
SATzilla2009: an Automatic Algorithm Portfolio for SAT

Lin Xu, Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown
Computer Science Dept., University of British Columbia

Vancouver, BC, Canada
{xulin730, hutter, hoos, kevinlb}@cs.ubc.ca

1 Introduction

Empirical studies often observe that the performance of
algorithms across problem domains can be quite uncorre-
lated. When this occurs, it seems practical to investigate
the use of algorithm portfolios that draw on the strengths
of multiple algorithms. SATzilla is such an algorithm
portfolio for SAT problems; it was first deployed in the
2004 SAT competition [12], and recently an updated ver-
sion, SATzilla2007, won a number of prizes in the 2007
SAT competition [21], including the gold medals for the
SAT+UNSAT categories of both the random and hand-
made categories. SATzilla2008, submitted to the 2008
SAT Race, did not perform as well. We attribute this
mainly to the lack of publicly available high-performance
component solvers as well as to overheads in computing
instance features for huge industrial instances; we ad-
dressed this latter point in SATzilla2009.

SATzilla is based on empirical hardness models [10,
13], learned predictors that estimate each algorithm’s
performance on a given SAT instance. Over the years, we
have added several features to SATzilla. We integrated
regression methods based on partly censored data, proba-
bilistic prediction of instance satisfiability, and hierarchi-
cal hardness models [21, 22]. We also almost entirely au-
tomated the portfolio construction process based on auto-
matic procedures for selecting pre-solvers and candidate
component solvers [23].

The new features in SATzilla2009 are as follows:

• New instance features
• Prediction of feature computation time
• New component algorithms

Due to the automatic procedures we used since
SATzilla2008, after obtaining candidate solvers and mea-
suring their runtime for our training and validation in-
stances, the construction of our SATzilla2009 solvers
took very little time after we knew the scoring function.
SATzilla2009’s methodology can be outlined as follows:
Offline, as part of algorithm development:

1. Identify a target distribution of problem instances.
2. Select a set of candidate solvers that are known or

expected to perform well on at least a subset of the
instances in the target distribution.

3. Use domain knowledge to identify features that
characterize problem instances. To be usable effec-
tively for automated algorithm selection, these fea-
tures must be related to instance hardness and rela-
tively cheap to compute.

4. On a training set of problem instances, compute
these features and run each algorithm to determine
its running times. We use the term performance
score to refer to the quantity we aim to optimize.

5. Automatically determine the best-scoring combina-
tion of pre-solvers and their corresponding perfor-
mance scored. Pre-solvers will later be run for a
short amount of time before features are computed
(step 1 below), in order to ensure good performance
on very easy instances and to allow the predictive
models to focus exclusively on harder instances.

6. Using a validation data set, determine which solver
achieves the best performance for all instances that
are not solved by the pre-solvers and on which the
feature computation times out. We refer to this
solver as the backup solver.

7. New: Construct a predictive model for feature com-
putation time, given the number of variables and
clauses in an instance.

8. Construct a model for each algorithm in the portfo-
lio, predicting the algorithm’s performance score on
a given instance based on instance features.

9. Automatically choose the best-scoring subset of
solvers to use in the final portfolio.

Then, online, to solve a given problem instance, the
following steps are performed:

1. Run the presolvers in the predetermined order for
up to their predetermined fixed cutoff times.

2. New: Predict time required for feature computa-
tion. If that prediction exceeds two minutes, run the
backup solver identified in step 6 above; otherwise
continue with the following steps.

3. Compute feature values. If feature computation can-
not be completed due to an error, select the backup
solver identified in step 6 above; otherwise continue
with the following steps.

4. Predict each algorithm’s performance score using
the predictive models from step 8 above.

1



5. Run the algorithm predicted to be the best. If a
solver fails to complete its run (e.g., it crashes), run
the algorithm predicted to be next best.

2 SATzilla2009 vs SATzilla2008
SATzilla2009 implements a number of improvements
over SATzilla2008.
New instance features. We introduced several new

classes of instance features: 18 features based on clause-
learning [11], 18 based on survey propagation [9], and
five based on graph diameter [8]. For the Industrial cat-
egory, we discarded 12 computationally expensive fea-
tures based on unit propagation, lobjois probing, and
graph diameter.
Prediction of feature computation time. In order

to predict the feature computation time for an instance
based on its number of variables and clauses, we built a
simple linear regression model with quadratic basis func-
tions. This was motivated by the fact that in the industrial
category of the 2007 SAT competition, as well as in the
SAT Race 2008, SATzilla’s feature computation timed
out on over 50% of the instances, forcing SATzilla to use
a default solver; we also discarded some expensive fea-
tures trading off cost vs benefit.
New component algorithms. We updated the com-

ponent solvers used in SATzilla2008 with the newest
publicly-available versions and included a number of
local search solvers based on the SATenstein solver
framework [1]. For the Industrial category, one limiting
factor is that many high-performance industrial solvers
are not publicly available, such that we cannot use them
as component solvers.

3 The SATzilla2009 solvers
SATzilla’s performance depends crucially on its compo-
nent solvers. We considered a number of state-of-the-art
SAT solvers as candidate solvers, in particular the
eleven complete solvers March dl04[8], March pl[7],
Minisat 2.0[6], Vallst[19], Zchaff Rand[11],
Kcnfs04[5], TTS 4.0[18], Picosat8.46[2],
MXC08[3], Minisat 2007[17] and Rsat 2.0[16].

We also considered the five local search solvers
gnovelty+[15], Ranov[14], Ag2wsat0[4],
Ag2wsat+[20] and SATenstein[1] (seven auto-
matically configured versions).

