
Beyond Equilibrium: Predicting Human Behavior in Normal-Form Games

James R. Wright and Kevin Leyton-Brown
Department of Computer Science, University of British Columbia

2366 Main Mall, Vancouver, B.C., Canada, V6T 1Z4
{jrwright,kevinlb}@cs.ubc.ca

Abstract
It is standard in multiagent settings to assume that agents
will adopt Nash equilibrium strategies. However, studies in
experimental economics demonstrate that Nash equilibrium
is a poor description of human players’ initial behavior in
normal-form games. In this paper, we consider a wide range
of widely-studied models from behavioral game theory. For
what we believe is the first time, we evaluate each of these
models in a meta-analysis, taking as our data set large-scale
and publicly-available experimental data from the literature.
We then propose modifications to the best-performing model
that we believe make it more suitable for practical prediction
of initial play by humans in normal-form games.

Introduction
This paper investigates methods for predicting human play
of normal-form games. Three notes are in order. First, by
“normal-form games” we mean unrepeated interactions; some
literature calls this setting “initial play.” Second, by “pre-
diction” we mean accurately forecasting action choices on
unseen games; thus, we are not interested in models that sim-
ply explain observed behavior. Finally, by “human play” we
refer to actual play of games by motivated human subjects in
experiments; however, we are interested in data sets in which
play is anonymous, and hence it is impossible to model each
individual player.

Perhaps the most standard game-theoretic assumption is
that all participants will adopt Nash equilibrium strategies—
that they will jointly behave in a way that ensures that each
participant optimally responds to the others. This solution
concept has many appealing properties; e.g., in any other
strategy profile, one or more participants will regret their
strategy choices. However, there are three key reasons why
a human player might choose not to adopt such a strategy.
First, she may face a computational limitation that prevents
her from computing a Nash equilibrium strategy, even if the
game has only one. Second, even if she can compute an
equilibrium, she may doubt that her opponents can or will do
so. Third, when there are multiple equilibria, it is not clear
which she should expect the other participants to adopt and
hence whether she should play towards one herself—even if
all players are perfectly rational.
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The next-most standard approach is to devise new solution
concepts that overcome problems with Nash equilibrium, e.g.,
competitive safety strategies (Tennenholtz, 2002), minimax
regret equilibrium (Hyafil and Boutilier, 2004), generalized
strategic eligibility (Conitzer and Sandholm, 2005), CURB
sets (Benisch, Davis, and Sandholm, 2006), and iterated re-
gret minimization (Halpern and Pass, 2009). Still other work
aims to identify strategies that work well without detailed
modeling of the opponent. This line of work is perhaps
exemplified by the very influential series of Trading Agent
Competitions (Wellman, Greenwald, and Stone, 2007).

We are most interested in approaches that make explicit
predictions about which actions a player will adopt, and that
are grounded in human behavior. The relatively new field
of behavioral game theory extends game-theoretic models
to account for human behavior by taking account of human
cognitive biases and limitations (Camerer, 2003). Experi-
mental evidence is a cornerstone of behavioral game theory,
and researchers have developed many models of how humans
behave in strategic situations based on experimental data.

Among these models, four key paradigms have emerged:
level-k (Costa-Gomes, Crawford, and Broseta, 2001) and
quantal level-k (Stahl and Wilson, 1994) models, the closely-
related cognitive hierarchy model (Camerer, Ho, and Chong,
2004), and quantal response equilibrium (McKelvey and
Palfrey, 1995). Although different studies consider different
specific variations, the overwhelming majority of behavioral
models of initial play of normal-form games fall broadly into
this categorization.

One line of work from the AI literature also meets our
criteria of predicting action choices and modeling human
behavior (Altman, Bercovici-Boden, and Tennenholtz, 2006).
This approach learns association rules between agents’ ac-
tions in different games to predict how an agent will play
based on its actions in earlier games. We do not consider this
approach in our study, as it requires data that identifies agents
across games, and cannot make predictions for games that
are not in the training dataset. Nevertheless, more broadly
such machine-learning-based methods could be extended
to our setting; investigating their performance would be an
interesting line of future work.

