through the use of alearn-
ing procedure in which the actual probability values are refined through experiencein
performing the recognition task. These probability adjustments would in essence be
strengthening or weakening associ ations between particular image features and partic-
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ular objects. These object-specific values would be multiplied by the probability that a
groupingis non-accidental to determinethefinal estimate of .. The W, could be simi-
larly learned through experience. The current implementation of SCERPO simply uses
the complexity of agrouping as a crude estimate for these desired ranking parameters.

In order to speed the runtime performance of the matching process, the viewpoint-
invariant groupingsthat each model can producein theimage are precomputed off-line.
The model is simply checked for three-dimensional instances of the three primitiveim-
age relations that are detected during the perceptual grouping process. i.e., connectiv-
ity, collinearity, and parallelism. No attempt is made to find approximate instances of
these relations, so in essence the relations are implicitly specified by the user during
model input. These relations are then grouped into the same types of larger structures
that are created during the perceptual grouping process, and are stored in separate lists
according to the type of the grouping. Any rotational symmetries or other ambiguities
are used to create new elementsin thelists of possible matches. The runtime matching
process therefore consists only of matching each image grouping against each element
of aprecomputed list of model groupings of the same type.

Oneimportant feature of thismatching processisthat it isopportunisticinitsability
to find and use the most useful groupingsin any particular image. Given that thereisno
prior knowledge of specific occlusions, viewpoint, amount of noise, or failuresin the
detection process, it isimportant to use a run-time ranking process that selects among
theactual groupingsthat arefoundin any particular imagein order to make use of those
that are most likely to be non-accidental. Since each view of an object islikely to give
rise to many characteristic perceptual groupingsin an image, it is usually possible to
find featuresto initiate the search process even when a substantial portion of the object
isoccluded. The current implementation of SCERPO isat arather smplelevel interms
of the sophistication of perceptual grouping and matching, and as should be clear from
the above discussion there are many opportunities for making these processes faster
and more complete. Asmoretypesof groupingsand other viewpoint-invariant features
are added, the number of possible matcheswould increase, but the expected amount of
search required for a successful match would decrease due to the increased specificity
of the matches with the highest rankings.

The implementation of the viewpoint-solving and verification process has already
been described in detail in an earlier section. Thisisthe most robust and reliable com-
ponent of the system, and its high level of performance in extending and verifying a
match can compensate for many weaknesses at the earlier stages. The low probability
of false positivesin this component meansthat failureat the earlier levelstendsto result
simply in an increased search space rather than incorrect matches. Figure 13 showsthe
three-dimensional model that was used for matching against the image data. Figure 14
shows the final set of successful matches between particular viewpoints of this model
and sets of image segments. Once a particular instance of an object has been identified,
the matched image segments are marked to indicate that they may no longer participate
in any further matches. Any groupings which contain one of these marked segments
areignored during the continuation of the matching process. Therefore, asinstances of
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Figure 13: The three-dimensiona wire-frame model of the razor shown from asingle
viewpoint.

Figure 14: Successful matches between sets of image segments and particular view-
points of the model.
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Figure 15: Successfully matched image segments superimposed upon the original im-
age.

the object are recognized, the search space can actually decrease for recognition of the
remaining objectsin the image.

Sincethefinal viewpoint estimateis performed by aleast-squaresfit to grestly over-
constrained data, itsaccuracy can be quite high. Figure 15 showsthe set of successfully
matched image segments superimposed upon the original image. Figure 16 shows the
model projected from the final calculated viewpoints, also shown superimposed upon
the original image. The model edges in this image are drawn with solid lines where
thereis amatching image segment and with dotted lines over intervals where no corre-
sponding image segment could be found. The accuracy of thefinal viewpoint estimates
could be improved by returning to the original zero-crossing data or even the original
image for accurate measurement of particular edge locations. However, the existing
accuracy should be more than adequate for typical tasks involving mechanical manip-
ulation.

The current implementation of SCERPO is designed as a research and demonstra-
tion project, and much further work would be required to devel op the speed and gener-
ality needed for many applications. Relatively littleeffort has been devoted to minimiz-
ing computation time. The image processing components require only a few seconds
of computation on the VICOM image processor, but then theimage must be transferred
toaVAX 11/785 running UNIX 4.3 for further processing. It requiresabout 20 seconds
for a program written in C to read the zero-crossing image and output afile of linked
edge points. Thisfileis read by a Franz Lisp routine, and all subsequent processing
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Figure 16: The model projected onto the image from the final calculated viewpoints.
Model edges are shown dotted where there was no match to a corresponding image
segment.

is performed within the Franz Lisp virtual memory environment. Segmentation into
straight lines requires 25 seconds, indexing and grouping operations require about 90
seconds and the later stages of matching and verification took 65 seconds for this ex-
ample. There are numerous ways in which the code could be improved to reduce the
required amount of computation timeif thiswere amajor goal. Careful design of data
structures would allow fast access of image segments according to predicted positions,
lengths, and orientations. Each iteration of the crucial viewpoint-solving process re-
quires at most several hundred floating point operations, so there is reason to believe
that a carefully coded version of the basic search loop could run at high rates of speed.

