
Salieri

A General, Interactive Computer Music System

Holger H. Hoos, J�urgen Kilian, Kai Renz, and Thomas Helbich

Darmstadt University of Technology
Wilhelminenstr.7, D-64283 Darmstadt, Germany

email: fhoos,kilian,renz,helbichg@iti.informatik.tu-darmstadt.de

Abstract. In this paper we describe the Salieri System, an interactive software environment
for structure oriented composition, manipulation, and analysis of music. The system is built on
the newly developed Salieri Language, a universal programming language based on a
hierarchical model of formal music representation, combining features of traditional functional
and procedural programming languages with powerful concepts for manipulating musical
material. The basic musical data types of Salieri are built on GUIDO Music Notation, a
novel approach for adequately representing score-level music. Extensions of the core Salieri
System realise real-time functionality and a graphic user interface builder (VISCO).

1 Introduction

Since the �rst digital computers became available in the 1950s, a broad range of musical applications have
been proposed and realised. With the introduction of the Personal Computer in the 1970s this
development has considerably gained momentum, giving rise to the �eld commonly known as computer

music. Until today, a huge number of tools and systems for di�erent application areas of computer music
such as music composition, analysis, perception (and many more) have been created, and most of them
vanished as quickly as they have shown up. Only a small number of systems, like CSound [Vercoe; 1993],
Max [Puckette; 1991], or Patchwork [Laurson; 1996] are widely kwown and used. One reason for this
situation might be the fact that most systems are very specialised and therefore have a very limited range
of application. Furthermore, many systems were only prototypically realised as research tools; these are
usually di�cult to use for people other than their developers.

Our motivation in designing the Salieri System was to overcome these drawbacks by creating a powerful,
interactive environment for realising a broad range of musical applications in an adequate way. Thus, the
Salieri Language, on which the system is based, comprises all elements of a universal programming
language as well as powerful concepts for representing and manipulating musical material. Of course, we
do not claim that Salieri can be adequately applied to problems from all areas of computer music. For
example, in its present form the system is based on a score-level representation of music; therefore it is
certainly not adequate for physical-level applications like the composition or analysis of electroacoustic
music. Nevertheless, we feel that there is a wide �eld of application in music theory, composition, and
education.

The remainder of this paper is structured in the following way: In Section 2, we give some theoretical
background on music representation and manipulation in Salieri and compare our approach with related
work. Section 3 introduces the Salieri Language and gives some very simple examples for its usage. In
Section 4, we describe the Salieri System and its various components; we also discuss the highly modular
architecture of the system. Then, we give a brief overview of some extensions to the basic system, in
particular the real-time module and the graphic user interface builder (VISCO). Finally in Section 6, we
sum up the main characteristics of the Salieri System and roughly sketch some future developments and
applications.

1

2 Background and Related Work

To allow for manipulation by a computer program, musical material has to be represented in a formal
language. We distinguish three fundamentally di�erent approaches for designing such formal languages.
The �rst, and probably most common one is based on using the data structures of an existing, universal
programming language for representing musical data. Examples for this approach are OpenMusic
[Assayag et.al.; 1997] and Common Music [Schottstaedt; 1997], which are both based on LISP. A second
approach is to use a native music representation for realising musical data types which are embedded into
a universal programming language that is used for manipulating these. The Salieri System is based on a
variant of this approach: Here, the music representation language is GUIDO Music Notation (GMN), a
novel approach for adequately representing score-level music [Hoos, Hamel; 1997] [Hoos et.al.; 1998].
GUIDO is the basis for the musical data types of the newly designed Salieri Language, a universal
programming language speci�cally designed for manipulating score-level music.

One of the advantages of this approach is that, di�erently from the �rst one, the musical data types do not
have to be mapped onto existing data structures provided by programming models which have not been
developed with musical applications in mind. Thus, there is no hidden representation which usually has to
be taken into account by advanced or expert users who start pushing the limits of a computer music
language or system. The down-side of this approach is the fact that designing and implementing a new
programming language is usually more di�cult than extending or adapting an existing one to a specialised
application area. Nevertheless, it is our belief that musical applications bene�t a lot from providing
carefully designed, native musical data types and language concepts. In particular, according to our
experience so far, users which do not have an extensive background in programming usually have great
di�culties when dealing with languages like LISP.