Given the variety of behavioral models available, we can
refine our focus by asking: which of these models is best
for predicting human behavior in normal-form games? We
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Stahl and Wilson (1994) t t
McKelvey and Palfrey (1995) f f
Stahl and Wilson (1995) f t
Costa-Gomes, Crawford, and Broseta (1998) f f
Haruvy, Stahl, and Wilson (1999) t
Costa-Gomes, Crawford, and Broseta (2001) f f
Haruvy, Stahl, and Wilson (2001) t
Morgan and Sefton (2002) f p
Weizsäcker (2003) t t
Camerer, Ho, and Chong (2004) f p
Costa-Gomes and Crawford (2006) f f
Stahl and Haruvy (2008) t
Rey-Biel (2009) t t
Georganas, Healy, and Weber (2010) f f
Hahn, Lum, and Mela (2010) p

Camerer, Ho, and Chong (2001) f f
Chong, Camerer, and Ho (2005) f p p
Crawford and Iriberri (2007) p p p
Costa-Gomes, Crawford, and Iriberri (2009) f f f f
Rogers, Palfrey, and Camerer (2009) f f f

Table 1: Existing work. A ‘p’ indicates that the study evalu-
ated out-of-sample prediction performance for that model; a
‘t’ indicates statistical tests of training sample performance;
an ‘f’ indicates comparison of training sample fit only.

conducted an exhaustive literature survey to determine the
extent to which this question had already been answered.
Specifically, we checked all (1698) citations to the four papers
cited above using Google Scholar. We discarded superficial
references, papers that simply applied one of the models to an
application domain, and papers that studied repeated games.
This left us with a total of 20 papers (including the four with
which we began), listed in Table 1.

Overall, we found no paper that compared the predictive
performance of all four models. Indeed, there were two
senses in which the literature fell short of addressing this
question. First, the behavioral economics literature is con-
cerned more with explaining behavior than with predicting it.
Thus, comparisons of out-of-sample prediction performance
were rare. Here we describe the only exceptions: Morgan and
Sefton (2002) and Hahn, Lum, and Mela (2010) evaluated
prediction performance using held-out test data; Camerer, Ho,
and Chong (2004) and Chong, Camerer, and Ho (2005) com-
puted likelihoods on each individual game in their datasets
after using models fit to the n−1 remaining games; Crawford
and Iriberri (2007) compared the performance of two models
by training each model on each game in their dataset individ-
ually, and then evaluating the performance of each of these n
trained models on each of the n− 1 other individual games.
Second, most of the papers compared only one of the four
models (often with variations) to Nash equilibrium. Indeed,
only five of the 20 studies (see the bottom portion of Table 1)
compared more than one of the four key models. Only two of
these studies explicitly compared the prediction performance
of more than one of the four models; the remaining three
performed comparisons in terms of training set fit.

In the next section we describe canonical forms of the four
key models that we evaluated, and the human experimental
data upon which we based our study. We then present our
paper’s two key contributions. First, we evaluate the qual-
ity of the behavioral predictions made by these four models.

Second, we perform deeper analyses of the models, address-
ing four questions that arose out of our initial evaluation.
Overall, we conclude that the quantal level-k model predicts
initial play by humans in normal-form games significantly
better than the other behavioral models. We also propose
a conceptually simpler and more parsimonious model with
performance roughly equivalent to quantal level-k.

Existing Behavioral Models
We begin by formally defining the four behavioral models
that we studied.

Quantal Response Equilibrium
One prominent behavioral theory asserts that agents become
more likely to make errors as those errors become less costly.
We refer to this property as cost-proportional errors. This can
be modeled by assuming that agents best respond quantally,
rather than via strict maximization.
Definition 1 (Quantal best response). A (logit) quantal best-
response QBRi(s−i | λ) by agent i to a strategy profile s−i
is a mixed strategy si such that

si(ai) =
exp[λ·ui(ai, s−i)]∑
a′
i
exp[λ·ui(a′i, s−i)]

, (1)

where λ (the precision parameter) indicates how sensitive
agents are to utility differences. Note that unlike regular
best response, which is a set-valued function, quantal best
response returns a single mixed strategy. �

This gives rise to a generalization of Nash equilibrium
known as the quantal response equilibrium (“QRE”) (McK-
elvey and Palfrey, 1995).
Definition 2 (QRE). A quantal response equilibrium with
precision λ is a mixed strategy profile s∗ in which every
agent’s strategy is a quantal best response to the strategies of
the other agents. That is, s∗i = QBRi(s

∗
−i | λ)∀ agents i. �

A QRE is guaranteed to exist for any normal-form game
and non-negative precision (McKelvey and Palfrey, 1995).

