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Abstract. Stochastic local search (SLS) methods are underlying some of the
best-performing algorithms for certain types of SAT instances, both from an em-
pirical as well as from a theoretical point of view. By definition and in practice,
random decisions are an essential ingredient of SLS algorithms. In this paper we
empirically analyse the role of randomness in these algorithms. We first study
the effect of the quality of the underlying random number sequence on the be-
haviour of well-known algorithms such as Papadimitriou’s algorithm and Adap-
tive Novelty+. Our results indicate that while extremely poor quality random
number sequences can have a detrimental effect on the behaviour of these algo-
rithms, there is no evidence that the use of standard pseudo-random number gen-
erators is problematic. We also investigate the amount of randomness required
to achieve the typical behaviour of these algorithms using derandomisation. Our
experimental results indicate that the performance of SLS algorithms for SAT is
surprisingly robust with respect to the number of random decisions made by an
algorithm.

1 Introduction

The Propositional Satisfiability Problem (SAT) is the prototypical NP-complete prob-
lem and a prominent hard combinatorial decision problems. Some of the best known
methods for solving certain types of SAT instances are Stochastic Local Search (SLS)
algorithms; these are typically incomplete, i.e., they cannot determine that a formula is
unsatisfiable, but they often find models of satisfiable formulae surprisingly effectively.
Many SLS algorithms are probabilistically approximate complete (PAC) and will solve
a soluble instance with arbitrarily high probability when allowed to run long enough [1].

A typical SLS algorithm for SAT consists of an initialisation phase, in which a truth
value is assigned to each variable, and a search phase, during which the values of indi-
vidual, heuristically selected variables are changed in an attempt to reach a satisfying
assignment. The search phase is a sequence of search steps known as flips because in
each step typically one variable’s assignment is changed (or flipped). Stochastic (ran-
dom) decisions are typically used in both phases, and in the following we describe the
most common ways SLS algorithms for SAT make use of random decisions:

Variable initialisation is heavily randomised in most SLS algorithms for SAT; typi-
cally, the initial variable assignment is obtained by assigning each variable a truth
value {>,⊥} chosen uniformly and independently at random.

Heuristic tie-breaking occurs when a choice needs to be made between several alter-
natives that are ranked identically by a given heuristic evaluation function; many
SLS algorithms for SAT break these ties randomly.

Variable selection often includes randomised choices; examples include the noise mech-
anisms in Novelty and variable selection in Simulated Annealing.



Neighbourhood selection occurs when an algorithm narrows the list of flip candidates
to a subset of all the variables. For example, in the WalkSAT algorithms, in each
step an unsatisfied clause is selected uniformly at random, and then only variables
in occurring in this clause are considered as flip candidates.

Random walk steps involve flipping randomly selected variables; they can help to in-
crease search diversification, to avoid stagnation, and to render an algorithm PAC.
In a uniform random walk all variables can be selected with uniform probability.
In a conflict-directed random walk only variables occurring in currently unsatisfied
clauses can be selected, such as in Papadimitriou’s algorithm [2] and WalkSAT [3].

Random restarts cause an algorithm to randomly re-initialise all variables; most SLS
algorithms for SAT, including algorithms of purely theoretically interest, such as
Schöning’s algorithm [4], perform periodic random restarts.

Search control mechanisms can also make use of randomised decisions; examples
include the probabilistic smoothing mechanism in the SAPS algorithm [5] and the
random selection of the tabu tenure parameter in Robust Tabu Search [6].

The prominent use of random decisions in many components of SLS algorithms raises
some interesting questions: Why are most algorithms so heavily randomised? How im-
portant are those random decisions? How important is the quality of the underlying
random numbers? How much randomness is necessary? Can randomness be eliminated
altogether? In this paper, we attempt to shed light on some of these questions.

Some of these questions have been addressed in previous work. Gent and Walsh in-
vestigated the role of random decisions in GSAT [7]. They found that random decisions
were neither important in the initialisation phase nor for tie breaking, and that determin-
istic substitutions could be made in both cases. Much of their analysis revolved around
the ability of the algorithm to diversify the search during re-initialisation. They did not
study the impact of the quality of random decisions, and it is not clear to which extent
their observations apply to more powerful SLS algorithms for SAT that do not require
restart mechanisms and their application to a broad range of SAT instances.

