
SATenstein: Automatically Building Local Search SAT Solvers From Components

Ashiqur R. KhudaBukhsh, Lin Xu, Holger H. Hoos, Kevin Leyton-Brown
Department of Computer Science
University of British Columbia

{ashiqur, xulin730, hoos, kevinlb}@cs.ubc.ca

Abstract
Designing high-performance algorithms for computation-
ally hard problems is a difficult and often time-consuming
task. In this work, we demonstrate that this task can
be automated in the context of stochastic local search
(SLS) solvers for the propositional satisfiability problem
(SAT). We first introduce a generalised, highly param-
eterised solver framework, dubbed SATenstein, that in-
cludes components gleaned from or inspired by existing
high-performance SLS algorithms for SAT. The param-
eters of SATenstein control the selection of components
used in any specific instantiation and the behaviour of
these components. SATenstein can be configured to in-
stantiate a broad range of existing high-performance SLS-
based SAT solvers, and also billions of novel algorithms.
We used an automated algorithm configuration procedure
to find instantiations of SATenstein that perform well on
several well-known, challenging distributions of SAT in-
stances. Overall, we consistently obtained significant
improvements over the previously best-performing SLS
algorithms, despite expending minimal manual effort.1

1 Introduction
In Mary Shelley’s classic novel Frankenstein; or, The Modern
Prometheus, a brilliant and obsessed scientist, Victor Franken-
stein, sets out to create a ‘perfect’ human being from scav-
enged body parts. The approach we follow in this work is
based on the same general idea: we build new algorithms
using components scavenged from existing high-performance
solvers for a given problem. Unlike Frankenstein, we use an
automated construction process, which enables us to build
algorithms whose performance is optimised for specific types
of tasks (i.e., problem instances) with minimal human effort.

In the traditional approach to building heuristic algorithms,
most design choices are fixed at development time, with a
small number of parameters exposed to the user. In contrast,
we advocate an approach in which the designer fixes as few
choices as possible, instead exposing a vast number of design
elements as parameters that can be configured at runtime.
This spares the designer the burden of making early decisions
without knowing how they will interact with other algorithm

1We thank Frank Hutter for valuable suggestions regarding auto-
matic configuration, experimental setup, and algorithm design, and
Dave Tompkins for his help with extending the UBCSAT framework.

components on instance distributions of interest. Instead, the
designer can include as many alternate approaches to solving
the same subproblem as seem promising, drawing on elements
of known algorithms as well as novel mechanisms. Of course,
to solve actual problems, such a framework must be made to
instantiate a particular algorithm by setting its parameters. We
use a black-box algorithm configuration procedure to make
this choice for an instance distribution of interest.

Of course, we are not the first to propose building algo-
rithms by using automated methods to search a large design
space. To the contrary, our work can be seen as part of a
general and growing trend, fueled by an increasing demand
for high-performance solvers for difficult combinatorial prob-
lems in practical applications, by the desire to reduce the
human effort required for building such algorithms, and by
an ever-increasing availability of cheap computing power that
can be harnessed for automating parts of the algorithm de-
sign process (see also [Hoos, 2008]). There are many ex-
amples of work along these lines [Gratch and Dejong, 1992;
Minton, 1993; Carchrae and Beck, 2005; Xu et al., 2008;
Gagliolo and Schmidhuber, 2006; Fukunaga, 2002; Oltean,
2005; Westfold and Smith, 2001; Monette et al., 2009;
Gaspero and Schaerf, 2007]. We discuss the most closely-
related work in detail in Section 2.

In broad strokes, our approach is distinguished in three
key ways. First, it explicitly separates the specification of
a vast combinatorial design space from the search for high-
performance algorithms in that space. Second, it uses a com-
pletely automated procedure for the latter stage, which makes
it possible to obtain specialised solvers for various types of
input instances using essentially exclusively computational
power rather than human effort. Finally, it is validated by the
fact that we obtain new state-of-the art solvers for one of the
most challenging and widely-studied problems in computer
science: the propositional satisfiability problem (SAT). We
also note that our approach differs from automated algorithm
selection methods such as SATzilla [Xu et al., 2008], which
select one of several solvers to be run on a given problem
instance based on characteristics of that instance. Indeed, the
two approaches are complementary: methods like SATzilla
can take advantage of solvers obtained using the automated
design approach pursued in this work.