One criticism of this solution concept is that, although
(1) is translation-invariant, it is not scale invariant. That is,
while adding some constant value to the payoffs of a game
will not change its QRE, multiplying payoffs by a positive
constant will. This is problematic because utility functions
do not themselves have unique scales (Von Neumann and
Morgenstern, 1944).

Level-k
Another key idea from behavioral game theory is that humans
can perform only a bounded number of iterations of strategic
reasoning. The level-k model (Costa-Gomes, Crawford, and
Broseta, 2001) captures this idea by associating each agent i
with a level ki ∈ {0, 1, 2, . . .}, corresponding to the number
of iterations of reasoning the agent is able to perform. A
level-0 agent plays randomly, choosing uniformly at random
from his possible actions. A level-k agent, for k ≥ 1, best
responds to the strategy played by level-(k − 1) agents. If
a level-k agent has more than one best response, he mixes
uniformly over them.



Here we consider a particular level-k model, dubbed Lk,
which assumes that all agents belong to levels 0,1, and 2.1
Each agent with level k > 0 has an associated probability
εk of making an “error”, i.e., of playing an action that is not
a best response to the level-(k − 1) strategy. However, the
agents do not account for these errors when forming their
beliefs about how lower-level agents will act.

Definition 3 (Lk model). Let Ai denote player i’s action
set, and BRi(s−i) denote the set of i’s best responses to
the strategy profile s−i. Let IBRi,k denote the iterative
best response set for a level-k agent i, with IBRi,0 = Ai

and IBRi,k = BRi(IBR−i,k−1). Then the distribution
πLk
i,k ∈ Π(Ai) that the Lk model predicts for a level-k agent

playing as agent i is defined as follows:

πLk
i,0 (ai) = |Ai|−1,

πLk
i,k (ai) =

{
(1− εk)/|IBRi,k| if ai ∈ IBRi,k,

εk/(|Ai| − |IBRi,k|) otherwise.

In total, this model has 4 parameters: {α1, α2}, the relative
proportions of level-1 and level-2 agents, and {ε1, ε2}, the
error probabilities of each non-zero type. �

Cognitive Hierarchy
The cognitive hierarchy model (Camerer, Ho, and Chong,
2004), like level-k, aims to model agents with heterogeneous
bounds on iterated reasoning. It differs from the level-k
model in two ways. First, agent types do not have associ-
ated error rates; each agent best responds perfectly to its
beliefs. Second, agents best respond to the full distribution
of lower-level types, rather than only to the strategy one level
below. More formally, every agent again has an associated
level m ∈ {0, 1, 2, . . .}. Let F be the cumulative distribution
of the levels in the population. Level-0 agents play (typi-
cally uniformly) at random. Level-m agents (m ≥ 1) best
respond to the strategies that would be played in a population
described by the cumulative distribution F (j | j < m).

Camerer, Ho, and Chong (2004) advocate a single-
parameter restriction of the cognitive hierarchy model called
Poisson-CH, in which the levels of agents in the population
F are distributed according to a Poisson distribution.

Definition 4 (Poisson-CH model). Let πPCH
i,m ∈ Π(Ai) be

the distribution over actions predicted for an agent i with
level m by the Poisson-CH model. Let F ∼ Poisson(τ). Let
TBRi,m be the truncated best response set for a level-m

agent i, with TBRi,m = BRi

(∑m−1
`=0 F (`)πPCH

−i,`

)
. Then

πPCH is defined as follows:

πPCH
i,0 (ai) = |Ai|−1,

πPCH
i,m (ai) =

{
|TBRi,m|−1 if ai ∈ TBRi,m,

0 otherwise.
�

Rogers, Palfrey, and Camerer (2009) noted that cognitive
hierarchy predictions often exhibit cost-proportional errors

1We here model only level-k agents, unlike Costa-Gomes, Craw-
ford, and Broseta (2001) who also modeled other decision rules.

(which they call the “negative frequency-payoff deviation
relationship”), even though the cognitive hierarchy model
does not explicitly model this effect. This leaves open the
question whether cognitive hierarchy (and level-k) predict
well only to the extent that their predictions happen to ex-
hibit cost-proportional errors, or whether bounded iterated
reasoning captures an independent phenomenon.