There has been a large body of work dedicated to the quest for increasingly higher
quality random number generators. In the Monte Carlo simulation literature, there has
been evidence that even good random number generators can produce very undesirable
errors in their results [8,9]. In work related to this paper, Ribeiro et al. recently surveyed
random number generators to find a good candidate for randomised algorithms [10].
In our previous work [11] we investigated the role of random decisions in the SAPS
algorithm, which we will develop further in Section 4.

The remainder of this paper is structured as follows: In Section 2 we briefly in-
troduce the algorithms and problem instances used in our computational experiments
reported later. In Section 3 we investigate how important the quality of the random de-
cisions are, while in Section 4 we explore the quantity of random decisions required
to achieve the typical behaviour of these algorithms. Finally, Section 5 contains a brief
discussion of our main findings and points out some directions for future work.

2 Preliminaries

The first algorithm we consider in this work is conflict-directed random walk (CR-
WALK). After randomly initialising all variables, in each search step this algorithm
selects a currently unsatisfied clause and flips a randomly chosen variable from that
clause. This algorithm was first studied by Papadimitriou, who proved that it solves



2-SAT in expected quadratic time [2]. Extending it with a simple periodic restart mech-
anism leads to Schöning’s algorithm, whose run-time on 3-SAT instances was proven
to be bounded from above by O(1.334n) [4]. More recently, Iwama and Tamaki’s have
extended Schöning’s algorithm to improve this bound to O(1.324n) [12].

We chose to include CRWALK in our study because it is a prominent, yet very sim-
ple algorithm that is purely based on random decisions. Originally, we had decided to
include Schöning’s algorithm in our study because of its provably excellent worst-case
behaviour, but in preliminary experiments on a large set of instances from SATLIB we
found no empirical evidence for any differences between its behaviour and that of CR-
WALK (which, given well-known empirical results on the behaviour of WalkSAT algo-
rithms [13,1] is not surprising). As will also be apparent from the results reported later in
this paper, CRWALK performs quite poorly when compared against high-performance
SLS algorithms for SAT, because it completely lacks heuristic guidance.

The two other algorithms we used in this study, Adaptive Novelty+ (ANOV+) [14]
and SAPS [5] are amongst the best performing SLS algorithms for SAT currently
known. ANOV+, a member of the WalkSAT family, placed first in the random cate-
gory of the 2004 SAT competition [15]. In addition to random initialisation it uses ran-
domised neighbourhood selection, randomised heuristic variable selection, and conflict
directed random walk steps. ANOV+ employs a deterministic mechanism for adapting
its noise setting p during the search and therefore requires no parameter tuning.

Scaling and Probabilistic Smoothing (SAPS) changes the space it is searching by
dynamically modifying penalty weights associated with the clauses of the given CNF
formula [5]. In addition to random initialisation it uses randomised heuristic tie-breaking,
randomised search control mechanisms, and uniform random walk steps. SAPS shows
performance that is competitive with ANOV+. We mainly included it in this study be-
cause (as we will discuss in more detail later) in long search trajectories SAPS ap-
proaches deterministic behaviour [11]. In all experiments reported in this study we used
the default parameters for SAPS (α = 1.3, ρ = 0.8, Psmooth = 0.05, wp = 0.01).

All three algorithms (CRWALK, ANOV+ and SAPS) are available as part of the
UBCSAT software package [16] which is available for download from the UBCSAT
website1. Unless otherwise stated (as in Section 3) all experiments have been conducted
using the default random number generator in UBCSAT, Mersenne Twister [17].

For our experiments, we have used individual satisfiable instances obtained from
SATLIB [18]. We provide brief descriptions here, while more detailed information is
available from the SATLIB website2. The uniform random 3-SAT instance sets (ufN-*)
are all randomly generated with N variables at the phase transition. The hardest, me-
dian and easiest instance from these sets are referred to as -hard, -med and -easy,
respectively. The flatN-* instances are encodings of randomly generated flat graph
3-colouring problems with N vertices; these instances share structure induced by the
SAT-encoding. The ii and ssa instances are from the DIMACS challenge set, and
are a formulation of Boolean function synthesis problem and encodings from circuit
fault analysis, respectively. The bw instances are encodings of a blocks world planning
problem and have been popular instances in the literature. The ferry instances are
from the SAT 2003 competition industrial category. The anov10M-struct set con-
tains over two thousand instances and includes all structured (non-random) instances
currently available on SATLIB where ANOV+ has a median run-time between 1 000
and 10 000 000 steps.