There is a third approach which is based on extending a music representation language into a full-edged,
specialised musical programming language by providing functional abstraction and application. However,
the only system based on this approach which we are currently aware of, is the Elody system
[Orlarey et.al.; 1997]. While this approach is formally very elegant and certainly interesting for certain
applications, it is not clear whether this concept will be adequate for realising a broad range of musical
applications. In contrast, the Salieri approach is based on distinguishing between the music
representation level and the music manipulation level. One reason for this is our belief that in the context
of many applications treating these levels di�erently better reects the intuitive ways of thinking about a
musical problem.

Therefore, when designing the Salieri System, one of the primary goals was adequacy in the sense of
allowing a broad variety of musical applications to be realised in a straight-forward, intuitive way which
enables the user to concentrate on musical aspects while avoiding implementation overhead as far as
possible. Other important design principles like consistency and minimality in combination with a
thouroughly designed graphical user interface help to ensure the usability of the system. Finally, exibility
and extensibility ensure that the system can be applied to a broad range of tasks from computer music.

3 The Salieri Language

The Salieri Language combines features of conventional procedural and functional programming
languages (such as PASCAL or LISP) with powerful mechanisms for representing and manipulating
musical data. Salieri is based on a dynamic typing system which supports function overloading and
polymorphism. There are two basic musical data types which are based on GUIDO Music Notation
[Hoos et.al.; 1998]: Sequences are representations of one voice pieces, while segments represent multi-voice
music. The basic operations on sequences and segments are concatenation and polyphonic aggregation;
these realise horizontal and vertical composition of musical material and provide an essential basis for the
adequate representation of important structural aspects. Fundamental musical operations on sequences
and segments include primitive variations (such as transposition, retrograde, . . .) and functions to extract

2

randomMusic := FUNC(2,
`(* Creates series of notes with

random duration/pitch *)

numnotes := $1; (* first parameter *)
seednote := $2; (* second parameter *)

music := [];

loopn(numnotes,
`denominator := INT(exp(2, rndUniform(1, 4)));
note := transp(seednote, rndUniform(-12, 12));
note := expand(note, 1, denominator);
music := music + note;

');

return(music)');

(* Creates a song with two voices *)

randomSong := poly(randomMusic(20, [c2*1/2]),
randomMusic(10, [g0*1/1]));

¬

L&

a

4

2

X

X X

Xb

X
_
_

X# Xn

X_ X_

Xb

Xb_

X
X

X
X#

X#_X

Xn Xb

XK#

_
_

X

_
_
_
_

X X X

Xn

_
_

E#

_
_
_ XKb

_
_
_ X

_
_

X

_
_
_

X

_
_
_
_
_

(* structural description of frere jacques *)

a := repeat(2, [\slur(c1*1/4 d e c)]);
b := repeat(2, [\slur(e*1/4 f g/2)]);
c := repeat(2, [g*1/8 a g f e/4 c]);
d := repeat(2, [c1*1/4 g0 c1/2]);

song := a + b + c + d;

voice1 := song + a;
voice2 := rest(a) + song ;

canon := poly(transp(voice1, -12) ,
voice2);

¬

L

¬

L

&

?

&

?

∑
4

4

X

4

4
X X

X

∑

X X X
X

X_ X X
X_

X X E

X_ X X
X_

X X E

X X E

X X X X X
X

5

X X E

X X X X X
X

X X X X X
X_

X

X

E

X X X X X
X_

X

X

E

Figure 1: Simple examples of Salieri programs

information from musical data (like ambitus, duration, . . .).