Quantal Level-k
Stahl and Wilson (1994) propose a rich model of strategic
reasoning that combines elements of the QRE and level-k
models; we refer to it as the quantal level-k model (QLk). In
QLk, agents have one of three levels, as in Lk. Each agent
responds to its beliefs quantally, as in QRE. Like Lk, agents
believe that the rest of the population has the next-lower type.

The main difference between QLk and Lk is in the error
structure. In Lk, higher-level agents believe that all lower-
level agents best respond perfectly, although in fact every
agent has some probability of making an error. In contrast,
in QLk, agents are aware of the quantal nature of the lower-
level agents’ responses, and have a (possibly-incorrect) belief
about the lower-level agents’ precision.

Definition 5 (QLk model). The distribution πQLk
i,k ∈ Π(Ai)

over actions that QLk predicts for a level-k agent playing as
agent i is defined as follows.

πQLk
i,0 (ai) = |Ai|−1,

πQLk
i,1 = QBRi(π

QLk
−i,0 | λ1),

πQLk
i,2 = QBRi(γ | λ2),

where γ is a mixed-strategy profile representing level-2
agents’ (possibly-incorrect) beliefs about how level-1 agents
play, with γj(aj) = QBRj(π

QLk
−j,0 | µ). The quantal level-k

model thus has five parameters: {α1, α2}, the relative propor-
tions of level-1 and level-2 agents; {λ1, λ2}, the precisions of
level-1 and level-2 agents’ responses; and µ, level-2 agents’
beliefs about the precision of level-1 agents. �

Experimental Setup
In this section we describe the data and methods that we used
in our model evaluations. We also describe two models based
on Nash equilibrium.

Data
During the literature survey described earlier, we also looked
for datasets. We identified nine large-scale, publicly-available
sets of human-subject experimental data. Of these, five
(from Stahl and Wilson, 1994, 1995; Costa-Gomes, Craw-
ford, and Broseta, 1998; Goeree and Holt, 2001; Cooper
and Van Huyck, 2003) were used in follow-up work by re-
searchers other than the original authors; we included all
of these datasets in our study. We also included the dataset
from Rogers, Palfrey, and Camerer (2009), as it contained
a wide variety of game types, including asymmetric games
and games with differing numbers of actions. We excluded
the remaining three datasets (from Haruvy, Stahl, and Wil-
son, 2001; Haruvy and Stahl, 2007; Stahl and Haruvy, 2008)



because they were substantially similar to the datasets from
Stahl and Wilson (1994, 1995), and because of computational
resource constraints.

In Stahl and Wilson (1994) experimental subjects played
10 normal-form games, with payoffs denominated in units
worth 2.5 cents. In Stahl and Wilson (1995), subjects played
12 normal-form games, where each point of payoff gave a
1% chance (per game) of winning $2.00. In Costa-Gomes,
Crawford, and Broseta (1998) subjects played 18 normal-
form games, with each point of payoff worth 40 cents. How-
ever, subjects were paid based on the outcome of only one
randomly-selected game. Goeree and Holt (2001) presented
10 games in which subjects’ behavior was close to that pre-
dicted by Nash equilibrium, and 10 other small variations on
the same games in which subjects’ behavior was not well-
predicted by Nash equilibrium. Half of these games were
normal form; the payoffs for each game were denominated
in pennies. In Cooper and Van Huyck (2003), agents played
the normal forms of 8 games, followed by extensive form
games with the same induced normal form; we include only
the data from the normal-form games. Finally, in Rogers,
Palfrey, and Camerer (2009), subjects played 17 normal-form
games, with payoffs denominated in pennies.

We represent each observation of an action by an experi-
mental subject as a pair (ai, G), where ai is the action that the
subject took when playing as player i in game G. All games
were two player, so each single play of a game generated
two observations. We built one dataset for each study, named
by the source study: SW94 contains 400 observations from
Stahl and Wilson (1994), SW95 has 576 observations from
Stahl and Wilson (1995), CGCB98 has 1566 observations
from Costa-Gomes, Crawford, and Broseta (1998), GH01
has 500 observations from Goeree and Holt (2001), CVH03
has 2992 observations from Cooper and Van Huyck (2003),
and RPC09 has 1210 observations from Rogers, Palfrey, and
Camerer (2009). We combined the data from all 75 games
into a seventh dataset (ALL6) containing 6974 observations.

