
Multipresenter++
A Presentation System for Multiple Display Screens

by

Huan Li

B.Sc., Zhejiang University, 2010

AN ESSAY SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August, 2014

c© Huan Li 2014

Abstract

Multipresenter++ (MPR++) is a presentation system designed to support visual
presentations on multiple display screens. In addition to supporting multi-screen
slide presentations, it also supports content-rich presentations that include audio,
video, and live applications. MPR++ allows users to arrange the components of a
presentation by specifying the screens on which each component will appear and
the order in which the components will be shown. A multi-screen presentation can
then be rehearsed on a single screen prior to giving the presentation in a multi-
screen environment.

The features in MPR++ allow a presenter to take advantage of the facilities that
are now commonly available in modern university lecture rooms, with multiple
large display screens that can show content provided by a computer. Rather than
using a single screen and switching between different types of content, each of the
available screens can be used to display a different type of information in a content-
rich manner, or multiple screens can show more relevant information around the
same topic.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Figures . iv

Acknowledgements . v

Introduction . vi

Previous Work . viii

Current use of old Multipresenter . x

Design philosophy . xiii
Separate presenting from authoring xiii
Separate rehearsal from delivery . xiv
Separate content preparation from external hardware setup xv

Implementation . xvii
Design Goals . xvii
Task Examples . xix
Features Design and System Description xx
Implementation . xxii

Bibliography . xxxiv

Appendices

Appendix: Bug fix log . xxxvi

iii

List of Figures

1 Room with multiple external displays. vii

2 old Multipresenter . x

3 Workflow of a presentation. xiii
4 Rehearsal in PowerPoint . xv

5 Class diagram by Visual Studio xxv
6 Arrow control inside workspace view xxvi
7 Highlight control inside workspace view xxvii
8 Workspace files with old Multipresenter xxxi
9 Workspace files with Multipresenter++ xxxii
10 Version control for Multipresenter++ xxxiii

iv

Acknowledgements

Thanks my supervisor Kellogg Booth, for being very patient with my essay and
gave me so many good instructions, which I really appreciate.

Also, I want to thank Dr. Joel Lanir’s great effort designing and developing the
original Multipresenter system provided the basis for MPR++. His initial imple-
mentation, deployment and testing lead to the possibility of adding the additional
features that are in Multipresenter++.

Finally, I want to thank my parents and my girlfriend, since they give me so
much encouragement and support and make me push harder to finish my degree. :)

v

Introduction

Electronic presentation is a practice of combining multimedia of image, animations
and electronic files with the spoken words of the presenter. Nowadays, presentation
is everywhere from business world to lecture rooms. In order to generate and dis-
play the presentation content, slideware tools, like PowerPoint, Libre Office, have
gained enormous popularity. It is estimated that more than 30 million PowerPoint
presentations are made every day, and over 6 Million Teachers around the world
use PowerPoint for classroom lectures [Saurabh P., 2010].

Basically, all kinds of slidewares contain three parts: text editing, multimedia
manipulating and slide-show presentation system. We use the first two parts to
generate and design content, and use the presentation system to display content.
However, more or less, everyone gained difficulty or dissatisfaction in all parts.
Studies suggest that in lectures, PowerPoint best suits static and liner content while
instructors prefer blackboard or whiteboard in some scenarios such as referring to
the some previous key points, or comparing two or more similar concepts [Frey
and Birnbaum, 2002].

Bad slideware tools also prevent user from manipulating presentation flow
[Paradi, 2012]. One of the reasons lies in the lack of help during preparation pe-
riod. Presenters could not fully practice their presentation without plugging their
computer onto the real projectors in the conference room. So anything unexpected
in real presentation could trigger the loss of the presenter.

Our motivation is also inspired by the availability of large display space in
lecture rooms. With the growing number of audience in big conference rooms
and lecture halls, multiple high resolution display systems are equipped to sup-
port electronic presentation (Figure 1 on page vii). However, the utilization of
the equipment is far less than expected; many lecture rooms simply display same
content on all screens.

vi

Introduction

Figure 1: Room with multiple external displays.

To solve these problems in presentation, we designed and implemented Multi-
presenter++, which extended the current Multipresenter .

• Multipresenter++ realized the philosophy that decoupled the reliability of
presentation content on the external displays setup, such that it provides the
most flexibility for presenters during authoring the presentation. The features
and key advantages are:

• Multipresenter++ becomes more like an industry product, by supporting all
software features like installation, one click project save/load. This greatly
eases the use of the product.

• Multipresenter++ provides the ability to do content-rich presentation: Mul-
timedia resources like videos, audios can be easily added as part of the pre-
sentation content, which will increase the dimension of regular presentation
to make it more lively.

• Multipresenter++ realized its name as it supports real multiple displays. In
theory, it can handle an unlimited number of external screens while the old
version only supports two.

• The rehearsal mode in Multipresenter++ assists presenter for better prepara-
tion. They could view and practice the real speech under the simulated slide
flow.

• Multipresenter++ makes it possible that you don’t need to base your content
on the number of external screens, or the screens resolution. It’s basically
“setup once and used anywhere”.

vii

Previous Work

PowerPoint, one of the most popular slideware tools, has gained a lot of criticism
over the years. As pointed by Edward Tufte, professor and pioneer in the field of
data visualization in Yale university, in his essay "The Cognitive Style of Power-
Point" [Lenth, 2004]:

“PowerPoint is used to guide and to reassure a presenter, rather than to en-
lighten the audience”

Slide tools are also prominent in education field. Usually, instructors use them
as visual aids to organize and present their material. However, the presenter-
orientated slideware tools only ease the instructor in preparing and presenting
rather than bringing more effectiveness for students. Some researcher found slide-
ware tools bring no significant improvement for students over traditional visual
aids like whiteboards or blackboards [Levasseur and Kanan Sawyer, 2006, Szabo
and Hastings, 2000].

Another flaw is traditional slide tools enforce the audience’s lockstep linear
progression through that hierarchy (whereas with handouts, readers could browse
and relate items at their benefits). However, it’s not only the lockstep for the audi-
ence but also a limitation on presenter’s thought flow since it would subsequently
prevent a lively and multi-layered presentation.

Apart from preparation authoring and delivery, presentation rehearsal also plays
a really great role. Rehearse or not, sometimes determines the presentation result.
However, not many slideware tools provide the rehearsal functionality especially
when multi-dimension presentation increases the complexity for preparation, thus
a useable rehearsal tool becomes crucial.

On the other hand, with the decreasing cost on technical infrastructure, more
and more classrooms and lecture halls are equipped with multiple, high resolu-
tion display system. Researches have been conducted on making use of multiple
screens to improve the quality and effectiveness of presentation.