Other object-types in Salieri include the commonly used simple types boolean, integer, real and
string. The complex data-type list implements heterogeneous lists of objects, thereby forming the basis
for more sophisticated data-structures which are needed in individual, problem-speci�c contexts. Since
part of the Salieri Language is based on the functional programming paradigm, functions and macros are
regarded as ordinary objects which can be stored in lists or passed as parameters, thus allowing the
exible realisation of higher-order concepts (as can be used for aleatoric music generation or variation).

One of the most important aspects of Salieri is its set of thoroughly selected, powerful built-in functions.
Among these, complex musical operations can be found, such as tonal transposition based on generalised
scales or transcription, which allows the translation of music material between di�erent keys and
generalised scales. Of course, the Salieri built-in functions also include common arithmetic, comparison-,
set-, list-, and i/o-operations, as well as control ow functions like conditional and loop structures. By
extending the system with new, user-de�ned functions, the expert user can easily adapt Salieri to her
speci�c needs. Using native musical data-types and built-in functions allows to signi�cantly reduce
programming overhead compared to conventional programming languages such as LISP or C. This is
further faciliated by a number of libraries that can be dynamically linked to the system. These include
more speci�c, complex musical functions for various application areas like chord handling, music analysis,
or aleatoric and deterministic composition techniques.

Figure 1 shows two very basic examples on using the Salieri Language. The �rst example (left side)
demonstrates how a user-de�ned function for creating simple aleatoric melodies can be de�ned and used:
randomMusic generates a sequence of random notes, its two parameters are the number of notes in the
sequence and a seed note. The notes of the resulting sequence are generated by applying a random
expansion factor (duration) and a random transposition level to the seednote. The example also illustrates
the usage of randomMusic: a two-voice segment randomSong is calculated by calling randomMusic twice
with di�erent parameters and combining the resulting sequences using the constructor poly. One result of
this call can be seen on the bottom left side of Figure 1.

The second example (right side) shows, how the Salieri language can be used to represent musical pieces
using structural information. The well-known french canon \Fr�ere Jacques" is de�ned using four motifs,

3

Figure 2: Screen-shot of the Salieri System

each of which is repeated twice. In Salieri, the musical motifs can be represented using GUIDO Music
Notation; these building blocks can then be manipulated using built-in or user-de�ned functions. In the
example, the variables a,b,c,d, voice1,voice2, and song are de�ned according to the structure of the
song. Finally, a canon is calculated by combining two versions of the melody, one of which is transposed
by an octave (�rst voice) while the other starts after a rest with the duration of fragment a. The
equivalent score is shown on the bottom right side of Figure 1. More complex examples for using the
Salieri language can be found at the Salieri Website1 or directly obtained from the authors.

4 The Salieri System

The Salieri System o�ers a complete, interactive working environment for creating, manipulating, and
analysing musical material. All objects are held in a persistent global workspace, which allows the user to
restart a new session exactly where the previous one was quitted. To combine the interactive nature of the
system with the powerful concepts and features of the language while achieving a reasonable performance,
the Salieri Language is compiled into an intermediate code (SalieriIntermediate Code) and then
executed on a virtual machine (SIC machine).2 This compiler and the virtual machine are the core of the
Salieri System. Di�erent from conventional compiled programming languages like C, in Salieri the
compilation process is transparent to the user, so that the system basically behaves like a very fast
interpreter.

To illustrate the structure of the graphical user interface, Figure 2 shows a screen shot of the Salieri
System. Via the System Dialog (upper left window in Figure 2), the user can input commands and queries
and read the system's answers. For an easy management of objects, Workspace Browser windows (upper

1http://www.informatik.tu-darmstadt.de/AFS/SALIERI
2In this respect, Salieri is based on a similar concept like the programming language JAVA.