6 Directionsfor futureresearch

The most obvious direction in which to extend the current system isto generalize the
object modelsto include many new types of visual knowledge. These extensions could
include the modeling of moveable articulations, optional components, and other vari-
able parametersin themodels. The section above on solving for spatial correspondence
described methods for incorporating these extensions during the viewpoint-solving and
matching process. However, further research is required to determine the optimal or-
der in which to solve for individual parameters. Imagine, for example, that we had a
generic model of the human face. The model would include small ranges of variation
for the size and position of every feature, as well as many optional components such
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asabeard or glasses. However, given some tentative correspondencesfor say, the eyes
and nose, we could use the expectation of bilateral symmetry and the most tightly con-
strained dimensions of our model to solvefor approximate viewpoint. Thiswould then
suggest quite tightly constrained regions in which to search for other features, such as
ears, chin, eyebrows, etc., each of which could be used to derive better estimates of
viewpoint and the other parameters. The resulting values of these parameters could
then be mapped into a feature space and used to identify particular individuals, which
inturn may lead to further detailed constraints and expectations. Some mechanismsfor
ordering these constraints were incorporated into the ACRONY M system [6].

The current implementation of SCERPO has used only an edge-based description
of theimage because that isacomparatively reliable and well-researched form of image
analysis. But the same framework could incorporate many other dimensions of com-
parison between model and image, including areas such as surface modeling, texture,
color, and shading properties. Further research would be required to detect viewpoint-
invariant aspects of these properties during bottom-up image analysis. Many of the
modeling and predictive aspects of these problems have been devel oped for usein com-
puter graphics, but it may be necessary to find faster ways to perform these computa-
tionsfor use in a computer vision system.

Once anumber of different sources of information are used to achieve the optimal
ordering of the search process, it is necessary to make use of general methods for com-
bining multiple sources of evidence. The use of evidential reasoning for this problem
has been discussed elsewhere by the author in some detail [19, Chap. 6]. These meth-
ods make use of prior estimates for the probability of the presence of each object, and
then update these estimates as each new source of evidence is uncovered. Sources of
evidence might include particular perceptual groupings, colors, textures, and contex-
tual information. Context plays an important rolein general vision, since most scenes
will contain some easily-identified objects which then provideagreat deal of informa-
tion regarding size, location, and environment which can greatly ease the recognition
of more difficult components of the scene. Evidentia reasoning also provides an op-
portunity to incorporate asignificant form of learning, since the conditional probability
estimates can be continuously adjusted towards their optimal values as a system gains
experiencewithitsvisual environment. Inthisway associations could be automatically
created between particular objects and the viewpoint-invariant features to which they
arelikely to giverisein theimage.

The psychological implications of thisresearch are also deserving of further study.
Presumably human vision doesnot performaserial search of thetypeused inthe SCERPO
system. Instead, the brief time required for typical instances of recognition indicates
that any search over a range of possible objects and parameters must be occurring in
parallel. Yet even the human brain does not contain enough computational power to
search over every possible object at every viewpoint and positionintheimage. Thiscan
be demonstrated by the fact that even vague non-visual contextual clues can decrease
the length of time required to recognize degraded images [17]. Presumably, if a com-
plete search were being performed in every instance, any top-down cluesthat narrowed
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the search would have little effect. Given that the search is proceeding in parallel, the
mechanisms used for ranking the search in SCERPO would instead be used to select a
number of possibilitiesto explorein paralel, limited according to the available compu-
tational resources. This model for the recognition process suggests many psychophys-
ical experiments in which average recognition times could be measured for different
combinations of image data and contextual information. Some important experimen-
tal results relating recognition time to the availability of variousimage and contextual
clues have been reported by Biederman [4].

7 Related research on model-based vision

The methods used in the SCERPO system are based on a considerable body of previous
research in model-based vision. The pathbreaking early work of Roberts [24] demon-
strated the recognition of certain polyhedral objects by exactly solving for viewpoint
and object parameters. Matching was performed by searching for correspondences be-
tween junctionsfound in the scene and junctions of model edges. Verification wasthen
based upon exact solution of viewpoint and model parameters using a method that re-
quired seven point-to-point correspondences. Unfortunately, this work was poorly in-
corporatedinto later vision research, whichinstead tended to emphasi ze non-quantitative
and much less robust methods such as line-labeling.