1 http://www.satlib.org/ubcsat
2 http://www.satlib.org

http://www.satlib.org/ubcsat
http://www.satlib.org


3 The Quality of Random Decisions

When implementing SLS algorithms, all random decisions are realised using a ran-
dom number generator (RNG). In principle, a true random number generator (TRNG),
which obtains a sequence of random numbers from a truly random source could be
used. Hardware implementations of TRNGs that obtain random data from physical phe-
nomae, such as atmospheric noise or radioactive decay, are available and are popular in
applications such as gambling3 and cryptography [19]. However, most computer imple-
mentations use pseudo-random number generators (PRNG) instead. A PRNG is a finite
state machine with memory, and performs deterministic mathematical operations on the
state information to generate a sequence of numbers. Once a PRNGs is initialised with
a numerical seed, it will produce a series of numbers that may have the appearance of
being random, but in fact can all be deterministically calculated from the seed. The qual-
ity of a PRNG is solely determined by the mathematical operations it performs. Ideally,
sequences will be uniform and unbiased (i.e., equal fractions of numbers from the se-
quence should fall into equal intervals), uncorrelated (i.e., the numbers in the sequence
should be statistically independent of one another), and have long periods (because the
state information in a PRNG is finite, all PRNGs will eventually cycle, but the period
between cycles should be very large) [1].

Because of the importance of high quality random numbers in cryptography and
other applications, tests have been developed that measure the quality of a sequence of
random data. The American National Institute of Standards and Technology (NIST) has
produced a document [20] with companion software4 to test the quality of random data.
The NIST software includes 16 groups of tests that cover a wide variety of statistical
properties. Another popular software tool for quickly analysing the quality of random
numbers is known as ent and was developed by John Walker at Fourmilab5.

There are numerous PRNGs available that use a wide variety of mathematical meth-
ods. We have selected a few characteristic PRNGs to test, in addition to data generated
by a TRNG. The following are brief descriptions of the RNGs we used:

True Random Data This data was obtained from random.org and was generated
by a hardware device measuring atmospheric noise.

‘C’ random() We chose the linux gcc ‘C’ random() function because it is the de-
fault PRNG for many programmers, and is also currently the default PRNG for the
original WalkSAT software package by Kautz [3] when compiled under Linux. We
used gcc v3.3.3 on SuSE Linux v9.1.

LCG The Linear Congruential Generator (LCG) we chose was based on the ANSI ‘C’
specification: Ij+1 = (Ij × 1103515245 + 12345) except that only one byte (bits
11-18) of random data was collected per iteration, a common practice to improve
the quality of this particular PRNG.

LFG The Lagged Fibonacci Generator (LFG) we chose was from the book by Knuth [21],
and the source code is available from his website6.

MT The Mersenne Twister (MT) we chose is the MT19937 algorithm [17], which has
an astounding period of (219937−1). This is the default PRNG in the current release
of the UBCSAT software package [16].

3 http://www.first.fraunhofer.de/owx download/keno-engl.pdf
4 http://csrc.nist.gov/rng
5 http://www.fourmilab.ch/random
6 http://www-cs-faculty.stanford.edu/˜knuth/programs/rng.c

http://www.random.org
http://www.first.fraunhofer.de/owx_download/keno-engl.pdf
http://csrc.nist.gov/rng
http://www.fourmilab.ch/random
http://www-cs-faculty.stanford.edu/~knuth/programs/rng.c


Table 1. Randomness quality tests on 160MB of data generated by various RNGs. The
Bias value is the average value of all bits (the ideal value is 0.5). The χ2 analysis from
ent shows the distribution value and a percentage which indicates how frequently a
TRNG would have a larger distribution value, where values > 95% or < 5% are highly
suspect. The Monte Carlo π analysis from ent gives an estimated value of π and the
respective error. For the NIST tests, we report the overall percentage of the tests passed
by the respective data, where each of the 16 groups of tests was weighted equally.