Although the approach we have outlined is not limited to a
particular domain, this paper focuses on the automated con-



struction of stochastic local search (SLS) algorithms for SAT.
This domain is a challenging one for automated algorithm
design, since a broad and sustained research effort has gone
into the (manual) design of high-performance SLS algorithms
for SAT since the late 1980s. SLS-based solvers continue to
represent the state of the art for solving various types of SAT
instances; they also play an important role in state-of-the-art
portfolio-based automated algorithm selection methods for
SAT [Xu et al., 2008].

This paper introduces SATenstein, a flexible new framework
for designing SLS SAT solvers. SATenstein incorporates com-
ponents from over two dozen existing SLS algorithms for SAT,
as well as on a variety of novel strategies. In total, this design
space comprises more than 2× 1011 distinct SAT solvers, in-
cluding most state-of-the-art SLS-based SAT solvers known
from the literature as well as a vast number of completely
novel designs. It therefore spans a much wider range of dis-
tinct algorithms than previous SAT solver frameworks such
as our own UBCSAT [Tompkins and Hoos, 2004], which we
used as a starting point for this work.

We rely on a black-box algorithm procedure to choose
an actual SAT solver from the rich design space defined by
our framework. In principle, any sufficiently-powerful con-
figuration procedure could be used to identify SATenstein
configurations that perform well on given distributions of
SAT instances. We used ParamILS [Hutter et al., 2007b;
2008], a tool developed in our own group, for this purpose.

We demonstrate experimentally that our new, automatically-
constructed solvers outperform the best SLS-based SAT
solvers currently available by a significant margin on six well-
known SAT instance distributions, ranging from hard random
3-SAT instances to SAT-encoded factoring and software ver-
ification problems. Because SLS-based SAT solvers are the
best known methods for solving four of these six benchmark
distributions, our new solvers represent a substantial advance
in the state of the art for solving the respective sub-classes
of SAT. On the remaining two types of instances, in particu-
lar on SAT-encoded software verification problems, our new
solvers narrow the gap between the performance of the best
SLS algorithms and the best DPLL-based solvers.

The remainder of this paper is organised as follows. After a
discussion of related work (Section 2), we describe the design
of SATenstein (Section 3). This is followed by a description
of the setup we used for empirically evaluating SATenstein
(Section 4) and a presentation and discussion of the results
from these experiments (Section 5). We end with some general
conclusions and an outlook on future work (Section 6).

2 Related Work
There is a large body of literature in AI and related areas
that deals with automated methods for building effective al-
gorithms. This includes work on automatic algorithm config-
uration (see, e.g., [Gratch and Dejong, 1992; Minton, 1993;
Hutter et al., 2007b]), algorithm selection (see, e.g., [Guerri
and Milano, 2004; Carchrae and Beck, 2005; Xu et al., 2008]),
algorithm portfolios (see, e.g., [Gomes and Selman, 2001;
Gagliolo and Schmidhuber, 2006]), and, to some extent,
genetic programming (see, e.g., [Fukunaga, 2002; 2004;

Oltean, 2005]) and algorithm synthesis (see, e.g., [Westfold
and Smith, 2001; Monette et al., 2009; Gaspero and Schaerf,
2007]). In what follows, we restrict our discussion to research
efforts that are related particularly closely to our approach.

Notably, Fukunaga automatically constructed variable se-
lection mechanisms for a generic SLS algorithm for SAT by
means of genetic programming [Fukunaga, 2002; 2004]. The
design space considered in his approach is potentially un-
bounded, and his genetic programming procedure is custom-
tailored to searching this space. Only GSAT-based and
WalkSAT-based SLS algorithms up to the year 2000 were
considered, and candidate variable selection mechanisms were
evaluated solely on Random-3-SAT instances with at most
100 variables. In contrast, we consider a huge but bounded
combinatorial space of algorithms based on components taken
from 25 of the best SLS algorithms for SAT currently avail-
able, and we use an off-the-shelf, general-purpose algorithm
configuration procedure to search this space. During this meta-
algorithmic search process, candidate solvers are evaluated on
SAT instances with up to 4 878 variables and 56 238 clauses.
The best automatically-constructed solvers obtained by Fuku-
naga achieved a performance level similar to the best WalkSAT
variants available in 2000 on moderately-sized SAT instances,
but did not consistently improve on the performance of the
best SLS-based SAT algorithms at the time. In contrast, our
new SATenstein solvers perform substantially better than cur-
rent state-of-the-art SLS-based SAT solvers on a broad range
of challenging SAT instances. Finally, while Fukunaga’s ap-
proach in principle could be used to obtain high-performance
solvers for specific types of SAT instances, to our knowledge
this potential was never realised. Our approach, on the other
hand, is specifically designed for automatically building high-
performance solvers for given instance distributions, and our
empirical results clearly show that it works well in practice.