The ACRONYM system of Brooks [6] used a general symbolic constraint solver
to calculate bounds on viewpoint and model parameters from image measurements.
Matching was performed by looking for particular sizes of elongated structuresin the
image (known as ribbons) and matching them to potentially corresponding parts of the
model. The bounds given by the constraint solver were then used to check the con-
sistency of al potential matches of ribbonsto object components. While providing an
influential and very general framework, the actual calculation of boundsfor such gen-
eral constraintswas mathematically difficult and approximationshad to be used that did
not lead to exact solutions for viewpoint. In practice, prior bounds on viewpoint were
required which prevented application of the system to full three-dimensional ranges of
viewpoints.

Goad [12] has described the use of automatic programming methods to precom-
pute a highly efficient search path and viewpoint-solving technique for each object to
be recognized. Recognition is performed largely through exhaustive search, but pre-
computation of selected parameter ranges allows each match to place tight viewpoint
congtraints on the possible locations of further matches. Although the search tree is
broad at the highest levels, after about 3 levels of matching the viewpoint is essentially
constrained to a single position and little further search is required. The precomputa-
tion not only alowsthe fast computation of the viewpoint constraints at runtime, but it
also can beused at thelowest level sto perform edge-detection only within the predicted
bounds and at the minimum required resolution. This research has been incorporated
in an industrial computer vision system by Silma Inc. which has the remarkable capa-
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bility of performing all aspects of three-dimensional object recognition within aslittle
as 1 second on a single microprocessor. Because of their extreme runtime efficiency,
these precomputation techniques are likely to remain the method of choice for indus-
trial systems dealing with small numbers of objects.

Other closely related research on model-based vision has been performed by Shi-
rai [26] and Walter & Tropf [28]. There has aso been a substantial amount of research
on the interpretation of range data and matching within the three-dimensional domain.
Whilewe have argued herethat most i nstances of recognition can be performed without
the preliminary reconstruction of depth, there may be industria applicationsin which
the measurement of many precise three-dimensional coordinatesis of sufficient impor-
tanceto require the use of ascanning depth sensor. Grimson & Lozano-Pérez [13] have
described the use of three-dimensional search techniquesto recognize objectsfromrange
data, and describe how these same methods could be used with tactile data, which nat-
uraly occurs in three-dimensional form. Further significant research on recognition
from range data has been carried out by Bolles et al. [5] and Faugeras[10]. Schwartz &
Sharir [25] have described afast algorithm for finding an optimal |east-squares match
between arbitrary curve segments in two or three dimensions. This method has been
combined with the efficient indexing of modelsto demonstrate the recognition of large
numbers of two-dimensional models from their partially obscured silhouettes. This
method also shows much promise for extension to the three-dimensional domain us-
ing range data.

8 Conclusions

Onegoal of this paper has been to describe the implementation of a particular computer
vision system. However, amore important objective for the long-term devel opment of
thisline of research has been to present a general framework for attacking the problem
of visual recognition. Thisframework does not rely upon any attempt to derive depth
measurements bottom-up from the image, athough this information could be used if it
were available. Instead, the bottom-up description of an image is aimed at producing
viewpoint-invariant groupings of image features that can be judged unlikely to be ac-
cidental in origin even in the absence of specific information regarding which objects
may be present. These groupings are not used for final identification of objects, but
rather serve as “trigger features’ to reduce the amount of search that would otherwise
be required. Actual identification is based upon the full use of the viewpoint consis-
tency constraint, and maps the object-level data right back to the image level without
any need for the intervening grouping constructs. This interplay between viewpoint-
invariant analysis for bottom-up processing and viewpoint-dependent analysis for top-
down processing provides the best of both worlds in terms of generality and accurate
identification. Many other computer vision systems have experienced difficulties be-
cause they attempt to use viewpoint-specific features early in the recognition process
or because they attempt to identify an object simply on the basis of viewpoint-invariant
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characteristics. The many quantitative constraints generated by the viewpoint consis-
tency analysis allow for robust performance even in the presence of only partial image
data, which is one of the most basic hallmarks of human vision.

There has been a tendency in computer vision to concentrate on the low-level as-
pects of vision because it is presumed that good data at this level is prerequisite to
reasonable performance at the higher levels. However, without any widely accepted
framework for the higher levels, the devel opment of the low level componentsis pro-
ceeding in a vacuum without an explicit measure for what would constitute success.
This situation encourages the ideathat the purpose of low-level vision should beto re-
cover explict physical properties of the scene, since thisgoal can at least be judged in
its own terms. But recognition does not depend on physical properties so much as on
stable visual properties. Thisis necessary so that recognition can occur even in the ab-
sence of the extensive information that would be required for the bottom-up physical
reconstruction of the scene. If awidely accepted framework could be developed for
high-level visual recognition, then it would provideawhole new set of criteriafor eval-
uating work at the lower levels. We have suggested examples of such criteriain terms
of viewpoint invariance and the ability to distinguish significant featuresfrom acciden-
tal instances. If such aframework were adopted, then rapid advances could be madein
recognition capabilitiesby independent research effortsto incorporate many new forms
of visual information.
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