Bias χ2 Analysis Monte Carlo π NIST %
True random 0.5000290 235.9 (75%) 3.14094 (0.021%) 97.80
Unix C random() 0.4999988 224.6 (90%) 3.14148 (0.004%) 99.50
LCG 0.5000000 0.0 (99.99%) 3.14123 (0.011%) 93.53
LFG 0.5000129 237.3 (75%) 3.14139 (0.007%) 96.69
MT 0.5000204 278.5 (25%) 3.14203 (0.014%) 98.37
Random: Skewed 1.25:1 0.5554831 2165538.1 (0.01%) 2.76998 (11.829%) 16.39
Random: Cycled 16k 0.5000086 4327.3 (0.01%) 3.14631 (0.150%) 59.18

In Table 1 we examine the relative quality of the some of these RNGs. There is little
difference between the results for the PRNGs and the TRNG, with the exception of
LCG, which is clearly the worst of the tested PRNGs. It is often the case that individual
sequences of TRNGs fail more tests than individual sequences of PRNGs [20]. The
bottom two rows of Table 1 will be discussed later.

We now investigate to which extent the quality of the source of randomness affects
SLS behaviour. Intuitively, bias in the random number sequence can be expected to
have a negative impact on SLS performance for the following reason. For most random
decisions made within an SLS algorithm, there are more bad choices (that increase the
length of the current run) than good choices. Most forms of bias would therefore tend to
increase the relative probability of making a bad choice. However, note that even when
using a TRNG with extreme bias, as long as the probability of generating 0 or 1 at
any position of the sequence is greater zero, the PAC property of a given SLS algorithm
would remain intact, since the required sequence of ‘correct decisions’ would still occur
(albeit with much lower probability).

The effect of correlation in the random number sequence, as long as it does not
involve deterministic dependencies, would be very similar for analogous reasons. (Note
that correlation, in this context, corresponds to bias for certain subsequences.)

Deterministic cycles in the random number sequence, on the other hand, could eas-
ily lead to a loss of the PAC property, because in combination with the finite state
information held by the algorithm (which in addition to the search position may include
search control variables, such as tabu status information or dynamic penalty weights),
they could cause cycles in the search trajectory that do not include any solutions to the
given problem instance. Note that all PRNGs are periodic; whether or not this leads to
observable stagnation of a given SLS algorithms depends on the period of the PRNG as
well as on the amount and nature of state information used by the SLS algorithm.

In order to empirically study the effect of poor quality RNGs on SLS algorithms, we
generated some intentionally bad random number sequences by manipulating the data
we had from the TRNG. First, we introduced a skew s in our data by converting 32-bits
of our random data to obtain fixed-point binary values in the range [0,1), generating a 1
if the value was greater than s/(s+1). Next, we generated cycled data where we simply
truncated the random data at a fixed number of bytes and repeated the same sequence.



Table 2. The effect of different types of random data streams on the CRWALK algo-
rithm. For the true random data, the mean number of search steps (run-length) required
to find a solution is given, while for all other sources the mean search steps is given as a
fraction of the number required for the true random source. The c.v. is calculated as the
standard deviation divided by the mean (σ/x̄). Note that c.v. = 1 characterises an expo-
nential run-length distribution, which is typical for high-performance SLS algorithms
for SAT. All experiments results are based on 500 runs with a maxiumum run-length of
232 (4.3B) steps. For the cycled streams with a reported ∞ mean, we confirmed cyclic
behaviour by examining the respective search trajectories.

ii8c2 ssa7552-159 flat50-med uf100-med uf50-hard
x/xrand c.v. x/xrand c.v. x/xrand c.v. x/xrand c.v. x/xrand c.v.