As training data, we used all available SAT instances
from previous SAT competitions (2002 until 2005, and
2007) and from the SAT Races 2006 and 2008. Based on
these instances, we built three data sets:

• Random: all 2,821 random instances;

• Crafted: all 1,686 handmade/crafted instances;
• Industrial: all 1,376 industrial instances.

For each training instance we ran each solver for one
hour and recorded its runtime. (Local search solvers were
only run on unsatisfiable instances.) Unlike in previ-
ous SATzilla versions, we did not use any preprocessing.
We computed 96 features for each instance in categories
Random and Crafted, and 84 features for category Indus-
trial. In each category, as a training set we used all pre-
viously mentioned instances, and as a validation set the
2007 SAT competition instances from that category (note
that this validation is a subset of the training; this was
motivated by the relative scarcity of available data and
our expectation that the 2009 SAT competition instances
resemble more closely those from the 2007 competition
than those from earlier competitions).

For presolving, we committed in advance to using a
maximum of two presolvers. We allowed a number of
possible cutoff times, namely 5, 10, and 30 CPU sec-
onds, as well as 0 seconds (i.e., the presolver is not run
at all) and considered all orders in which to run the three
presolvers. Automated presolver selection then chose the
following presolving strategies:

• Random: SATenstein(T7) for 30 seconds, then
MXC08 for 30 seconds;

• Crafted: March dl04 for 5 seconds, then MXC08

for 5 seconds;
• Industrial: MXC08 for 10 seconds, then
Picosat8.46 for 5 seconds.

Automated solver subset selection [23] chose the fol-
lowing component solvers:

• Random: Kcnfs04, March dl04, Picosat8.46,
Ag2wsat0, Ag2wsat+, gnovelty+,
SATenstein(QCP)

• Crafted: March dl04, Minisat 2.0, Minisat

2007, Vallst, Zchaff Rand, TTS 4.0, MXC08
• Industrial: March dl04, Minisat 2007,
Zchaff Rand, Picosat8.46, MXC08

The automatically-selected backup solvers were
Ag2wsat0, Minisat 2007, and MXC08 for Random,
Handmade, Industrial, respectively.

4 Expected Behaviour
We submit three different versions of SATzilla, specifi-
cally designed to perform well in each of the categories:
SATzilla2009 R (Random), SATzilla2009 C (Crafted),
and SATzilla2009 I (Industrial). In order to run properly,
subdirectory satzilla Solvers should contain all bi-
naries for SATzilla’s component solvers and its feature
computation.

2



References
[1] Anonymous. Satenstein: Automatically building local search sat

solvers from components. Under double-blind review., 2009.

[2] A. Biere. Picosat version 535. Solver description, SAT competi-
tion 2007, 2007.

[3] D. R. Bregman and D. G. Mitchell. The SAT solver MXC, version
0.5. Solver description, SAT competition 2007, 2007.

[4] W. Wei C. M. Li and H. Zhang. Combining adaptive noise and
promising decreasing variables in local search for SAT. Solver
description, SAT competition 2007, 2007.

[5] G. Dequen and O. Dubois. kcnfs. Solver description, SAT com-
petition 2007, 2007.

[6] N. Eén and N. Sörensson. Minisat v2.0 (beta). Solver description,
SAT Race 2006, 2006.

[7] M. Heule and H. v. Maaren. March pl.
http://www.st.ewi.tudelft.nl/sat/download.php, 2007.

[8] M. Heule, J. Zwieten, M. Dufour, and H. Maaren. March eq: im-
plementing additional reasoning into an efficient lookahead SAT
solver. pages 345–359, 2004.

[9] E. I. Hsu and S. A. McIlraith. Characterizing propagation meth-
ods for boolean satisfiability. pages 325–338, 2006.

[10] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the
empirical hardness of optimization problems: The case of combi-
natorial auctions. In Proc. of CP-02, pages 556–572, 2002.

[11] Y. S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: an efficient SAT
solver. pages 360–375, 2005.

[12] E. Nudelman, A. Devkar, Y. Shoham, K. Leyton-Brown, and
H. Hoos. SATzilla: An algorithm portfolio for SAT, 2004.

[13] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and
Y. Shoham. Understanding random SAT: Beyond the clauses-
to-variables ratio. In Proc. of CP-04, pages 438–452, 2004.

[14] D. N. Pham and Anbulagan. Resolution enhanced SLS solver:
R+AdaptNovelty+. Solver description, SAT competition 2007,
2007.

[15] D. N. Pham and C. Gretton. gnovelty+. Solver description, SAT
competition 2007, 2007.

[16] K. Pipatsrisawat and A. Darwiche. Rsat 1.03: SAT solver de-
scription. Technical Report D-152, Automated Reasoning Group,
UCLA, 2006.

[17] N. Sörensson and N. Eén. Minisat2007.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/,
2007.

[18] I. Spence. Ternary tree solver (tts-4-0). Solver description, SAT
competition 2007, 2007.

[19] D. Vallstrom. Vallst documentation.
http://vallst.satcompetition.org/index.html, 2005.

[20] W. Wei, C. M. Li, and H. Zhang. Deterministic and random se-
lection of variables in local search for SAT. Solver description,
SAT competition 2007, 2007.

[21] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
Satzilla2007: a new & improved algorithm portfolio for SAT.
Solver description, SAT competition 2007, 2004.

[22] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
Satzilla-07: The design and analysis of an algorithm portfolio for
SAT. In Proc. of CP-07, pages 712–727, 2007.

[23] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: portfolio-based algorithm selection for SAT. Journal of
Artificial Intelligence Research, 32:565–606, June 2008.

3