There have been some projects focusing on creating more effective and inter-
esting presentation. “NextSlidePlease” [Spicer and Kelliher, 2009] developed a
prototype hyperpresentation system, which facilitates the creation of dynamic pre-
sentations and assists presenters in time management, by replacing linear deck flow
with hypertext navigation. They use graph visualization to provide a platform for

viii

Previous Work

clearly displaying the relationships among slides.
Andrés Lucero and Dzmitry Aliakseyeu [Lucero et al., 2009] introduced a wall-

mounted display tool to do asynchronous presentation. They believe the challenge
lies in the lack of overview of whole presentation slides. And the single linear
manner of slides flow limits the versatility of presentation styles. They overcome
these by introducing a set of presentation tools which could analyze the presenta-
tion layers (gesture, sound and visual), and convey the intended message or ideas
of the presenter. One of the features is using gestures to skip slides, jumping back
and forth, which does bring multi-dimensions into presentation.

Joel Lanir concluded [Lanir et al., 2010] that presentation using two screens
with related content do significantly increases learning effectiveness, compared
to duplicate content on both screens. The reason rooted in the fact that visual
comparisons were improved with parallel viewing using extra screen real estate.
Through the separation and integration process on information, long-term memory
is established and cognition ability is enhanced [Mayer, 2002].

ix

Current use of old Multipresenter

After Observing current use of visual aids, Joel found out the importance of having
information persist for longer times, which would greatly improve the understand-
ing of lecture structure in education scenarios. And spontaneous nature of black-
board inspired Joel with the idea of first version of Multipresenter, which directly
leads to enhanced version: Multipresenter++.

Multipresenter (Figure 2 on page x) is a presentation system which takes ad-
vantage of multiple displays to improve mulch-dimensional learning.

Figure 2: old Multipresenter

Information persistence. Current slideware tools do not provide the function-
ality to save slides for later use, which is common practice in traditional teaching
process with blackboards. According to some statistics, 12 percent of material
is referred later during presentation, while the longest refer-back is more than 20
minutes. Multipresenter takes use of one extra screen, and uses it to display earlier
slides. This practice brings spontaneous, dynamic and non-linear advantage over
traditional slideware tools. Common uses of this feature include comparing the

x

Current use of old Multipresenter

relationship two different objects with similar definition, or display the slide with
questions or discussions on one screen while the solution stream is displayed on
the other screen.

Multifarious modes. This feature greatly enriches the choice space during
presentation. Presenters can change between different modes to get the most flexi-
bility. For example, users can use the secondary screen to show previous slides by
specifying the modes, according to their relevance. Usually, presenters can display
the regular stream of slides on one screen while showing one, two or four previous
slides on the other screen, or display two similar slides for comparison, or show the
regular stream on one screen while persist the overview on the other one. More im-
portantly, Multipresenter offers the mode to use secondary screen as the sketching
book, which can be used to support improvised design and dynamic commentary.
Also, Multipresenter supports instant change between these modes, which bring
more convenience during presentation.

High adaptability. Screens fragmentation remained a problem in display sys-
tem. There is no standard for size or resolution of display screens in lecture rooms.
Any system without considering this problem would bring disaster during presen-
tation. Multipresenter would detect all screens first, save the specification, and
use different strategies for different screens. Multipresenter innovatively offers the
“.mpr” file, which is the configuration file for the presentation slides. Users could
easily get the mpr file from any version of PowerPoint slides. Every time after they
design the dynamic presentation over Multipresenter, they can save the streams as
mpr file, which can be read into the tool from one click, even on a computer without
MS PowerPoint installed. These features make Multipresenter more portable.

Spontaneous presentation style. To receive the consistency nature of informa-
tion flow, Multipresenter simulates whiteboards to preserve some previous slides,
which could fully make use of multiple screens, for the benefit of the audience.
While on the users (like instructors) side, Multipresenter offers the cut-and-paste
tool, which makes the presentation authoring process on dual-screen more sponta-
neous and straightforward. Users can modify the content on one screen, with cut-
and-paste action from the other screen, before or during the presentation. This fea-
ture outstrips traditional whiteboards and provides more dynamic ingredient into
presentation.

Multipresenter greatly improves the concept of presentation, with the help of
multiple displays. However, here are some LIMITATIONS:

Barely no extensibility. With the popularization of multiple screens in lecture
halls and conference rooms, three or more large resolution displays are available
to the presenters and audience. This brings the potential of more flexibility and
versatility in presentation; however, it would also demands challenge to authoring
part, which needs to put more all screens into consideration. But, Multipresenter is

xi

Current use of old Multipresenter

not designed at the first place to support more than two screens or do any feature
extension, so the source is hard-coding everywhere which increase the difficulty
for easy integration. Also, no source control is setup for collaboration.

No support for content-rich presentation. To make the presentation more at-
tractive and versatile, almost all modern slideware tools support authoring rich
contents, such that videos, audios become part of the presentation content. How-
ever, Multipresenter only allows adding static images, so if you want to launch a
video clip, you need to quit your presentation, open the video player, load your file
and drag it to the external screen.

No support for rehearsal. Rehearsal is always an essential part for modern
professional slideware tools. Especially in the scenario of multiple screens, with
the highly dynamic nature increases the complexity during presentation, if the pre-
senter cannot get some practical assistance to rehearse, the multi-screen style might
have the exactly opposite effect.

Highly coupled content authoring with external setup. With Multipresenter,
you can never give a two-stream presentation onto one external screen. This can
be very frustrating to presenters since they will lose the opportunity to give multi-
layered presentation just because they don’t have enough external displays.

Usability issues. Some usability problems prevent Multipresenter being easily
operated. For example, to save your current workspace, the save button will create
you two files (.mpr, .ink) and one folder(contains all images), and if you want to
use them on some other computers, you need to copy all of them over. Also, to
launch a premade Multipresenter project, you need to click on the load menu, and
select the .mpr file. What if both save and load is just one click on one single file,
like current PowerPoint supports?

xii

Design philosophy

Figure 3: Workflow of a presentation.

Separate presenting from authoring

PowerPoint, like most of other slideware tools, offers great assistance in preparing
and authoring presentation slides. Various slide elements, like textbox, table, flash
and video, greatly enrich the content generation. Highly sophisticated layouts and
templates also ease the process of organizing these elements. All these features
increase the flexibility into the authoring part in preparing presentation.