Methods
To evaluate a given model on a given dataset, we performed
10 rounds of 10-fold cross-validation. Specifically, for each
round, we randomly divided the dataset into 10 parts. For
each of the 10 ways of selecting 9 parts from the 10, we
computed the maximum likelihood estimate of the model’s
parameters based on those 9 parts, using the Nelder-Mead
simplex algorithm (Nelder and Mead, 1965). We then de-
termined the log likelihood of the remaining part given the
prediction. We call the average of this quantity across all 10
parts the cross-validated log likelihood. The average (across
rounds) of the cross-validated log likelihoods is distributed
according to a Student’s-t distribution (see, e.g., Witten and
Frank, 2000). We compared the predictive power of differ-
ent behavioral models on a given dataset by comparing the
average cross-validated log likelihood of the dataset under
each model. We say that one model predicted significantly
better than another when the 95% confidence intervals for
the average cross-validated log likelihoods do not overlap.

We used GAMBIT (McKelvey, McLennan, and Turocy,
2007) to compute QRE and to enumerate the Nash equi-

libria of games. We performed computation on the glacier
cluster of WestGrid (www.westgrid.ca), which consists of
840 computing nodes, each with two 3.06GHz Intel Xeon
32-bit processors and either 2GB or 4GB of RAM. In total,
the results reported in this paper required approximately 107
CPU days of machine time, primarily for model fitting.

Nash Equilibrium Models
Any attempt to use Nash equilibrium for prediction must
extend the solution concept to solve two problems: ensuring
that no action is assigned probability 0, and dealing with mul-
tiple equilibria.2 Indeed, in 83% of the games in the ALL6
dataset (62 out of 75), every Nash equilibrium assigned prob-
ability 0 to actions that were actually taken by experimental
subjects. This means that treating Nash equilibrium as a
prediction resulted in the entire dataset having probability 0.

We solved the first problem by adding a parameter repre-
senting the probability that a player will choose an action
at random. (As in our other models, we fit this parameter
using maximum likelihood estimation.) We constructed two
new models, corresponding to two ways of solving the sec-
ond problem. The first model, uniform Nash equilibrium
with error (UNEE), takes the average over the predictions
of every Nash equilibrium. This is equivalent to having a
uniform prior over the equilibria of a game; its performance
provides a lower bound on the quality of predictions that
can be made based on Nash equilibrium. The second model,
nondeterministic Nash equilibrium with error (NNEE), non-
deterministically selects the Nash equilibrium that is most
consistent with the full dataset. Clearly this model cannot
not be used for prediction, as it relies upon “peeking” at the
full dataset. Its performance gives an upper bound on the
quality of predictions based on a single Nash equilibrium;
note, however, that it is possible for UNEE to achieve better
performance than NNEE.

Model Analysis
In this section we describe the results of our experiments.
Figure 1 compares our four behavioral and two equilibrium-
based models. For each model and each dataset, we give the
factor by which the dataset is more likely according to the
model’s prediction than it is according to a uniform random
prediction. Thus, for example, the ALL6 dataset is approxi-
mately 1020 times more likely according to QRE’s prediction
than it is according to a uniform random prediction.

Comparing Behavioral Models
In most datasets, the model based on cost-proportional er-
rors (QRE) predicted significantly better than the two models
based on bounded iterated reasoning (Lk and Poisson-CH).
However, in three datasets, including the aggregated dataset,

2One might wonder whether the ε-equilibrium solution concept
solves either of these problems. In fact, it makes the equilibrium
selection problem much harder, as every game has infinitely many
ε-equilibria for any ε > 0. To our knowledge, no algorithm for char-
acterizing this set exists, making equilibrium selection impractical.
Thus, we did not consider ε-equilibrium in our study.
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Figure 1: Average likelihood ratios of model predictions to
random predictions, with 95% confidence intervals.

the situation was reversed, with Lk and Poisson-CH out-
performing QRE. This mixed result is consistent with ear-
lier comparisons of QRE with these two models (Chong,
Camerer, and Ho, 2005; Crawford and Iriberri, 2007; Rogers,
Palfrey, and Camerer, 2009), and suggests that bounded iter-
ated reasoning and cost-proportional errors capture distinct
underlying phenomena. That suggests that our remaining
model, which incorporates both components, should pre-
dict better than models that incorporate only one component.
This was indeed the case, as QLk generally outperformed the
single-component models. Overall, QLk was the strongest of
the behavioral models, predicting significantly better than all
models in all datasets except CVH03 and SW95.