Two other pieces of work from our own group are con-
ceptually related to the work presented here. Hutter et al.
[2007a] used an automated algorithm configuration procedure
to refine a highly-parametric DPLL-type SAT solver, SPEAR,
which was subsequently tuned, using the same configuration
procedure, for solving SAT-encoded hardware and software
verification problems, respectively. These automatically-tuned
versions of SPEAR were demonstrated to improve the state of
the art in solving these types of SAT instances at the time. Sim-
ilarly, Chiarandini et al. [2008] recently used the same auto-
mated algorithm configuration procedure to design a modular
SLS algorithm for timetabling problems, which subsequently
placed third in one of the categories of the 2007 International
Timetabling Competition. In both cases, the automated config-
uration procedure was used as a tool within the human design
process, while in the work presented here it provides the basis
for a distinct and fully-automated phase after this process.

Another conceptual relationship exists with our own work
on SATzilla [Xu et al., 2008]: Both approaches use automatic
methods to achieve improved performance on given distribu-
tions of SAT instances by selecting from a set of algorithms.
(And, of course, both have similar names!) However, the sim-
ilarity ends there. SATzilla performs per-instance selection
from a fixed set of black-box SAT solvers, relying on charac-
teristics of a given instance and substantial amounts of runtime



data for each solver. In contrast, SATenstein is an approach
for automatically building novel solvers from components.
Together, these components define a vast space of candidate
algorithms, most of which have never been studied before.
We advocate instantiating solvers from this space only on a
per-distribution basis and without considering characteristics
of individual problem instances. Furthermore, algorithm con-
figuration tools that search this space are limited to gathering
a very limited amount of runtime data for most configurations
considered. In fact, our two approaches are highly complemen-
tary: SATenstein can be used to obtain new SAT algorithms to
be used within SATzilla. Indeed, the latest version of SATzilla
(recently submitted to the 2009 SAT Competition) makes use
of several solvers constructed using SATenstein [Xu et al.,
2009].

Existing work on algorithm synthesis is mostly focused on
automatically generating algorithms that satisfy a given for-
mal specification or that solve a specific problem from a large
and diverse domain (see, e.g., [Westfold and Smith, 2001;
Monette et al., 2009; Gaspero and Schaerf, 2007]), while
our work is focused on performance optimisation in a large
space of candidate solvers that are all guaranteed to be correct
by construction. Clearly, there is complementarity between
both approaches; at the same time, because of the significant
difference in focus, the methods considered in algorithm syn-
thesis and performance-oriented automated algorithm design,
as considered here, are quite different.

Finally, our work builds fundamentally on the large body of
research that gave rise to the high-performance SAT solvers
from which we took the components for our SATenstein
solvers (see Section 3), and on the UBCSAT solver frame-
work for SLS-based SAT algorithms [Tompkins and Hoos,
2004], on top of which we implemented SATenstein.

3 SATenstein-LS
Nearly all existing SLS-based SAT solvers can be grouped
into one of four broad categories: GSAT-based, WalkSAT-
based, dynamic local search and G2WSAT-variant algorithms.
While GSAT-based algorithms are of considerable historical
importance, no present state-of-the-art SAT algorithm belongs
to this category. We thus constructed our solver framework
to span high-performance local search algorithms from the
remaining three families.

This framework is described as Procedure
SATenstein-LS. The pseudocode is roughly divided into
five building blocks, denoted B1–B5. A SATenstein-LS
instantiation has the following general structure:

1. Optionally execute B1 to perform search diversification
[Pham and Gretton, 2007; Hoos, 2002];

2. Obtain a variable to flip by executing one of B2, B3, and
B4—thus determining whether a G2WSAT-derived (B2),
WalkSAT-based (B3), or dynamic local search algorithm
(B4) is instantiated—and then flip this variable;

3. Optionally execute B5 to perform updates to the promis-
ing variable list, tabu attributes, clause penalties or dy-
namically adapted algorithm parameters.