However, as mentioned above, PowerPoint has very weak functionalities to
impose a dynamic presentation which could support all sorts of presenting styles.
Instead, PowerPoint has most of its advantages in sequential or highly structured
content, which is not a popular choice in active and improvisational presentation.
The main reason of this failure lies in the fact that PowerPoint wants to integrate
authoring with presenting, which are two most important but also quite different
parts in the whole presentation practice. These inconsistencies inspired the idea of
separation presenting from authoring, and led the implementation of a presentation

xiii

Separate rehearsal from delivery

system that assists more in final presenting.
Separating content and presentation is a common design philosophy and method-

ology applied in lots of fields. On the web, we use HTML or similar markup lan-
guage to generate content and use CSS to style web pages, including elements such
as layout, colors. The common design objective behind this is to improve content
accessibility, provide more flexibility and control in the specification of presen-
tation characteristics. This separation defines different layers, and increases the
independence between them, such that, each layer can be developed by different
people/method for different use cases. The same idea applies to presentation, for
example, the same content can be presented differently just by specify different
style in a presentation tool, like what we achieved in Multipresenter++.

In order to implement this philosophy, we integrated with Microsoft Power-
Point seamlessly for content authoring and focus Multipresenter++ more on pre-
sentation such that same content can be presented differently, based on presenters’
preference.

Separate rehearsal from delivery

As the saying goes “If you fail to prepare, you are prepared to fail”. Rehearsal is
a popular practice, commonly used by people in all public presenting activities. In
theatre, performers usually ensemble a dress rehearsal before the audience several
rounds before the final show. A professional orchestra or chamber ensemble re-
hearses a piece in order to coordinate the rhythmic ensemble and ensure that the
pitches of the different sections match. So, separating rehearsal from final deliv-
ery has been widely accepted and used, which also plays a really essential part in
preparing a presentation. It is commonly performed to ensure that all details of the
subsequent performance before the final delivery are adequately prepared and coor-
dinated. “The best presentations are rehearsed, not so that the speaker memorizes
exactly what he or she will say, but to facilitate the speaker’s ability to interact
with the audience and portray a relaxed, professional, and confident demeanor.”
[Collins, 2004] Also, a lot of tips have been given to guide an effective rehearsal
[Holzl, 1997].

To better help rehearsal, PowerPoint offers the Slide Timing feature (Figure
4a on page xv) to record the time spent on each slide during rehearsal, and then
give a summary about time usage on all slides (Figure 4b on page xv). Also, users
can set the recorded time to advance slides automatically when performing the real
presentation.

xiv

Separate content preparation from external hardware setup

(a) Timing in PowerPoint

(b) Each slide timing information

Figure 4: Rehearsal in PowerPoint

This feature did, to some degree, assist rehearsal. However, in dynamic presen-
tation scenarios, it’s completely different. Presenters need to take control of multi-
ple streams of slides instead of the singular flow in PowerPoint, so only timing the
rehearsal is not nearly enough, they want to visually rehearse all streams, which
is quite a challenge in dynamic presentation. In Multipresenter++, we developed
rehearsal mode to get high-level and all-directional assistance both in performing
and preparing the presentation.

Separate content preparation from external hardware
setup

In multi-screens presentation world, this is a very possible use case: presenter has
been using Multipresenter for a while, and he is very familiar with his premade two
stream slides which always works very well on two external screens. He suddenly
was required to do the same presentation but in an old-style room, which only has
one external screen for use. He became very pressured since he hasn’t prepared
any slides for one single external screen. It is also very challenging to combine
two stream slides into one stream without harming the original good presentation
effect.

The root cause for the presenter’s pain described above is: his prepared content
highly relies on the external display restriction. If the number of content streams
doesn’t match the number of external screens, the presenter needs to update the
premade content accordingly.

In Multipresenter++, we decoupled this dependence, such that, the premade

xv

Separate content preparation from external hardware setup

presentation content is once-for-all1 solution. The presenter can prepare the content
without thinking about any external hardware restrictions, which greatly increase
the flexibly of doing real “multi-dimension” presentation.

1Once setup, used anywhere.

xvi

Implementation

Design Goals

Separation of rehearsal and delivery

In old Multipresenter, the primary target is the separation of content and presen-
tation to support most flexibility. Through Multipresenter, multiple presentations
can be created and stored referring to the same source content. With the support
on more large displays, users have the opportunity to make more dynamic presen-
tation which would take advantage of extra displays. But how to deliver fluent
presentation becomes a challenge, with the growth of dimensions in control space
(multiple slides are not only related in space and time, but also in content). The
most effective solution is to provide professional rehearsal tools in current pre-
sentation system, to separate rehearsal from delivery. In Multipresenter++, users
can simply turn on “rehearsal mode”, which could assist a detailed walk through
on their laptop, without connecting the laptop to any external displays. During
rehearsing, presenters can clearly see the dynamic arrangement of slides on each
screen, which would not only facilitates practicing the speech, but also inspires
some content updating.

Separation of content preparation and external restriction

When authoring their presentation, the presenters should not restrict the content
based on how many external screens do they have. They should focus more on
how to present the content better and how to make the slides more comprehen-
sive and attractive, than how to fit their content into one or two external screens.
Multipresenter++ should allow users to show their presentation on any number of
external screens without changing their premade content.

Support content-rich authoring

Multipresenter++ should allow presenters to add different kinds of rich resources
including images, audios, videos. Users can also specify the exact start time, end
time of video/audio play.

xvii

Design Goals

Dynamic presentation on three or more large displays

With the prevalence of multiple displays in lecture rooms, the ability to support
three or more screens gradually becomes a key requirement. In Multipresenter,
the default setting is only on two displays, which would limit the flexibility and
portability in future presentation. While Multipresenter++ should extend this and
work seamlessly for three or more external displays.

High usability in practice

Usability is one of the most important review criterions, especially in systems with
complicate functionalities. To simply put, the system must be easy to learn and use
at three levels.

First, we should only need simple infrastructure support and lightweight de-
ployment. The “how-to-use” for Multipresenter++ should follow the convention in
professional software world, like PowerPoint, which supports one-click installation
and one-click workspace loading.

Second, the system must be compatible with the current presentation practice.
For example, people usually use PowerPoint to design their single-flow slide deck
then load it into Multipresenter. In Multipresenter++, all versions of MS Power-
Point are supported. Users can minimize their effort of transitions from PowerPoint
to Multipresenter++ by a single load-and-run click. Also, a multi-stream presen-
tation can be created by simply loading multiple PowerPoint files, which is not
included in previous Multipresenter.

Lastly, the system self must be intuitive to use. Users should not feel any con-
fusion between different options. The effort must be minimized on the interaction
with interface, so that most energy can be focused on designing and delivering the
presentation itself.