In contrast to earlier studies which found few to no level-0
agents (Stahl and Wilson, 1994, 1995; Haruvy, Stahl, and
Wilson, 2001), our fitted parameters for the Lk and QLk mod-
els estimated large proportions of level-0 agents (61% and
54% respectively on the ALL6 dataset). This is explained by
differences in the fitting procedures used. We chose parame-
ters to maximize the likelihood of all observed behavior in a
given dataset, whereas the cited studies estimated parameters
on a per-subject basis by assigning each subject the level
that would maximize the likelihood of his or her sequence of
choices in all the games in the dataset.

Comparing to Nash Equilibrium
It is already well known that Nash equilibrium is a poor
description of humans’ initial play in normal-form games
(e.g., see Goeree and Holt, 2001). However, for the sake
of completeness, we also evaluated the predictive power of
Nash equilibrium on our datasets. Referring again to Fig-
ure 1, we see that UNEE’s predictions were significantly
worse than those of every behavioral model on every dataset
except GH01 and SW95. NNEE’s predictions were signifi-
cantly worse than those of QLk on every dataset except SW95
and GH01. This is strong evidence that behavioral models
better predict human play in normal-form games than Nash
equilibrium. It is unsurprising that GH01 was an exception,
since it was deliberately constructed so that human play on

half of its games would be relatively well-described by Nash
equilibrium. The performance of UNEE on SW95 is more
surprising, and might deserve additional study.

Deeper Analysis of Behavioral Models
In this section we perform a deeper analysis of our four
behavioral models in order to answer four questions that
arose out of our initial evaluation. Specifically, for each
question we constructed modified models and compared their
performance to that of the original models. Figure 2 reports
the evaluations of all the modified models considered in this
section, expressed as a ratio between the likelihood of the
modified model and the corresponding original model.

Are Poisson Distributions Helpful in CH?
Our first question was whether it is reasonable to assume
that agent levels have a Poisson distribution in the cogni-
tive hierarchy model. At the best-fitting parameter values
for ALL6, this would imply that roughly 59% of agents are
level-0, which we consider implausible. We hypothesized
that a cognitive hierarchy model assuming some other distri-
bution would better fit the data. To test this hypothesis, we
constructed a 4-parameter cognitive hierarchy model (CH4),
in which each agent was assumed to have level m ≤ 4, but
where the distributional form was otherwise unrestricted.

In Figure 2(a) we can see that the ALL6 dataset is ap-
proximately 10,000 times more likely according to the CH4
model’s prediction than it is according to Poisson-CH. CH4
predicted significantly better than the Poisson-CH model on
most datasets, and never significantly worse. Overall, we
conclude that the assumption of Poisson-distributed agent
levels was unhelpful in the cognitive hierarchy model.

Are Higher Level Agents Helpful in Level-k?
Both the quantal level-k and level-k models assume that all
agents have level k ≤ 2. Our second question was whether a
richer model that allowed for higher-level agents would have
better predictive power. To explore this question, we con-
structed a level-k model with k ∈ {0, 1, 2, 3, 4} (Lk4). We
hypothesized that the Lk4 model would have better predictive
power than the Lk model.

As reported in Figure 2(b), the Lk4 model predicted sig-
nificantly better than the Lk model on all datasets except
CGCB98, where there was no significant difference between
the two models. However, these differences were small in
every case, in spite of the fact that Lk4 has twice as many
parameters as Lk. Overfitting does not appear to have influ-
enced these results, as the ratios of test to training log like-
lihoods were not significantly different between the Lk and
Lk4 models. This suggests that few players in our datasets
are well-described as higher-level agents in a level-k model.

Does Payoff Scaling Matter?
Our third question was whether the payoffs in the differ-
ent games in the dataset were in appropriate units. Unlike
the level-k and Poisson-CH models, both QRE and quantal
level-k depend on the units used to represent payoffs in a
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Figure 2: Average likelihood ratios between predictions of modified and initial models, with 95% confidence intervals.

game. When considering a single setting this is not a con-
cern, because the precision parameter can scale a game to
appropriately-sized units. However, when data is combined
from multiple studies in which payoffs are expressed on dif-
ferent scales, a single precision parameter may be insufficient
to compensate for QRE’s scale dependence.