True random 300k 0.99 2.21M 0.97 631k 0.97 76.1M 0.94 372k 0.97
Unix C random() 1.13 0.94 1.02 0.91 0.96 0.93 1.10 0.99 1.10 0.99
LCG 1.13 1.02 1.02 1.00 0.95 0.98 1.02 0.96 1.02 0.96
LFG 1.15 0.99 1.05 1.02 0.94 1.03 0.98 0.97 0.98 0.97
MT 0.97 0.95 0.99 0.98 0.90 0.93 0.93 0.96 0.93 0.96
Skewed 1.25:1 0.48 0.97 3.39 1.08 0.93 0.97 0.97 1.03 0.97 1.03
Skewed 1.5:1 0.29 0.92 15.27 0.97 0.85 1.04 1.10 0.96 1.10 0.96
Skewed 2:1 0.13 0.94 > 368 0.97 0.93 1.03 1.03 0.99 1.03 0.99
Skewed 4:1 0.06 1.00 > 2 000 0.02 0.88 1.02 0.96 1.05 0.96 1.05
Cycled 16k 1.28 0.86 0.66 0.96 0.92 0.87 0.82 1.16 0.82 1.16
Cycled 4k 1.23 0.85 0.82 1.15 0.89 0.83 0.61 1.11 0.61 1.11
Cycled 1k 0.89 0.76 2.17 0.91 0.55 0.83 0.52 1.00 0.52 1.00
Cycled 512 0.68 1.22 ∞ 0 0.10 0.75 0.63 1.12 ∞ 0
Cycled 256 2.38 0.56 ∞ 0 0.41 0.70 0.41 0.69 ∞ 0

We ran our new poor streams through the same tests we performed on the PRNGs, and
from Table 1 it is clear that our poor RNGs do not meet very high standards of quality.
In what follows, we made the streams progressively worse, and so the data in Table 1
can be considered the best of the bad streams we generated.

To examine the effects of different RNGs on our selected algorithms, we ran CR-
WALK, ANOV+ and SAPS with the different sources of random data, and present the
results in Tables 2, 3 (top), and 3 (bottom) respectively. We provided the PRNG com-
parison for CRWALK, and we can see the algorithm was very robust w.r.t. the selection
of the PRNGs; analogous observations were made for ANOV+ and SAPS.

For the skewed data, the data streams had an increasing amount of ones, and we shall
consider what effect it would have on the specific implementations of the algorithms.
For CRWALK, the bias would be toward arbitrarily specific clauses and literals. For the
ANOV+ algorithm, the same bias would exist for clause selection, but more importantly
the frequency of random walk steps and noisy heuristic decisions would decrease. For
SAPS, the only significant change is a decrease in the smoothing frequency. Not all of
the changes were negative, and in some cases such as the CRWALK algorithm on the
ii8c2 instance, the skew greatly improved the performance of the algorithm.

For the cycled data, we continued to shorten the length of the cycles and thereby
increased the likelihood that the algorithms would cycle. In Tables 2 and 3 we present
results from situations where both the CRWALK and the ANOV+ algorithm became
stuck in endless loops. Note that although CRWALK and ANOV+ are both PAC, our
empirical results show that these algorithms can become essentially incomplete when
using cyclic random number streams. The fact that all finite PRNGs eventually cycle



Table 3. The effect of different sources of random data streams on the ANOV+ algo-
rithm (above) and the SAPS algorithm (below) on the same instances. See Table 2 for
details.

Random Data uf100-med uf250-hard bw-large.c ferry9u
x/xrand c.v. x/xrand c.v. x/xrand c.v. x/xrand c.v.

Random Source 998 0.63 3.00M 0.96 10.0M 0.99 880k 0.88
Skewed 1.25:1 1.17 0.61 1.29 1.06 0.91 1.05 0.57 0.87
Skewed 2:1 1.61 0.65 4.16 1.01 0.99 0.95 0.68 0.90
Skewed 4:1 3.02 0.76 96.31 0.62 1.30 1.00 > 3 122 0.75
Cycled 16k 1.06 0.80 0.85 0.95 0.93 1.17 0.98 0.40
Cycled 512 1.26 0.50 ∞ 0 0.13 1.61 1.03 0.80
Cycled 256 0.33 0.79 ∞ 0 0.66 1.33 ∞ 0

Random Source 1.06k 1.01 304k 1.07 14.6M 0.99 1.92M 1.01
Skewed 1.25:1 1.31 0.97 1.33 1.01 0.54 1.04 0.39 0.97
Skewed 2:1 1.89 1.16 3.03 1.08 0.34 0.97 0.26 0.97
Skewed 4:1 2.37 1.09 5.45 1.04 0.42 1.02 0.11 0.90
Cycled 16k 1.10 0.99 0.99 1.00 0.95 0.97 0.78 0.90
Cycled 512 0.55 0.72 0.96 0.49 0.88 1.18 2.18 0.89
Cycled 256 1.39 0.89 1.44 0.83 1.26 0.99 0.39 1.23

suggests that no conventional implementation of an SLS algorithm is truly PAC. (An
implementation may be PAC for a given instance, but with a countably infinite number
of SAT instances there is no hope of guaranteeing that an implementation will be PAC
for any arbitrary instance.)