Promotion on learning and understanding.

A presentation system is different from regular application, since presentations are
usually carried in public, where audience are also critical participants and also
users of the system. So any user-centric design must include the audience and con-
sider their requirements. Mostly, presentations are given in lecture halls or confer-
ence (meeting) rooms. Accordingly, audience aim at learning or understanding the
materials presented. So, any presentation system that cannot ease material under-
standing would be useless.

xviii

Task Examples

Task Examples

Kevin Tyler is a professor in Computer Science apartment. He has worked in
the fields of computer engineering for 30 years. He began to teach CS 246, Object-
Oriented Software Development, since 20 years ago. At the early days of his teach-
ing, he used blackboards to organize and deliver the lecture. He always rehearsed
several times before the lecture to guarantee every concept would be explained
clearly and all materials were easy to understand. There were 8 blackboards in the
classroom, four by two. At the beginning of each lecture, he would write down
today’s lecture outline on the top left blackboard, which would be kept through the
whole lecture. The rest content are organized left to right, up to down. Sometimes,
he need to refer to an earlier concept and make some comparisons (like the differ-
ence between object and class), so he would underline the key points if they were
still on the blackboard. Sometimes, students were asked to finish a question on the
blackboard, like drawing a UML diagram of a specified class.

With technique advances, Kevin switched to PowerPoint to prepare and deliver
the lecture presentation. At first, he could not adapt well with this tool since he can
no longer easily switch from one piece of content to another. Even with the help
of hyperlinks inside the slides, it was easy to get lost in the slides stream. So he
doubled the preparation time to make up for this problem. Also Comparisons are
harder to see clearly because the screen was not large enough to fill all points, he
can only choose to show one point at a time. But gradually, he adjusted his pre-
senting style and became adapted to the regular one-stream presentation provided
by PowerPoint.

Jessica Kacy is a undergraduate student, and majors in Economics. Currently
she is taking the course Labour Economics. Usually, she would print out the hand-
out and do some preparation for today’s topic. The course is carried out in a stan-
dard lecture room with two big screens. Jessica always wondered the purpose of
two screens in the room, because they always displayed the same content. “One
larger screen with more content space would be far better than two screens with
duplicate materials.” She thought. The course covers many economical concepts
which confused Jessica a lot, so sometimes she wishes the instructor could give
some terminologies comparisons. On the other hand, since the course is on a quick
pace, many students including Jessica cannot catch up well with the material flow
on the screen. Sometimes, a totally new page would flash into before she can digest
the concepts on the older one; Sometimes, a question would refer to the idea cov-
ered in an earlier page, however, she cannot remember clearly. Since the learning
efficiency is quite low in class, Jessica has to spend much time back home to catch
up.

xix

Features Design and System Description

Features Design and System Description

We intuitively divide the presentation practice into three parts: authoring, rehearsal,
and the final delivery. Each phase contains different design goal and features as
described below:

Presentation authoring This stage involves the creation of slides streams to be
presented over multiple screens. Our system focuses on increasing the dynamic and
multidimensional nature of presentation, and this should be distinguished from tra-
ditional slidewares, like PowerPoint, which focuses on creating more fancy content
on slides using hyperlinks and animations. Basically, we want to build a bridge to
fill the gap between slides authoring to final presenting, which we call it presenta-
tion authoring.

To integrate better with PowerPoint, we have some legacy issues to fix. Firstly,
as being developed many years ago, and lack of maintenance, old Multipresenter
only supports PowerPoint 97-03 version, and will crash on any later versions. So,
this needs to be fully extended in Multipresenter++. Secondly, since designed to
only work for two external screens, Multipresenter assumes users would only load
one single PowerPoint file to the workspace, which does not work for real multi-
screen scenario, since users will quite possibly load more PowerPoint files. In
Multipresenter++, users can load as many PowerPoint files or multimedia files as
they want, they can also specify the exact position they want to put the resources.
These two improvements make sure the integration with PowerPoint is seamless.

After loading the PowerPoint slide deck into workspace, it occupies one slide
column inside the window panel, and we call it one stream. Usually, one stream
maps directly to one external screen. Then users can build multiple streams by
manipulating the current slides or adding more resources. For example, some intu-
itive and conventional operations like copy/paste, drag/drop, are supported to move
slides inside or between streams. As designed, Multipresenter++ supports multi-
media resources like videos, audios and images or even another PowerPoint file.
To achieve this, simple click on the “Add resource” menu icon and specify the
resource directory, together with the exact coordinance where it sits.

Multipresenter++ also allows authoring one stream content using another stream’s
previous slides. One epic use scenario is that the instructor wants to compare one
term with the other term introduced earlier by putting the old slide from stream
A to stream B, then he can easily achieve this by adding “dependent resource”2

, and specify how “previous” it will be: Here we use “N-slide-back” mode to in-

2Dependent resource means this resource is dependent on some resource on the current streams.
Independent resource is simple external files like images, videos...

xx

Features Design and System Description

dicate that we want to stream B to show previous N slides of stream A. Another
common scenario is that the instructor puts the questions on one slide followed by
analysis and answers on the next several slides. But it may not be that efficient
since students may not be able to grasp the relations between questions and the
corresponding analysis. To do this, instructors can use Multipresenter++ to put the
question on the secondary screen while display the analysis/solution on the primary
screen.

Finally, to improve the robust of the system, we must guarantee after leaving
the system, users can still get what they left when they come back. The implemen-
tation is to provide the save and load mechanism into the system. This is achieved
by using the “.mprx” file. When users decide to stop their presentation authoring,
they can save the whole workspace in the “.mprx” file and load it later by one single
click, which is what PowerPoint currently does.

Presentation rehearsal Rehearsal plays a crucial role during presentation pro-
cess which however, didn’t earn enough attention in original Multipresenter. The
lack of efficient rehearsing tools increase the complexity and thus time consump-
tion during preparation. Especially in multiple screen domain, the extended di-
mension leads more flow control issues. We do want to improve the dynamic and
versatile presentation styles, but not on the cost of highly increased preparation
time. In Multipresenter++, we provided the option to go through the whole presen-
tation in pretty much the same way we rehearse single stream presentation. This
will greatly reduce the unknown issues during real presentation.

To rehearse in Multipresenter++, turn on the “rehearsal mode” and follow the
operation just like you will do in real presentation, e.g. progressing through slides,
sketching on screen, resizing the slide, etc. You will see exactly what a multi-
screen presentation looks like just on your laptop.

Presentation delivery The greatest feature in this stage is to provide some pow-
erful tools to take full control of the presentation content during actual presentation.
This is where in-presentation dynamic get implemented.