We proposed two hypotheses to explore this question. The
first was that subjects were concerned only with relative
scales of payoff differences within individual games. To
test this hypothesis, we constructed a model (NQRE) that
normalizes a game’s payoffs to lie in the interval [0, 1], and
then predicts based on the QRE of the normalized game. Our
second hypothesis was that subjects were concerned with the
expected monetary value of their payoffs. To test this hy-
pothesis, we constructed a model (CNQRE) that normalizes
payoffs so that they are denominated in expected cents.

Figure 2(c) reports the likelihood ratio between the mod-
ified QRE models and QRE. Both NQRE and CNQRE per-
formed worse than the original unnormalized QRE on every
disaggregated dataset except for SW94 and SW95, where the
improvements were very small (although significant). We
conclude that subjects responded to the raw payoff numbers,
not to the actual values behind those payoff numbers, and
not solely to the relative size of the payoff differences. There
are independent reasons to find this plausible, such as the
widely-studied “money illusion” effect (Shafir, Diamond, and
Tversky, 1997), in which people focus on nominal rather than
real monetary values.

However, on the aggregated ALL6 dataset, the situation
was quite different, with NQRE performing well and CNQRE
performing very poorly. This suggests that normalization
can yield a better-performing QRE estimate for aggregated
experimental data, but that expected monetary value is not a
helpful normalization to use.

Does Heterogeneity Matter?
The quantal level-k model incorporates multiple kinds of het-
erogeneity. Different agent types may have different quantal
choice precisions, and higher-level agents’ beliefs about the
relative proportions of other levels in the population, as well
as the precisions of other levels, may differ from both each
other and reality. Our final question was whether a more
constrained model would predict equally well.

We constructed a model in which non-random (i.e., non-
level-0) agents were constrained to have identical precisions.
Further, the agents were constrained to have correct beliefs
about the precisions and the relative proportions of lower-
level types. This model can also be viewed as an extension
of cognitive hierarchy that adds quantal response; hence we
called it quantal cognitive hierarchy, or QCH.

Definition 6 (QCH). Level-0 agents choose actions uni-
formly at random. Level-m agents choose actions with prob-
ability πQCH

i,m (ai) = QBRi

(∑m−1
`=0 α`π

QCH
j,` | λ

)
. QCH

assumes that m ≤ 4, and thus has five parameters. �

Figure 2(d) shows the comparison between the prediction
performance of QCH and QLk. QCH actually performed con-
siderably better than QLk on the ALL6 and SW95 datasets.
Otherwise its performance was similar to QLk’s, and was
never worse by more than a factor of 10. This suggests that
QLk’s added flexibility in terms of heterogeneous beliefs and
precisions did not lead to substantially better predictions.

Conclusions and Overall Recommendations
To our knowledge, this is the first study to address the ques-
tion of which of the QRE, level-k, cognitive hierarchy, and
quantal level-k behavioral models is best suited to predicting
unseen human play of normal-form games. We explored the
prediction performance of these models, along with several
modifications. Overall, we found that the QLk model had sub-
stantially better prediction performance than any other model
from the literature. We would thus recommend the use of
QLk by researchers wanting to predict human play in (unre-
peated) normal-form games, especially if maximal accuracy
is the main concern. QCH, a novel and conceptually-simpler
modification of QLk, performed about as well as QLk. We
recommend the use of QCH when it is important to be able
to interpret the parameters (e.g., in a Bayesian setting where
“reasonable” priors need to be determined) and when it is
important to be able to vary the number of modeled levels.

One possible direction for future work is to apply these
models to practical applications in multiagent systems. An-
other is to evaluate models that have been extended to account
for learning and non-initial play, including repeated-game
and extensive-form game settings.



References
Altman, A.; Bercovici-Boden, A.; and Tennenholtz, M. 2006.

Learning in one-shot strategic form games. In ECML,
6–17.

Benisch, M.; Davis, G. B.; and Sandholm, T. 2006. Algo-
rithms for rationalizability and CURB sets. In AAAI.

Camerer, C.; Ho, T.; and Chong, J. 2001. Behavioral game
theory: Thinking, learning, and teaching. Nobel Sympo-
sium on Behavioral and Experimental Economics.

Camerer, C.; Ho, T.; and Chong, J. 2004. A cognitive
hierarchy model of games. QJE 119(3):861–898.

Camerer, C. F. 2003. Behavioral Game Theory: Experiments
in Strategic Interaction. Princeton University Press.