Given this conclusion, it might seem wise to implement algorithms with TRNGs. If
efficient TRNGs were readily available it would be an ideal solution. However, TRNGs
are far from efficient when compared to PRNGs. We must add perspective to this discus-
sion and consider how incredibly unlikely the aforementioned circumstances are with a
good PRNG. For example, the Mersenne Twister PRNG has a period of (219937 − 1),
which makes it very unlikely to ever encounter cycling behaviour in practice. Rather,
if cyclic behaviour is observed for an algorithm using a PRNG of this type, the cyclic
behaviour is far more likely due to a design flaw, an implementation error, or simply
because (even when using true random numbers) the algorithm is not PAC.

When implementing an SLS algorithm and selecting a PRNG, there are several fac-
tors to be considered. To assess the quality of a given PRNG, one of the many available
test suites can be used; however, any reasonable PRNG will have sufficient quality w.r.t.
bias and correlation to render impacts on the performance of typical SLS algorithms
very unlikely. However, in order to minimise the chance of encountering cycling be-
haviour of an SLS algorithm in practice, it is generally advisable to chose a PRNG with
a large period. Another potentially important factor is the efficiency of a PRNG; this
is particularly relevant in the context of highly randomised SLS algorithms that make
random decisions in every (or almost every) search step. Finally, especially in the con-
text of scientific research, the use of platform-independent PRNGs makes it possible to
reproduce unusual algorithm behaviour exactly across different hardware and operat-
ing systems. The previously mentioned Mersenne Twister has all of the qualities that
are desirable for a PRNG and overall appears to be the best choice in the context of
implementing SLS algorithms.



SAPS SAPS/NR
Instance Mean c.v. Mean c.v.
uf100-med 1 075 0.95 1 041 1.01
uf250-hard 287 907 0.98 292 488 0.96
bw-large.c 13 413 962 0.98 14 510 361 1.05
ferry9u 1 883 606 1.03 3 179 808 1.06
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Fig. 1. Performance comparison of SAPS and SAPS/NR. Left: For each instance, SAPS
and SAPS/NR were run 1000 times. For a description of the c.v., see Table 2. Right: Cor-
relation of median run-time over 100 runs on each instance of set anov10M-struct.
Using the Mann-Whitney U-test with sample size 100, performance ratios below 1.8
(corresponding to data points inside the band drawn around the main diagonal of the
plot) are not statistically significant at standard significance and power levels [1].

4 Quantity of Randomness

In the previous section, we examined how the quality of random numbers can affect
SLS behaviour. In this section, we will study the quantity of random decisions made by
SLS algorithms, and consider how many random decisions are truly required. We first
investigate random decisions in the SAPS algorithm and give a quick review of our pre-
vious work [11]. It has been observed that high-performance dynamic local search al-
gorithms, such as ESG or SAPS, become essentially deterministic after an initial search
phase [22]. Intuitively, the clause penalties become unique after numerous scaling and
smoothing steps, and so there is no heuristic tie breaking necessary. To further investi-
gate the role of randomness in these algorithms, we have previously created and studied
a mostly derandomised variant of SAPS known as SAPS/NR [11].

SAPS/NR does not perform any random walk steps at local minima, uses periodic
smoothing after every (b1/Psmoothc) local minima, and breaks all ties by selecting
the variable with the smallest index. At first glance, it may seem that SAPS/NR is
completely deterministic, but we must emphasise that the initialisation of SAPS/NR is
identical to the initialisation in SAPS, and consequently the initial starting position for
each run of SAPS/NR is completely random. In Figure 1 we compare the performance
differences between SAPS and SAPS/NR. The ferry9u instance is one of the few
cases in which we have found significant performance differences; in the overwhelming
majority of cases, both algorithms show no significant performance differences.