First, users can copy and paste content between. In this scenario, screens are
used as clipboards. For example, instructors may think some portion of current
slide is quite important that could be referred for a while, so he can select that
portion and drag it to the other screens which would be kept until users’ manual
deletion, also users can put away key points to other screens and sum them up
in the end; users can also drag several slides together, and each slide would be
resized proportional to the available area. Further, any selected, pasted items can
be moved, resized and erased according to users’ preference. This feature is also

xxi

Implementation

WYSIWYG (what you see is what you get), any modification made on the laptop’s
presentation window is immediately reflected on external screens.

On the other hand, ink panel increase the dimension of presentation delivery,
and collects the sparkles during presentation. Electronic ink can be used on differ-
ent screens, from annotation to sketching, from different colors to different sizes.
Also, users can choose to erase the ink or retain it for the next speech. It’s es-
pecially useful when instructors need to elaborate ideas or give keys to previous
answers. This feature is also WYSIWYG, which makes the interaction both effi-
cient and effective.

Lastly, large canvas window can be used to do some careful drawing since it
will display the current slide as full screen on your laptop so any tiny ink strokes
can be made correctly.

Implementation

Platform choosing

The initial implement of Multipresenter and Multipresenter++ is on Windows plat-
form. To be more specific, the system is running over .NET framework. There
are several reason for this choice. First, Windows is still the most used Operat-
ing System, and office suite has gained lots of prevalence over decades. So, we
decide to target MS PowerPoint as the slideware tool and make easy integration
between PowerPoint and Multipresenter++. Second, .NET framework is an inte-
grated framework which provides libraries and runtime for easy interaction with
MS products like PowerPoint. We use C# for all the development, which is “Java”
in Windows. The features provided in this development environment make the
version update and code maintenance easier and more efficient.

One of the future improvement is to make Multipresenter++ cross-platform,
since for the moment, it’s not available to be used on Linux or MacBook. Consid-
ering the success of Java and its great crossing platform support, we plan to migrate
the system into Java in the future.

Implementation procedures

Upgrade from Visual Studio 2005 to Visual Studio 2010 Multipresenter is
originally hosted as a vs2005 project which use .NET 2.0 framework. While
vs2010 has some useful modeling tools such as Architecture Explorer, which graph-
ically displays projects and classes and the relationships between them. Also, it
provides easier code organization, so we decided to use VS2010 environment to
rebuild the whole project. Visual Studio provides an automatic project upgrade

xxii

Implementation

tool, but the conversion will lose some key connection between classes. So, we
build the project from bottom to top. Rewrite every class until they follow the
standard rules.

Naming conversion The first step in the new project environment is to rename
classes and method to make them more intuitive and meaningful. For example,
one of the Windows form is named Form1, which can hardly reflect the behind
intention. Actually, it’s the form which manipulate the display content on each
screen, so we change Form1 into FormDisplay. The whole revision is included in
Appendix.

Bug fixing Since Multipresenter is only a prototype, it contains many bugs which
effects the user experience. So, bug fixing becomes important part of the early
implementation stage. The general description of main bugs and corresponding
fixing are listed below, while details code can be found in Appendix.

Bug description Bug fixing
When loading PowerPoint files into
Multipresenter, it will launch
Microsoft PowerPoint without
approval, user need to close the
PowerPoint manually.

Multipresenter uses COM interface of
PowerPoint to dump all slides into
.png files. However, the default
visibility of the dump procedure is
true. We fix this bug by move dumping
procedure background.

Since Multipresenter is developed
early, it only support PowerPoint
2003. PowerPoint 2007 and 2010 are
not supported.

Change the file filter of open file
dialogue, to add file extensions like
.pptx, such that all PowerPoint
versions can be loaded.

It crashed with no sign, if you select
multiple ppt files to load into the
workspace.

Add try catch block for multiple files
loading, show friendly reminder that
PowerPoint files should be loaded
separately.

Multipresenter would dump all the
slides in PowerPoint files as .png
pictures and save them into a
temporary directory, but does not clean
it up after exit.

Add clearTemp method to guarantee
clean up temporary files each time we
load a new workplace or exit the
program.

Scrolling using mouse wheel is not
working properly in the main form,
you cannot scroll up or down.

Add appropriate code to handle the
mouse scrolling event.

xxiii

Implementation

Bug description Bug fixing
Does not allow dragging a slide to a
new column if the new position has no
slides currently, which in other words,
users can only switch slides but not
move them freely.

Enable all kinds of the drag and drop.

Fail to detect all display screens in
order. Intuitively, we want to manage
the screens in the exact order we see
them. Like the leftmost screen should
be the first external screen, and
rightmost be the last external screen.

Detect the screen sequence and
automatically rearrange them by their
nature location order. Make sure what
we see is what we get.

Multipresenter assumes all display
screens have the same size, which
would shut out some area for bigger
sized screens or leave some blank for
smaller ones.

Make default to stretch the picture
according to the screen size, such that
slides would occupy the full screen.

When using large canvas form for
interactive drawing or annotating, it
use the screen on the laptop but specify
the canvas size as extra screens.

Change the canvas size and resize the
slide on that screen to the laptop.

Scrolling is not working in
Presentation form.

Add mouse wheel scrolling handler in
FormPresentation.

Multipresenter only works when
Office default language is English. For
example, if the default language of
your PowerPoint is Chinese, you
cannot use Multipresenter.

The loading is hard coded that, it use
the “slide” keyword to do the sorting
of all dumped slides files. In
Multipresenter++, we don’t need that
assumption, and works for all
languages.

Multipresenter would crash when
navigating to the last slide in
Presentation form.

The bug is caused by missing check on
hitting boundary. Fixed by adding
some check message.

After loading a totally new
PowerPoint deck, the selected slide in
last PowerPoint deck still displayed on
the top right corner.

Clear all control, including the
picturebox on the top right corner,
after each new PowerPoint dump.

xxiv

Implementation

Bug description Bug fixing
When using electronic ink, the
mapping from presentation window or
large canvas to external screen is not
maintained.

Choosing the correct resizing property
when constructing the mapping at the
first place.

Architecture Analysis As a really large and self-contained project, Multipresen-
ter is built on a complicated, hierarchical architecture, in which not only exist lots
of classes, also the relationship could bring huge pain in any modification or ex-
tension. So, the step right after bugs fixing is to reconstruct the blueprint of the
system design and glue our own bricks onto the building.