Each of our blocks is built from one or more components,
some of which are shared across multiple blocks. These com-

Procedure SATenstein-LS(. . .)
Input: CNF formula φ; real number cutoff ;

booleans performDiversification,
singleClauseAsNeighbor, usePromisingList
Output: Satisfying variable assignment
Start with random Assignment A;
Initialise parameters;
while runtime < cutoff do

if A satisfies φ then
return A;

VarFlipped← FALSE;
if performDiversification then

B1 if within probability diversificationProbability() then
B1 c← selectClause();
B1 y← diversificationStrategy(c) ;
B1 VarFlipped← TRUE;

if Not VarFlipped then
if usePromisingList then

B2 if promisingList is nonempty then
B2 y← selectFromPromisingList() ;

else
B2 c← selectClause();
B2 y← selectHeuristic(c) ;

else
if singleClauseAsNeighbor then

B3 c← selectClause();
B3 y← selectHeuristic(c) ;

else
B4 sety← selectSet();
B4 y← tieBreaking(sety);

flip y ;
B5 update();

ponents are summarised in Table 1. Each component is in
turn configurable by one or more parameters (41 in total; not
all of which are reflected in the high-level pseudocode), to
select among different core heuristics from high-performance
SLS algorithms.2 These are the parameters that we expose on
the command line and tune using our automatic configurator.
Because some of these parameters conditionally depend on
others, it is difficult to determine the exact number of valid
SATenstein-LS instantiations; a conservative lower bound
is 2× 1011.

We now give a high-level description of each building block.
B1 depends on the selectClause(), diversificationStrategy(),
and diversificationProbability() components. Component se-
lectClause() takes a categorical parameter as input and, de-
pending on its value, selects a false clause uniformly at random
or with probability proportional to its clause penalty [Tomp-
kins and Hoos, 2004]. Component diversificationStrategy()
can be configured by a categorical parameter to do any of the
following with probability diversificationProbability(): flip
the least recently flipped variable [Li and Huang, 2005], flip
the least frequently flipped variable [Prestwich, 2005], flip the
variable with minimum variable weight [Prestwich, 2005], or
flip a randomly selected variable [Hoos, 2002].

2For detailed information, please refer to [KhudaBukhsh, 2009].



Component Block # param # poss. values Based on
diversificationProbability() 1 1 4 [Pham and Gretton, 2007; Hoos, 2002; Prestwich, 2005; Li and Huang, 2005]
SelectClause() 1, 2, 3 1 2 [Tompkins and Hoos, 2004]
diversificationStrategy() 1 4 24 [Pham and Gretton, 2007; Hoos, 2002; Prestwich, 2005; Li and Huang, 2005]
selectFromPromisingList() 2 4 ≥ 4341 [Li and Huang, 2005; Li et al., 2007a; 2007b; Pham and Gretton, 2007]
selectHeuristic() 2, 3 9 ≥ 1220800 [Hoos, 2002; Li and Huang, 2005; Li et al., 2007a; 2007b; Prestwich, 2005; Selman et al., 1994; McAllester et al., 1997]
selectSet() 4 9 ≥ 111408 [Hutter et al., 2002; Thornton et al., 2004]
tiebreaking() 4 1 4 [Hoos, 2002; Li and Huang, 2005; Prestwich, 2005]
update() 5 12 ≥ 73728 [Hoos, 2002; Li et al., 2007a; Hutter et al., 2002; Thornton et al., 2004; Pham and Gretton, 2007; Li and Huang, 2005]

Table 1: SATenstein-LS components.

Design choice Based on
If freebie exists, use tieBreaking(); [Selman et al., 1994]

else, select uniformly at random
Variable selection from Novelty [McAllester et al., 1997]

Variable selection from Novelty+ [Hoos, 2002]
Variable selected uniformly at random [Hoos, 2002]
Variable with best VW1 score [Prestwich, 2005]
Variable with best VW2 score [Prestwich, 2005]
Variable with best score [Pham and Gretton, 2007; Li and Huang, 2005]
Variable selection from Novelty++ [Li and Huang, 2005]

Variable selection from Novelty++′ [Li et al., 2007b]
Least recently flipped variable [Li et al., 2007a]
Variable selection from Novelty+p [Li et al., 2007b]

Table 2: Design choices for selectFromPromisingList().