After restricting all of the random decisions to the initialisation phase, we will next
consider what happens when we remove the random decisions from the initialisation
phase as well. If we deterministically initialise the variable assignments, SAPS/NR will
always take the same number of steps to solve an instance, reducing the variability in the
run-time to zero, which can be seen in Figure 3 (left) as a vertical line. The deterministic
initialisation method we used was a simple greedy approach: for each variable, if the
positive literal appears more frequently than the negative, the variable is assigned a
value of>, otherwise⊥. When variables with an equal number of positive and negative



literals are encountered, they are deterministically assigned> or⊥, alternating between
variables.

We next consider what happens if between the initialisation and the search phase
we select one variable uniformly at random and flip it 7. Remarkably, as can be seen in
Figure 3 (left), the variability introduced by just that one random decision is close to
the full variability seen by the regular, fully randomised version of SAPS. Because this
instance has 250 variables, there are 250 discrete levels in the curve, corresponding to
each of the 250 variables that could have been flipped. It is quite remarkable and rather
counter-intuitive that flipping just one variable between the initialisation and search
phase could have such a dramatic effect on the run-time behaviour of the algorithm. We
note that this phenomenon is very reminiscent of the extremely sensitive dependence
on initial conditions found in chaotic dynamic systems.

Next, we consider similar derandomisations for CRWALK and ANOV+, two algo-
rithms that depend on random decisions to a much greater extent than SAPS. It should
be noted that the derandomised versions of these algorithms described in the following
were chosen for their simplicity rather than for their performance or their exceptionally
strong correlation to the original algorithms. We did not invest time in tuning and engi-
neering our algorithms with different derandomisation strategies to meet higher quality
standards. Our goal was to illustrate that our simple, straightforward approach works
reasonably well for most instances.

Recall that CRWALK uses random decisions to select unsatisfied clauses and to
decide which variable in a selected clause is to be flipped. To implement clause selection
in DCRWALK, our deterministic version of CRWALK, we keep track of the number of
times each clause has been selected (count) and the number of steps that each clause
has been unsatisfied (unsat) and we simply select the clause that has the smallest (count
: unsat) ratio, breaking ties by selecting the clause with the smallest index. This method
ensures that clauses are selected in a uniform, fair, and deterministic manner. For literal
selection, we simply keep a counter for each clause, selecting the first literal the first
time the clause is selected, the second literal the second time, and so on, returning to
the first literal when all have been exhausted. Thus, DCRWALK removes all of the
randomness from the heuristic search phase, while still allowing for random decisions
at the initialisation phase. Note that our approach differs substantially from some of the
published theoretical methods for derandomising Schöning’s algorithm [23], which use
Hamming balls to eliminate randomness from the initialisation phase and depart from
traditional SLS by using backtracking in the local search phase.

To derandomise the ANOV+ algorithm, we need to replace three types of random
decisions: clause selection, random walk steps, and noisy variable selection. For clause
selection, we maintain a list of the currently false clauses and simply step through that
list, selecting the clause in the list that is the current search step number modulo the size
of the list. Instead of random walk steps, every (b1/wpc) steps a variable is selected to
be flipped using the same variable selection scheme used by DCRWALK. For the noisy
variable selection, we use two integer variables n and d. If the ratio (n

d ) is less than the
current noise setting p a noisy decision is made and n is incremented, conversely, if (n

d )
is greater than p the greedy decision is made and d is incremented. Whenever the adap-
tive mechanism modifies the noise parameter p, the values of n and d are reinitialised
to b256 · pc and (256− n), respectively.

In Figure 2 we compare the performance of DCRWALK and DANOV+ with their
fully randomised versions. In general, we do not see the same tight correlation observed

7 Parameters -varinitgreedy -varinitflip 1 in UBCSAT
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Fig. 2. Comparison of left: CRWALK and DCRWALK and right: ANOV+ and
DANOV+. Instance sets left: flat30-* and right: anov10M-struct. For each
instance, 100 runs were performed. See Figure 1 for further details.
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Fig. 3. A run-length distribution comparison of left: SAPS and SAPS/NR, centre: CR-
WALK and DCRWALK and right: ANOV+ and DANOV+ (with [N ] total random
decisions per run) based on 1000 runs. See the text for the deterministic initialisation
method used for the derandomised algorithms. The vertical bar ([0]) reflects when all
random decisions have been replaced, while the [1] curve shows the behaviour when
one single random variable has been flipped after the deterministic initialisation in each
run. Instances are left: uf250-hard, centre: uf50-hard and right: bw-large.c.