Below is a diagram3 built by Visual Studio 2010, to describe the whole project
architecture, including all classes and their relationship. As we can see, all kinds
of interactions flooded through the relationship network. To better explain this
blueprint, I will briefly describe each class and the relation (call or reference)
between them.

Figure 5: Class diagram by Visual Studio

Logger:
Regular logger class, creates log directory and log files. Update log files by

append method.

3Details can be found at http://www.cs.ubc.ca/~bruceli/files/class-diagram.png

xxv

Implementation

PowerPointDump:
A utility class which provides a static method to dump PowerPoint into pic-

tures, with size 800*600.
WaitingForm:
A form with a progress bar. It would show up during dumping PowerPoint, and

automatically get closed when finished.
DraggableControl:
The basic control class for a thumbnail, which would decide whether the drag

distance is large enough for an effect and record the drop point after dragging,
which would be passed to the drag-and-drop handler in descendant class.

Thumbnail:
The display unit in authoring panel, this is a subclass of DraggableControl,

which means it can be dragged to other screens in the authoring panel. Basically,
we create a bitmap image from the image file created by PowerPointDump. It
would be hidden when an arrow occupy its place.

ArrowControl:
When we want to keep one slide for a sequential positions on one screen, we

want to show that persistence in authoring panel. This is done by put ArrowCon-
trols over the sequence slides.

Figure 6: Arrow control inside workspace view

xxvi

Implementation

HighlightControl:
This control is used to highlight the selected thumbnail. Basically, each time

a thumbnail is selected by click, the highlight control would be assigned to that
thumbnail. We can see an aqua-colored rectangle surrounds the target thumbnail
to distinguish it from the rest [figure]. Also, when a thumbnail is selected and
highlighted, it would become the default object of the copy and paste operation.

Figure 7: Highlight control inside workspace view

DNDPanel:
The panel that contains all thumbnails. This panel would handle events like

drag-and-drop by catching the parameter (DropArgs) threw by thumbnails. And
then do the corresponding position change for intended thumbnails.

Node:
This class is used to represent the boxes created by dragging on the panels, like

MarkandDragPanel. The attributes include the rectangle it holds, the image on that
rectangle, and also the pointer to previous and next Node. It can be used as linked
list, in which the order corresponds to their Z depth on the screen.

CRectTracker:
This class provides some public method, like draw focus rectangle [footnote]

on the Node. Also, we draw small tracker rectangles for resizing the Node.

xxvii

Implementation

InkPanel:
This panel acts more like a form. It’s transparent and cover the real formDis-

play, which is used to display slides on real screens. So, it has the exactly same
size and location as the parent formDisplay. Also, it’s the main form to display the
inks onto the screen every time we paint the form.

FormLargeCanvas:
This is the form which we used as a canvas when we want some interactive

drawing. Usually, we create a canvas form and associate it with content on one of
the screens. We can sketch on the formPresentation, but the panel for drawing is
too small so we provide the largeCanvasForm to use the whole screen on user’s
laptop for sketching. And any update on the canvas would be reflected on the real
screen.

MarkandDragPanel:
This panel is used to preview the selected thumbnail. Uses can create, resize,

delete the Nodes on this panel by doing some basic drag-and-drop operation. This
is part of the authoring process since the Nodes would be reserved on real presen-
tation.

Utility:
Just like all utility classes, our Utility class provides many common and re-

used functions, which can ease other classes handling the workflow. Some of the
most useful functionalities include maintaining (adding, indexing, sorting, moving,
deleting) a list for all thumbnails. Also, it provides methods for project loading
(read the .mpr file for thumbnail source and their position in the panel) and saving
(save the ink, image files for thumbnails and their position in the panel).

FromMain:
The main form and also the entrance of Multipresenter. This form works as the

environment for initial basic presentation authoring. The functionalities provided
in this part include loading PowerPoint or project files, adding PowerPoint decks,
adding external multimedia resources, or thumbnail maintenance for example, re-
arrange positions like exchange slides, move between slides or delete slides.

Extended features Support loading multiple PowerPoint files into workplace
The original Multipresenter did not take the need of loading multiple Power-

Point files into consideration, which however, is quite useful in parallel presen-
tation and comparison. We implement this feature by rewriting the click listener
of adding files button, such that it supports loading multiple PowerPoint files and
would increase the column position in the workplace for each new slides deck.

Add multimedia resources
In Multipresenter, users can add multimedia resources like videos, audios into

xxviii

Implementation

workspace as their presentation content. This is achieved by adding AxWindows-
MediaPlayer object which is the root object for the Windows Media Player control.
When advancing to the next slide, we first detect the type of the slide, if it’s au-
dio/video, we launch player widget with the file path, otherwise, we stop and hide
it.

Get the thumbnail of the video/audio resource
We use ShellFile to retrieve the thumbnail as the slide for the multimedia re-

sources. Then we draw the type of the resource, i.e. video, sound to the top left of
the thumbnail to indicate the slide is not only a picture.

“About” menu
An “about” menu is created to show some basic information about Multi-

presenter++, including the author, brief introduction, user manual download link.
Menu bar
Old Multipresenter doesn’t have a menu bar which means users will not be

able to see the menu’s explanations until hover mouse on it. In Multipresenter++,
menu bar is created with explanations and categorization such that all means are
categorized which makes it easier for beginner users to understand and use.

Rehearse presentation
In Multipresenter++, users have the ability to rehearse their multi-screen pre-

sentation on their laptop/desktop. By switching to rehearsal mode, the presenter
can see exactly what the real presentation look like on multiple external screen,
by mapping the contents on external screens onto a minified screen on their lap-
top/desktop, which will ease the preparation of the multi-screen presentation.

Software installation
Multipresenter++ can be installed with one single .exe file which is the con-

vention on Windows platform. It is implemented by creating a separated “setup”
project inside Visual Studio 2010. Then we specified the install target as our Mul-
tipresenter++ exe file and then configure all the “.mprx” file extension to be asso-
ciated with Multipresenter++.

Save/load workspace
Before quit Multipresenter++, you will now be warned whether you want to

save your whole workspace. To implement the saving feature, we created a tem-
porary file, then loop through all thumbnails and grab their file source, put them
inside the temporary file, then created a configuration file which specifies the exact
position and source, type of the thumbnail which we call it “mpr” file, also we
save all inks inside “.ink” file. Finally we tar-ball the temporary directory into our
“.mprx” file.

Loading is exactly the same way but in reverse order: first un-tar-ball the
“.mprx” file to get the temporary directory, then load the “.mpr” file so we can
restore all thumbnails with correct information.

xxix

Implementation

Exchange streams
Sometimes, you find the stream order is not what you want and want to change

them, then you can click on the “exchange” menu icon, and specify the two streams
for exchange. The implementation behind is loop through all thumbnails, change
their stream information as requested.