Block B2 instantiates solvers from the G2WSAT architec-
ture, which use a “promising list” to keep track of a set vari-
ables considered for being flipped. Two strategies for selecting
the variable ultimately to be flipped from the promising list
have been proposed in the literature: choosing the variable
with the highest score [Li and Huang, 2005] and choosing the
least recently flipped variable [Li et al., 2007a]. We added nine
novel options based on heuristics from other solvers that, to
our knowledge, have never before been applied to G2WSAT-
variant algorithms. (For example, we believe that variable
selection mechanisms from Novelty variants have only been
applied to unsatisfied clauses, not to promising lists.) The 11
possible values for selectFromPromisingList() and a reference
for each heuristic are given in Table 2.

If the promising list is empty, block B2 behaves exactly
like block B3, which instantiates WalkSAT-based algorithms.
First a clause c is selected using the selectClause() compo-
nent already described in B1. Then a variable to be flipped is
selected from c using the selectHeuristic() component. This
component can be configured to implement 13 different vari-
able selection strategies, including those from WalkSAT/SKC
[Selman et al., 1994], VW1 and VW2 [Prestwich, 2005], and var-
ious Novelty variants. The selection strategy in gNovelty+

also includes an optional “flat move” mechanism; we extended
this optional mechanism to the selection strategies for all the
other Novelty variants.

Block B4 instantiates dynamic local search algorithms. The
selectSet() component considers the set of variables that oc-
cur in any unsatisfied clause. It associates with each such
variable v a score, which depends on the clause weights of
each clause that changes satisfiability status when v is flipped.
These clause weights reflect the perceived importance of sat-
isfying each clause; for example, weights might increase the
longer a clause has been unsatisfied, and decrease afterwards
[Hutter et al., 2002; Thornton et al., 2004]. After scoring the
variables, selectSet() returns all variables with maximal score.
Our implementation of this component incorporates three dif-
ferent scoring functions, including those due to McAllester et

al. [1997], Selman et al. [1994], and a novel, greedier vari-
ant that only considers the number of previously unsatisfied
clauses that are satisfied by a variable flip. The tieBreaking()
component selects a variable from the maximum-scoring set
according to the same strategies used by the diversification-
Strategy() component.

Block B5 updates underlying data structures after a variable
has been flipped. Performing these updates in an efficient man-
ner is a core issue in optimising the performance of SLS algo-
rithms; in combination with the fact that the SATenstein-LS
framework supports the combination of mechanisms from
many different SLS algorithms, each depending on different
data structures, this rendered the implementation of the up-
date() technically quite challenging.

We validated the correctness of SATenstein-LS by care-
fully examining its behavior when configured to instantiate ten
prominent algorithms (see [KhudaBukhsh, 2009] for details),
comparing to independent reference implementations. We also
compared the different implementations in terms of empirical
performance, finding that in some cases they were virtually
identical (for SAPS, RSAPS, and adaptNovelty+) while in
others SATenstein-LS was slower (the worst was 2.17 times
slower, for gNovelty+). The primary reason for observed
performance differences between SATenstein-LS and the
reference implementations was the lack of special-purpose
data structure optimisations in the update() component.

4 Experimental Setup

We considered six sets of well-known benchmark instances
for SAT, listed in Table 3. Because SLS algorithms are unable
to prove unsatisfiability, we constructed our benchmark sets
to include only satisfiable instances. The HGEN and FAC
distributions include only satisfiable instances; for each of
these distributions, we generated 2000 instances and divided
these randomly into a training and test set containing 1000
instances each. For the remaining distributions, we filtered out
unsatisfiable instances using complete solvers. For QCP, we
generated 23 000 instances around the solubility phase transi-
tion, using the parameters given by Gomes and Selman [1997].
We solved these using a complete solver, and then randomly
chose 2000 satisfiable instances. These we divided randomly
into training and test sets of 1000 instances each. For SW-GCP,
we generated 20 000 instances [Gent et al., 1999] and used a
complete solver to randomly sample 2000 satisfiable instances,
which we again divided randomly into training and test sets
of 1000 instances each. For R3SAT, we generated a set of
1000 instances with 600 variables and a clauses-to-variables
ratio of 4.26. We identified 521 satisfiable instances using