4

real-time WSB

kernel FERMATA NoteViewer

VISCO

SysDlgSCM

Figure 3: Salieri System architecture, based on ORCA.

right window in Figure 2) are available. These display objects by their names, types and abbreviated
values; for the currently selected object, the complete value is displayed. The Workspace Browser allows
easy copying, renaming and deleting of selected objects, as well as playing and viewing musical material in
conventional music notation. The latter is realised by NoteViewer windows (lower right window in Fig. 2),
which do not only display note sequences and segments but also allow the manipulation of parameters like
clefs, meter or metrical subdivision. When developing applications or additional libraries, Program Editor
windows (lower left window in Figure 2) can be used for writing and editing Salieri program code;
Program Editors also support the direct execution of selected parts of Salieri programs. In Program
Editors, as well as in the System Dialog, all internal functions can be accessed by a menu based language
support (see top of Figure 2). The Salieri System and Language are documented by an extensive
HTML-based help system, which can also be accessed via the WWW.

The implementation of the Salieri System is based on ORCA (Open Reactive Components Architecture),
a highly modular message-passing architecture developed by our group (see Figure 3). The message tra�c
between the di�erent components of the system uses the text-based, synchronous ORCA protocol; all
communication between modules are routed by the SCM (Salieri Components Manager).3 The SCM
allows to dynamically load or remove other components at runtime without restarting the system (plugin
mechanism). These components (like the Workspace Browser) are implemented as SIAM's (Salieri
Integrated Application Modules). Each SIAM supports a basic set of ORCA messages and provides an
interface for communicating with the SCM. The Salieri System can be easily extended by implementing
new SIAM modules and loading them into the system. In future, we plan to support distributed
realisations of the ORCA architecture; then, SIAMs could run on di�erent machines and communicate via
the internet.

3For peformance reasons, there is one exception: time-critical information is directly passed between the real-time module

and the kernel.

5

5 Extensions

In this section we shortly describe two extensions of the basic Salieri System which have been recently
realised. The Real-time Extension supports real-time processing of music in the Salieri System. Our
basic approach is based on MidiShare [Orlarey, Lequay; 1989] and realised by a simple extension of the
Salieri Language. The extension provides new datatypes representing real-time events and handler
functions which are triggered by these. Real-time events cover not only MIDI events, but also clock-,
keyboard-, and other internal system events. MIDI events can be received from and sent to any MidiShare
port or application, thus allowing to e�ectively connect the Salieri System to other MidiShare
applications. Real-time handler functions are user-de�nable functions of the Salieri Language which are
activated by real-time events. Thus the full expressive power of the Salieri Language can be used to
manipulate real-time events in a straight-forward, adequate way and within a consistent and easy-to-learn
formal framework.

The real-time extension can be used to realise a variety of interesting applications, ranging from simple
MIDI �lters to complex real-time processing like meter and key detection, harmonic and motivic analysis,
and variation of real-time input. We believe this approach to be complementary, in a sense, to the MAX
approach [Puckette; 1991]: since Salieri is based on a universal, textual programming language
specialised for music processing, complex program structures which tend to be di�cult to realise within
the visual programming paradigm underlying MAX-like systems can be represented more adequately. At
the same time, based on MidiShare, it is very easy to connect Salieri to other MIDI-based real-time
systems and thus to combine the advantages of di�erent approaches.

VISCO (Visual Salieri Components) is a Salieri extension which allows the realisation of integrated
graphical user interfaces for Salieri applications. The VISCO extension is realised as a Salieri

Integrated Application Module (SIAM) which can be easily loaded into the system at runtime. It supports
the usual visual control elements (windows, buttons, edit boxes, ...) and also some special controls (e.g.,
noteview boxes, ...), which are organised in a hierarchical model. Each control element can be connected
to a set of Salieri command strings (actions) which are triggered by di�erent types of events, like mouse
clicks. Further properties control the graphical appearance (like size and position) of the visual controls.

We fully integrated VISCO into the Salieri System by extending the Salieri Language with a few new
functions. The visual control elements and environments can be created and controlled using the
integrated, interactive, GUI based VISCO Browser, from within running Salieri programs, or from the
Salieri System Dialog (command line interface). VISCO provides an easy way for realising customised
graphical user interfaces for Salieri applications. At the same time, user-de�ned VISCO controls can be
used to extend or customise the Salieri System GUI. VISCO also provides the basis for extending the
Salieri System with visual programming capabilities in the spirit of MAX or OpenMusic.