More than two external screens support
Previously Multipresenter hard-coded the external screens to be primary screen

and secondary screen, so all operations need to be applied on either of it. To extend
and make it real “multi-screen”, we created an list to held all external screens and
associate them correctly with their corresponding panels on the presentation win-
dow, which is also stored inside a list. The panel size on the presentation window
will not be hard-coded but taking number of panels(external screens) into consid-
eration.

Right click to add resource
If you know exactly where to add resource, you can simple right click on the

spot and choose add resource. From where you will see some position information
fields have been pre-filled for you. This is implemented by detect where the user
clicks and fill the position information with that.

Toggle stream number
Inside presentation window, sometimes you feel confused on the mapping be-

tween streams and the real external screens. This can be checked by the “stream
toggle” menu icon. The implementation is fetch stream number from the external
screen object and then show the text label with the stream number.

Copy and paste across different screens
Multipresenter by default, only support copy the selected slide to second screen,

which needs to be extended, and be able to paste on any screen. In Multipresen-
ter++, users get the opportunity to specify the target screen and start, end position
of the slide on that screen. Accordingly, we update the arrow control to denote the
persistence of that specific slide on different screens instead of only on the second
screen.

Update the Z order of all Nodes in the panel
In MarkandDragPanel, users can create, resize nodes by dragging on the image

and save them for presentation. These nodes are stored in the time order they are
created, however, when we select one node, we intuitively want them to be brought
to the front, which means an update on their order should be executed on the nodes
list. This is done in Multipresenter++.

Other features and rationale

xxx

Implementation

Industrialized Multipresenter++ In order to increase the usability, we brought
more industry software features into Multipresenter++. We implemented the setup
program to install the Multipresenter++ as a software onto machines. After that,
open a Multipresenter++ file is just simply one click.

The benefits of using a setup program to deploy Multipresenter Consistent.
The most common way of using a program is to install the program and then use
the shortcut to open the executable software. Multipresenter is definitely a pro-
gram, so this rule should also apply. Every time someone wants to try and use
Multipresenter, all they need is a installation file and follow the usual route as they
use other software.

Clean. Now, Multipresenter is not only an single executable file. To improve
the user interaction experience, we used some extra Windows runtime library to
make Multipresenter more usable. For example, we support add video as a source
during presentation authoring. We will display the video thumbnail as a demon-
stration of the video source for distinguishment. In order to use that functional-
ity, we adopt WindowsAPICodePack runtime library as other libraries are used.
This means if we want someone to use Multipresenter, they need to copy those
libraries as well, which is neither intuitive or extendible when more and more li-
braries would be added. However, use a separate setup program for Multipresenter,
all these dependencies are automatically compressed into the installation file and
distributed to the file system afterward. This will save pain for users.

Easy. Previously, when someone wants to bring his premade presentation to
another computer, he will need to take the Multipresenter executable, the .mpr file,
the .ink file, and the thumbnail images all together. The files look like this:

Figure 8: Workspace files with old Multipresenter

Which is kind of pain, any missing from those files would not make Multi-
presenter work. And it can easily be forgotten what those files are used for after
some time which bring more work for clean-up. Also, to open this presentation file,
they need to open Multipresenter, click on open menu and select the .mpr file in
order to use, which is really not a straightforward practice compared to PowerPoint

xxxi

Implementation

or Word. To fix that, a separate setup program provides the ability to associate a file
extension to a specific software. In our case, we use .mprx to achieve that. x can
be interpreted as “extended” or “executable”. So to replace the previous tedious
steps, users would only need to focus on a file with mprx as extension, like:

Figure 9: Workspace files with Multipresenter++

This file is actually a zipped file which contains all four files mentioned above,
with a thumbnail demonstrate the intention of this file. What left is double click
the file and users would see the presentation authoring panels like they never left.

Version control the source code Since Multipresenter will be an ongoing project,
and need some collaboration in the future. Tarball the source and copy it over is
a good way for source code changing any more. The process can be very error
prone and lack the log tracking on the changes, which also makes the code harder
to understand.

Let’s imagine, currently all source code sit on my computer, if it crashed, all
source code might be lost; In the future, people will hand their current work over to
someone else, while using email is not a practical way if we consider about security
risks; When someone wants to refactoring the previous versions, it would be hard
for them to trace all the changes of the previous version and the rationale behind.

All these concern can be handled by version control. But sadly, previous Mul-
tipresenter does not have one, which makes the refactoring quite painful.

New Multipresenter uses Git as the version control software, with bitbucket as
the hosting website. Developers need to register an account and follow the common
routine of using Git. Then we can enjoy the big benefits for that.

xxxii

Implementation

Figure 10: Version control for Multipresenter++

As we can see, all changes are tracked like trees, each commitment is docu-
mented with a change message, this reduces the confusion in understanding what
the changes do.

xxxiii

Bibliography

Jannette Collins. Education techniques for lifelong learning: Giving a powerpoint
presentation: The art of communicating effectively 1. Radiographics, 24(4):
1185–1192, 2004.

Barbara A Frey and David J Birnbaum. Learners’ perceptions on the value of
powerpoint in lectures. 2002.

J Holzl. Twelve tips for effective powerpoint presentations for the technologically
challenged. Medical Teacher, 19(3):175–179, 1997.

Joel Lanir, Kellogg S Booth, and Kirstie Hawkey. The benefits of more electronic
screen space on students’ retention of material in classroom lectures. Computers
& Education, 55(2):892–903, 2010.

Russell V Lenth. The cognitive style of powerpoint. Journal of the American
Statistical Association, 99(466):569–569, 2004.

David G Levasseur and J Kanan Sawyer. Pedagogy meets powerpoint: A research
review of the effects of computer-generated slides in the classroom. The Review
of Communication, 6(1-2):101–123, 2006.

Andrés Lucero, Dzmitry Aliakseyeu, Kees Overbeeke, and Jean-Bernard Martens.
An interactive support tool to convey the intended message in asynchronous
presentations. In Proceedings of the International Conference on Advances in
Computer Enterntainment Technology, pages 11–18. ACM, 2009.

Richard E Mayer. Multimedia learning. Psychology of Learning and Motivation,
41:85–139, 2002.

Dave Paradi. Are we wasting $250 million per day due to bad powerpoint?
2012. http://www.thinkoutsidetheslide.com/are-we-wasting-250-million-per-
day-due-to-bad-powerpoint/.