Distribution Description
QCP SAT-encoded quasi-group completion [Gomes and Selman, 1997]
SW-GCP SAT-encoded small-world graph-colouring problems [Gent et al., 1999]
R3SAT uniform-random 3-SAT instances [Simon, 2002]
HGEN random instances generated by generator HGEN2 [Hirsch, 2002]
FAC SAT-encoded factoring problems [Uchida and Watanabe, 1999]
CBMC(SE) SAT-encoded bounded model checking problems [Clarke et al., 2004],

preprocessed by SatELite [Eén and Biere, 2005]

Table 3: Our six benchmark distributions.

Algorithm Short Name Reason for Inclusion
Ranov Ranov gold 2005 SAT Competition (random)

G2WSAT G2 silver 2005 SAT Competition (random)
VW VW bronze 2005 SAT Competition (random)

gNovelty+ GNOV gold 2007 SAT Competition (random)

adaptG2WSAT0 AG20 silver 2007 SAT Competition (random)

adaptG2WSAT+ AG2+ bronze 2007 SAT Competition (random)

adaptNovelty+ ANOV gold 2004 SAT Competition (random)

adaptG2WSATp AG2p performance comparable to adaptG2WSAT+,

G2WSAT, and Ranov; see [Li et al., 2007b]
SAPS SAPS prominent dynamic local search algorithm
RSAPS RSAPS prominent dynamic local search algorithm
PAWS PAWS prominent dynamic local search algorithm

Table 4: Our eleven challenger algorithms.

complete solvers;3 we randomly chose 250 of these instances
to form a training set and 250 to form a test set. Finally, we
used the CBMC generator to create 611 SAT-encoded soft-
ware verification instances based on a binary search algorithm
with different array sizes and loop-unwinding values. Of the
instances thus obtained, we filtered out seven unsatisfiable
instances and confirmed all the others as satisfiable. We ran-
domly divided the remaining 604 instances into a training set
of 303 instances and a test set of 301 instances.

In order to perform automatic algorithm configuration on
the SATenstein-LS framework, we first had to quantify per-
formance using an objective function; we chose to focus on
mean runtime. However, efficient algorithm configurators ter-
minate (or capped) some runs before they complete, making
the mean ill-defined. Thus, following Hutter et al. [2007a],
we define the penalised average runtime (PAR) of a set of N
runs with a k-second cutoff as the mean runtime over all N
runs, with capped runs counted as 10 · k seconds.

As our algorithm configurator, we chose the FocusedILS
procedure from the ParamILS framework, version 2.2 [Hutter
et al., 2008; 2007b], because to the best of our knowledge it
is the only method able to operate effectively on extremely
large, discrete parameter spaces. We set k to five seconds,
and allotted two days to each run of FocusedILS. Since Fo-
cusedILS is a randomised procedure, its performance can vary
significantly over multiple independent runs, in particular de-
pending on the order it chooses for instances in the training
set. We ran it 10 times on each training set, using different,
randomly determined instance orderings for each run. From
the 10 parameter configurations obtained from FocusedILS
for each instance distribution D, we selected the parameter
configuration with the best penalised average runtime on the
training set, and we refer to the corresponding instantiation of
SATenstein-LS as SATenstein-LS[D].

For every distribution D, we compared the performance
3We identified satisfiable instances by running March pl, each

of our 11 challenger algorithms and Kcnfs-04 with cutoffs of 3600,
600 and 36 000 seconds respectively. Our solvers were able to rule
out only 56 of the remaining 479 instances as unsatisfiable.

of SATenstein-LS[D] against that of 11 high-performance
SLS-based SAT solvers on the test set. We included every
SLS algorithm that won a medal in any category of the SAT
competition in the last five years [SAT Competition, 2009],
and also included several other prominent, high-performing
algorithms. These are listed in Table 4.
SATenstein-LS can be instantiated to emulate all 11 of

these challenger algorithms, except that it does not support
preprocessing components used by Ranov, G2 and AG20. All
of our experimental comparisons are based on the original
algorithm implementations, as submitted to the respective
SAT competitions, except for PAWS, for which the UBCSAT
implementation is almost identical to the original solver in
terms of runtime. All comparisons are based on running each
solver 10 times with a cutoff time of 600 seconds per run.