6 Conclusion and Future Work

In this work, we presented Salieri, a newly developed, interactive software environment for structure
oriented composition, manipulation, and analysis of music. We gave some background on our approach
and compared it to related work, pointing out the bene�ts we see in basing our system on a native musical
programming language combining features from procedural and functional programming paradigms. We
then discussed the main characteristics and design objectives of the Salieri musical programming
language and the Salieri System. We gave an overview over the highly modular ORCA system
architecture which faciliates porting the core system to di�erent platforms. At the same time, ORCA
provides a convenient interface for extending the Salieri System with integrated application modules
(SIAMs). We also discussed two important extensions to the basic Salieri System, the real-time module
and the graphic user interface builder (VISCO).

Due to the limited space, we could only give a slight avour of musical programming with Salieri here.
Nevertheless, Salieri has been successfully applied to a number of problems from areas such as

6

� analysis of music in the style of Palestrina (see also [L�uttig; 1994]);

� algorithmic composition of music based on mathematical concepts (see also
[Allouche, Johnson; 1996], [Moore; 1990]);

� automated generation of variations [Chico-T�opfer; 1998];

� using formal grammars to generate etudes for string instruments [Boivin, M�oller; 1996],
[Franke, Mendez; 1995] (see also [Laske; 1974], [Roads; 1979]);

� harmonic and rhythmic analysis based on formal theories of tonal music [Flade, Weber; 1995] (see
also [Schenker; 1906], [Lerdahl, Jackendo�; 1993]).

� applications for musical education and training.

Other applications are currently being developed and will be presented elsewhere. Our experience so far
shows that the Salieri System in its present form can be regarded as a versatile and powerful tool for
realising a wide variety of approaches and techniques from di�erent areas of computer music.

Currently, we are developing SALOME (Salieri Object Manipulation Environment), an advanced
graphical user interface for the Salieri System based on a simple, yet powerful and very consistent
graphical metaphor for manipulating objects. In cooperation with researchers from the Dresden University
of Technology, we are working on a Salieri extension for handling microtonality and dynamic tuning
(based on the existing MUTABOR II system [Abel et.al.; 1992]). Furthermore we have recently begun
implementing a JAVA version of the Salieri System which will allow to use the system with di�erent
operating systems and on di�erent hardware platforms. This development will also a�ect the WWW
Server version of Salieri which is presented in a separate paper [Renz, Hoos; 1998]. Future plans include
extending Salieri to support physical level descriptions and digital signal processing.

Acknowledgements

In the �rst place, we wish to thank Prof. H.K.-G. Walter for his support of the project since its earliest
stages. Thanks to him we have been able to build up the project group in Darmstadt and develop our
ideas in a stimulating environment. Other members of our group who helped this project to become a
success are Peter L�uttig, Stefan Franke, Michael Fuhlbr�ugge, Matthias Streicher, and Matthias Huber.
Last not least, Holger H. Hoos wishes to express his gratitude to the Intellectics Group and Prof. W. Bibel
for supporting his work on this project.

References

[Abel et.al.; 1992] Volker Abel, Peter Reiss, Rudolf Wille; MUTABOR II: Ein Computergesteuertes
Musikinstrument zum Experimentieren mit Stimmungslogiken und Mikrot�onen; Technische Hochschule
Darmstadt, Fachbereich Mathematik, Preprint Nr. 1513; Darmstadt 1992

[Allouche, Johnson; 1996] Jenan-Paul Allouche, Tom Johnson; Narayana's Cows and Delayed Morphisms;
Proc. JIM-96

[Assayag et.al.; 1997] Gerard Assayag, Carlos Agon, Joshua Fineberg, Peter Hanappe; An Object
Oriented Visual Environment For Musical Composition; Proc. ICMC-97