Navkar S. Edward C. Kentaro T. Collage Saurabh P., Aakar G. A presentation tool
for school teachers. In Proc. Info. & Comm. Tech. and Development, 2010.

xxxiv

Ryan P Spicer and Aisling Kelliher. Nextslideplease: navigation and time manage-
ment for hyperpresentations. In CHI’09 Extended Abstracts on Human Factors
in Computing Systems, pages 3883–3888. ACM, 2009.

Attila Szabo and Nigel Hastings. Using it in the undergraduate classroom: should
we replace the blackboard with powerpoint? Computers & education, 35(3):
175–187, 2000.

xxxv

Appendix: Bug fix log

1. In method
public int Dump(string path, string outpath, int width, int height, int screen-

width, int screenheight){
if (Path.GetExtension(path) != ".ppt")
throw new ArgumentException("Input file must be a PowerPoint (.ppt) file",

"path");
...
Presentation pres = app.Presentations.Open(path, Microsoft.Office.Core.MsoTriState.msoFalse,

Microsoft.Office.Core.MsoTriState.msoTrue,
Microsoft.Office.Core.MsoTriState.msoTrue);
=>
if (Path.GetExtension(path) != ".ppt" \&\& Path.GetExtension(path) != ".pptx")
throw new ArgumentException("Input file must be a PowerPoint file", "path");
...
Presentation pres = app.Presentations.Open(path, Microsoft.Office.Core.MsoTriState.msoFalse,

Microsoft.Office.Core.MsoTriState.msoTrue,
Microsoft.Office.Core.MsoTriState.msoFalse); // don’t show the window
2. buttonOpen_Click
this.DisplayThumbnails(openFileDialog.FileNames);
=>
Try {
this.DisplayThumbnails(openFileDialog.FileNames);
}catch (Exception) {
MessageBox.Show("please only select multiple image files");
}
3. clearTemp
=>
try{
if (PPoutputpath != "") {
if (Directory.Exists(PPoutputpath)) {
Directory.Delete(PPoutputpath, true);
}

xxxvi

Appendix: Bug fix log

}
}catch (System.Exception e) {
MessageBox.Show(e.ToString());
}
4. Mouse Wheel
FormMain_MouseWheel
this.HorizontalScroll.Value = this.HorizontalScroll.Value + 1;
=>
int val = panelThumbnails.VerticalScroll.Value - 50 * Math.Sign(e.Delta);
if (val > panelThumbnails.VerticalScroll.Maximum)
panelThumbnails.VerticalScroll.Value = panelThumbnails.VerticalScroll.Maximum;
else if (val < panelThumbnails.VerticalScroll.Minimum)
panelThumbnails.VerticalScroll.Value = panelThumbnails.VerticalScroll.Minimum;
else
panelThumbnails.VerticalScroll.Value = val;
5. Drag and drop instead of switch
if (toThumb == null)
{
thumb.xPos = xPos;
UT.MoveUpSlides(yPos + 1, END);
return true;
}
6. Rearrange the screen by location
Screen[] s = new Screen[numDisplays - 1];
Array.Copy(System.Windows.Forms.Screen.AllScreens, 1, s, 0, numDisplays

- 1);
Array.Sort(s, delegate(Screen s1, Screen s2)
{ // put the leftmost screen first in the array
return s1.Bounds.X.CompareTo(s2.Bounds.X);
});
7. Change canvas size
Size screenSize = (Size)fp.frmMain.GetDisplaySize((int)(panel.bigDisplay.sType+1));
this.AutoScaleBaseSize = new System.Drawing.Size(0, 0);
this.ClientSize = new System.Drawing.Size(screenSize.Width, screenSize.Height);
=>
Size screenSize = (Size)fp.frmMain.GetDisplaySize(0);//(int)(panel.bigDisplay.sType+1));
this.Location = new Point(0, 0);
this.ClientSize = new System.Drawing.Size(screenSize.Width, screenSize.Height);
8. Mouse Scrolling in Form Presentation
private void thumbPanel_MouseEnter(object sender, EventArgs e)

xxxvii

Appendix: Bug fix log

{
thumbPanel.Focus();
}
private void thumbPanel_MouseWheel(object sender, System.Windows.Forms.MouseEventArgs

e)
{
int val = thumbPanel.VerticalScroll.Value - 50 * Math.Sign(e.Delta);
if (val \> thumbPanel.VerticalScroll.Maximum)
thumbPanel.VerticalScroll.Value = thumbPanel.VerticalScroll.Maximum;
else if (val \< thumbPanel.VerticalScroll.Minimum)
thumbPanel.VerticalScroll.Value = thumbPanel.VerticalScroll.Minimum;
else
thumbPanel.VerticalScroll.Value = val;
}
9. language version
private class CustomComparer : System.Collections.IComparer
{
public int Compare(object x, object y)
{
string s1 = (string)x;
string s2 = (string)y;
if (s1.Length \> s2.Length) return 1;
if (s1.Length \< s2.Length) return -1;
for (int i = 0; i \< s1.Length; i++)
{
if (s1[i] \> s2[i]) return 1;
if (s1[i] \< s2[i]) return -1;
}
return 0;
}
}
...
Array.Sort(str, new CustomComparer());
3.4.1
if (this.openFileDialog.ShowDialog().Equals(DialogResult.OK))
{
if (openFileDialog.FileName.EndsWith(".ppt") || openFileDialog.FileName.EndsWith(".pptx"))
{
xPosGlobal = UT.GetNumberOfCols();
try

xxxviii

Appendix: Bug fix log

{
PPoutputpath = openFileDialog.FileName;
PPoutputpath = PPoutputpath.Substring(0, openFileDialog.FileName.EndsWith(".pptx")

? PPoutputpath.Length - 5 : PPoutputpath.Length - 4);
PPoutputpath += "- MultiPresenter files\\";
if (!Directory.Exists(PPoutputpath))
Directory.CreateDirectory(PPoutputpath);
wForm = new WaitingForm();
wForm.Show();
// do the loading work, including dump ppt, save it in imageList
backgroundWorker1.RunWorkerAsync(PPoutputpath);
}
catch (System.Exception)
{
MessageBox.Show("Unable to write to disc and therefore unable to open a

PowerPoint presentation.");
}
}
else
{
this.DisplayThumbnails(openFileDialog.FileNames);
DrawThumbnails();
}
}

xxxix

	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Previous Work
	Current use of old Multipresenter
	Design philosophy
	Separate presenting from authoring
	Separate rehearsal from delivery
	Separate content preparation from external hardware setup

	Implementation
	Design Goals
	Task Examples
	Features Design and System Description
	Implementation

	Bibliography
	Appendix: Bug fix log