We carried out our experiments on a cluster of 55 dual
3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM,
running OpenSuSE Linux 10.1; runtimes for all algorithms
(including FocusedILS) were measured as CPU time on these
reference machines.

5 Results
On every one of our benchmark distributions, we were able
to find a SATenstein-LS configuration that outperformed all
11 challengers. Our results are summarised in Table 5.

In terms of penalised average runtime (the objective func-
tion that we explicitly optimised with ParamILS, albeit com-
puted according to the 600-second cutoff we used on our
test runs, rather than the 5-second cutoff we used in train-
ing), SATenstein-LS achieved markedly better performance
than the challengers. For QCP, HGEN, and CBMC(SE),
SATenstein-LS achieved PAR orders of magnitude better
than the respective best challenger. For SW-GCP, R3SAT, and
FAC, SATenstein-LS’s performance advantage was still sub-
stantial, but less dramatic. It is not overly surprising that there
was relatively little room for improvement on R3SAT: random
instances of this type have been used prominently over the
last 17 years for evaluating SLS solvers for SAT, both during
development and in competitions. Conversely, CBMC(SE) is a
new benchmark from a broad class of instances on which SLS
algorithms are generally considered weak performers com-
pared to state-of-the-art DPLL-based SAT solvers. We were
surprised to see the amount of improvement we could achieve
on QCP, a relatively widely-used benchmark, and HGEN, a
hard random instance distribution quite similar to R3SAT. In
both cases our results indicate that recent developments in SLS
solvers for SAT have not yielded significant improvements
over older solvers (ANOV and SAPS/RSAPS, respectively); we
thus attribute SATenstein-LS’s strong performance here to
the fact that SLS-solver development over the past seven years
has not taken these types of benchmarks into account, nor
yielded across-the-board improvements.

We also investigated SATenstein-LS’s performance ac-
cording to measures other than PAR. Median-of-median run-
time (the median across instances of the median across ten
runs on a given instance) offers a picture of performance that
disregards capped runs as long as most instances are solved
in most runs. Although SATenstein-LS was not configured



Distribution SATenstein-LS[D] GNOV AG20 AG2+ RANOV G2 VW ANOV AG2p SAPS RSAPS PAWS
[Pham and

Gretton,
2007]

[Li et al.,
2007b]

[Li et al.,
2007a]

[Pham and
Anbulagan,
2007]

[Li and
Huang,
2005]

[Prestwich,
2005]

[Hoos, 2002]
[Li et al.,
2007a]

[Hutter et al.,
2002]

[Hutter et al.,
2002]

[Thornton et
al., 2004]

QCP 0.13 422.33 1051 1080.29 76.22 2952.56 1025.9 28.3 1104.42 1256.2 1265.37 1144.2
0.01 0.03 0.03 0.03 0.1 361.21 0.25 0.01 0.02 0.03 0.04 0.02
100% 92.7% 80.5% 80.3% 98.7% 50.6% 82.2% 99.6% 79.4% 79.2% 78.4% 80.8%

SW-GCP 0.03 0.24 0.62 0.45 0.15 4103.27 159.67 0.06 0.45 3872.08 5646.39 4568.59
0.03 0.09 0.12 0.08 0.12 N/A 40.96 0.03 0.07 N/A N/A N/A
100% 100% 100% 100% 100% 30.5% 98.9% 100% 100% 33.2% 5% 22.1%

R3SAT 1.51 10.93 2.37 3.3 14.14 5.32 9.53 12.4 2.38 22.81 14.81 2.4
0.14 0.14 0.14 0.16 0.32 0.13 0.75 0.21 0.13 1.80 2.13 0.12

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
HGEN 0.03 52.87 139.33 138.84 156.96 110.02 177.9 147.53 107.4 48.31 38.51 73.27

0.02 0.73 0.57 0.61 0.95 0.61 3.23 0.76 0.49 3.00 2.44 0.96
100% 99.4% 98% 97.8% 97.7% 98.4% 97.5% 97.6% 98.4% 99.5% 99.7% 99.2%