[Boivin, M�oller; 1996] Mich�ele Boivin, Clara M�oller; Grammatikbasierte Musikerzeugung;
Seminarausarbeitung zum Seminar Computermusik; TH Darmstadt 1996

7

[Chico-T�opfer; 1998] Wolfgang Chico-T�opfer; AVA { A Grammar/Case-based Composition System to
Variate Music Automatically Through the Generation of Scheme Series; Proc. ICMC-98

[Flade, Weber; 1995] Kai Flade, Jens Weber; Generative Theorie Tonaler Musik; Seminarausarbeitung
zum Seminar Computermusik; TH Darmstadt 1995

[Franke, Mendez; 1995] Stefan Franke, Martha M�endez; Grammatikbasierte Musikerzeugung und
-beschreibung; Seminarbericht zum Seminar Computermusik; TH-Darmstadt 1995

[Hoos, Hamel; 1997] Holger H. Hoos, Keith Hamel; The GUIDO Music Notation Format { Speci�cation
Part 1; Technical Report TI 20/97; Darmstadt University of Technology; Darmstadt 1997; available
from http://www.informatik.tu-darmstadt.de/AFS/CM/GUIDO/docu/

[Hoos et.al.; 1998] Holger H. Hoos, Keith A. Hamel, Kai Renz, and J�urgen Kilian; The GUIDO Notation
Format { A Novel Approach for Adequately Representing Score-Level Music; Proc. ICMC-98

[Laske; 1974] Otto E. Laske; In search of a Generative Grammar for Music; Sonological Reports, No. 1,
Institute of Sonology; Utrecht, Netherlands 1974; in: Machine Models of Music; Stephan
M. Schwanauer, David A. Levitt; MIT Press; Cambridge, Massachusetts 1993

[Laurson; 1996] M. Laurson; Patchwork, A Visual Programming Language and Some Musical
Applications; Sibelius Academy, Studia Musica No. 6, Helsinki 1996

[Lerdahl, Jackendo�; 1993] Fred Lerdahl, Ray Jackendo�; An Overview of Hierarchical Structure in
Music; in: Machine Models of Music; Stephan M. Schwanauer, David A. Levitt; MIT Press;
Cambridge, Massachusetts 1993

[L�uttig; 1994] Peter L�uttig; Der Palestrina-Stil als Satzideal in der Musiktheorie zwischen 1750 und 1900;
Hans Schneider; Tutzing 1994

[Moore; 1990] F. Richard Moore; Elements of Computer Music; Chapter 5: Composing; Prentice Hall 1990

[Orlarey et.al.; 1997] Yann Orlarey, Dominique Fober, St�ephane Letz; L'environnement de composition
musicale Elody; Proc. JIM-97

[Orlarey, Lequay; 1989] Yann Orlarey, H. Lequay; MidiShare: a real-time multi-tasks software module for
MIDI applications; Proc. ICMC-89; ICMA Publishing, San Francisco

[Puckette; 1991] M. Puckette; Combining Event and Signal Processing in the Max Graphical
Programming Environment; Computer Music Journal 15(3):68-77; MIT 1991

[Renz, Hoos; 1998] Kai Renz, Holger H. Hoos; A HTTP Interface to Salieri; Proc. ICMC-98

[Roads; 1979] Curtis Roads; Grammars as Representations for Music; Computer Music Journal Vol. III,
Nr. 1; MIT 1979

[Schenker; 1906] Heinrich Schenker; Harmonielehre; fotomechanischer Nachdruck der Ausgabe von 1906;
Universal Edition A. G.; Wien 1978

[Schottstaedt; 1997] Bill Schottstaedt; Common Music Notation; in: Beyond MIDI; The Handbook of
Musical Codes; E. Selfridge-Field (ed.); pp. 217-221; The MIT Press; Cambridge Massachusetts,
London England 1997

[Vercoe; 1993] Barry Vercoe; Csound: A Manual for the Audio Processing System and Support Programs
with Tutorials; 2nd revised edition; Cambridge MA; Massachusetts Institute of Technology Media Lab
1993

8