for SAPS/NR, however, for the most part our derandomised algorithms show very sim-
ilar behaviour. Our DCRWALK algorithms seems to outperform CRWALK for the vast
majority instances, possibly because the clause selection scheme is fair and unbiased.
Gent and Walsh observed similarly improved behaviour for a fair deterministic ver-
sion of GSAT [7]. Our DANOV+ algorithm suffers from slightly worse performance
on average, and there are significant outliers that indicate some inherent problems with
our derandomisation approach on some specific instances, but for most instances the
performance of DANOV+ resembles that of ANOV+.

In Figure 3 we see evidence that the same ‘chaotic’ behaviour observed for SAPS/NR
is also present for DCRWALK and DANOV+. Using the same deterministic initiali-
sation as in SAPS/NR, we obtain the same behaviour: with just one simple random



decision in DCRWALK and two in DANOV+, the full variability found in the run-
time distributions of the original, heavily randomised versions of these algorithms is
achieved. What makes this observation remarkable is not so much that in principle, the
amount of random decisions can be drastically reduced without any substantial effect
on the behaviour of the algorithm (after all, any implementation of an SLS algorithm
using a PRNG is fully deterministic), but rather that it can be done using very simple
derandomisation schemes.

5 Conclusions

In this paper we have investigated the role of random decisions in SLS algorithms for
SAT. Most of these algorithms heavily use various types of random decisions, and we
have argued that from a theoretical point of view, their performance can be expected to
be severely compromised by some of the features associated with poor-quality random
number sequences. Nevertheless, our our empirical results indicate that in practice, the
behaviour of these algorithms is remarkably robust with respect to the quality of the
RNG used to implement these random decisions. This is in contrast to some other types
of randomised algorithms, such as algorithms used for Monte Carlo simulations. As a
consequence, there is no reason to consider the use of true random number generators
(which have the disadvantage of typically being rather slow), or to worry about mi-
nor differences in the quality of readily available pseudo-random number generators,
especially if their period is high. Because of its extremely high period, efficiency and
platform-independent availability, we recommend to use the Mersenne Twister PRNG
for the implementation of SLS algorithms.

We have also found that at least the three prominent SLS algorithms for SAT we
studied (SAPS, ANOV+, CRWALK) can be almost completely derandomised using
very simple mechanisms to replace the random decisions without significantly changing
their behaviour. In particular, versions of these algorithms that use only a single random
decision during intialisation exhibit basically the full variability in the run-time required
to solve a given SAT instance as the original, fully randomised algorithms. Eliminating
this last random decision leads to completely deterministic algorithms which may often
perform similarly well as their fully randomised versions on average. At the same time,
these deterministic algorithms can no longer benefit from easy and efficient paralleli-
sation by means of performing multiple independent tries in parallel [1].Additionally,
at least for the deterministic version of ANOV+ we observed substantially degraded
performance on a very small number of instances. Therefore, we see no practical ad-
vantages in using completely or partially derandomised SLS algorithms.

Overall, our results are fully consistent with the widely held view that the role
of random decisions in SLS algorithms is primarily to provide search diversification.
Therefore, neither the quality of the RNG nor the quantity of random decisions used by
an SLS algorithm is of crucial importance to its behaviour.

In future work, it would be interesting to conduct a detailed empirical analysis on
the implementation costs of various PRNGs and the difference in run-time behaviour
between randomised and derandomised algorithms. With respect to the quantity of ran-
dom decisions, more algorithms can be tested for straightforward derandomisation, and
more robust derandomisation methods should be explored. For individual instances
on which derandomised algorithms are found to perform poorly (i.e. ferry9u for
SAPS/NR), it would be interesting to further explore the reasons underlying the loss of
performance, and to investigate which specific type of derandomisation is causing the



problem; this information could be used to help identify how to use random decisions
more effectively. Finally, it would be very worthwhile to extend our methods to other
combinatorial problem domains (e.g., constraint satisfaction or travelling salesperson
problems) to test the generality of our observations.
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