Chong, J.; Camerer, C.; and Ho, T. 2005. Cognitive hierarchy:
A limited thinking theory in games. Experimental Business
Research, Vol. III: Marketing, accounting and cognitive
perspectives 203–228.

Conitzer, V., and Sandholm, T. 2005. A generalized strat-
egy eliminability criterion and computational methods for
applying it. In AAAI, 483–488.

Cooper, D., and Van Huyck, J. 2003. Evidence on the equiv-
alence of the strategic and extensive form representation
of games. JET 110(2):290–308.

Costa-Gomes, M., and Crawford, V. 2006. Cognition and
behavior in two-person guessing games: An experimental
study. AER 96(5):1737–1768.

Costa-Gomes, M.; Crawford, V.; and Broseta, B. 1998.
Cognition and behavior in normal-form games: an experi-
mental study. Discussion paper 98-22, UCSD.

Costa-Gomes, M.; Crawford, V.; and Broseta, B. 2001.
Cognition and behavior in normal-form games: An experi-
mental study. Econometrica 69(5):1193–1235.

Costa-Gomes, M.; Crawford, V.; and Iriberri, N. 2009. Com-
paring models of strategic thinking in Van Huyck, Battalio,
and Beil’s coordination games. JEEA 7(2-3):365–376.

Crawford, V., and Iriberri, N. 2007. Fatal attraction: Salience,
naivete, and sophistication in experimental “hide-and-seek”
games. AER 97(5):1731–1750.

Georganas, S.; Healy, P. J.; and Weber, R. 2010. On the
persistence of strategic sophistication. Working paper,
University of Bonn.

Goeree, J. K., and Holt, C. A. 2001. Ten little treasures
of game theory and ten intuitive contradictions. AER
91(5):1402–1422.

Hahn, P. R.; Lum, K.; and Mela, C. 2010. A semiparametric
model for assessing cognitive hierarchy theories of beauty
contest games. Working paper, Duke University.

Halpern, J. Y., and Pass, R. 2009. Iterated regret minimiza-
tion: A new solution concept. In IJCAI, 153–158.

Haruvy, E., and Stahl, D. 2007. Equilibrium selection
and bounded rationality in symmetric normal-form games.
JEBO 62(1):98–119.

Haruvy, E.; Stahl, D.; and Wilson, P. 1999. Evidence for
optimistic and pessimistic behavior in normal-form games.
Economics Letters 63(3):255–259.

Haruvy, E.; Stahl, D.; and Wilson, P. 2001. Modeling and
testing for heterogeneity in observed strategic behavior.
Review of Economics and Statistics 83(1):146–157.

Hyafil, N., and Boutilier, C. 2004. Regret minimizing equilib-
ria and mechanisms for games with strict type uncertainty.
In UAI, 268–277.

McKelvey, R., and Palfrey, T. 1995. Quantal response equi-
libria for normal form games. GEB 10(1):6–38.

McKelvey, R.; McLennan, A.; and Turocy, T. 2007. Gambit:
Software tools for game theory, version 0.2007. 01.30.

Morgan, J., and Sefton, M. 2002. An experimental investiga-
tion of unprofitable games. GEB 40(1):123–146.

Nelder, J. A., and Mead, R. 1965. A simplex method for
function minimization. Computer Journal 7(4):308–313.

Rey-Biel, P. 2009. Equilibrium play and best response to
(stated) beliefs in normal form games. GEB 65(2):572–
585.

Rogers, B. W.; Palfrey, T. R.; and Camerer, C. F. 2009.
Heterogeneous quantal response equilibrium and cognitive
hierarchies. JET 144(4):1440–1467.

Shafir, E.; Diamond, P.; and Tversky, A. 1997. Money
illusion. QJE 112(2):341–374.

Stahl, D., and Haruvy, E. 2008. Level-n bounded rationality
and dominated strategies in normal-form games. JEBO
66(2):226–232.

Stahl, D., and Wilson, P. 1994. Experimental evidence on
players’ models of other players. JEBO 25(3):309–327.

Stahl, D., and Wilson, P. 1995. On players’ models of
other players: Theory and experimental evidence. GEB
10(1):218–254.

Tennenholtz, M. 2002. Competitive safety analysis: Robust
decision-making in multi-agent systems. JAIR 17:363–
378.

Von Neumann, J., and Morgenstern, O. 1944. Theory of
Games and Economic Behavior. Princeton University
Press.
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