FAC 12.22 5912.99 3607.4 1456.4 943.26 5944.6 3411.93 3258.66 1989.91 17.39 19.39 26.51
8.03 N/A N/A 237.50 155.77 N/A N/A N/A 315.48 11.60 12.88 12.62
100% 0% 30.2% 84.2% 92.1% 0% 31.7% 37.2% 72.5% 100% 100% 99.9%

CBME(SE) 5.59 2238.7 2170.67 2161.59 1231.01 2150.31 385.73 2081.94 2282.37 613.15 794.93 1717.79
0.02 0.75 0.67 0.77 0.66 0.68 0.27 5.81 3.18 0.04 0.03 19.99
100% 61.13% 61.13% 61.13% 79.73% 64.12% 92.69% 61.79% 61.13% 90.03% 85.38% 68.77%

Table 5: Performance summary of SATenstein-LS and the 11 challengers. Every algorithm was run 10 times on each instance with a
cutoff of 600 CPU seconds per run. Each cell 〈i, j〉 summarizes the test-set performance of algorithm j on distribution i as a/b/c, where a
(top) is the the penalised average runtime; b (middle) is the median of the median runtimes over all instances (not defined if fewer than half of
the median runs failed to terminate); c (bottom) is the percentage of instances solved (i.e., having median runtime < cutoff). The best-scoring
algorithm(s) in each row are indicated in bold, and additionally the best-scoring challenger(s) are indicated with an underline.

to optimise this performance measure, using it as the basis for
evaluation produced results essentially analogous to those for
PAR (with R3SAT being the only benchmark on which several
challengers scored slightly better). Finally, we measured the
percentage of instances on which the median runtime was
below the cutoff used for capping runs. According to this cri-
terion, our SATenstein-LS solvers were successful on 100%
of the instances in every one of our benchmark sets; on the
other hand, only three of the 11 challengers solved more than
40% of the instances in every benchmark set.

The relative performance of the challengers varied signif-
icantly across different distributions. For example, the three
dynamic local search algorithms (SAPS, RSAPS and PAWS) per-
formed substantially better than any of the other challengers on
the factoring problems (FAC); however, their relative perfor-
mance on small-world graph colouring problems (SW-GCP)
was weak. Similarly, GNOV (the winner of the random SAT
category of the 2007 SAT Competition) performed very badly
on our software verification (CBMC(SE)) and factoring (FAC)
benchmarks, but solved SW-GCP and HGEN instances quite
effectively. (Interestingly, on both types of random SAT in-
stances we considered, GNOV did not reach the performance of
some of the older SLS solvers, in particular, PAWS and RSAPS.)
This suggests—not too surprisingly—that different types of
SAT benchmarks are most efficiently solved using rather dif-
ferent solvers. The fact that our SATenstein-LS solvers
performed better than any of the challengers for every one of
our distributions clearly demonstrates that the design space
spanned by the features of a large set of high-performance al-
gorithms contains better solvers than those previously known,
and that automatic exploration of this vast combinatorial space
can effectively find such improved designs. Of course, solvers
developed for individual benchmarks could in principle be
combined using an instance-based algorithm selection tech-
nique (such as SATzilla), yielding even stronger performance.

The performance metrics we have discussed so far only de-
scribe aggregate performance over the entire test set. One
might wonder whether our SATenstein-LS solvers per-
formed poorly on many test instances, but compensated for this

weakness on other instances. Table 6 shows that this was typi-
cally not the case, comparing each SATenstein-LS solver’s
performance to each challenger on a per-instance basis. The
SATenstein-LS solvers outperformed the best challengers
on a large majority of the test instances on all benchmark sets
except for R3SAT. On that distribution, PAWS was the chal-
lenger that outperformed our SATenstein-LS solver most
frequently (62% of the time). Figure 1 shows that the perfor-
mance of these two algorithms was quite highly correlated, and
that, while instances that are rather easy for both algorithms
tend to be solved faster by PAWS, SATenstein-LS[R3SAT]
performs better on harder instances. We observed the same
qualitative trend for other challengers on R3SAT. This phe-
nomenon was even more pronounced for QCP and SW-GCP,
but does not appear to have occurred for CBMC(SE), HGEN
and FAC, where the correlation in solver performance was
also considerably weaker.

Our penalised average runtime measure is sensitive to the
choice of test cutoff time, which sets the penalty. In particular,
an algorithm could score well when the cutoff time is large,
but could achieve much weaker PAR scores for smaller cutoffs.
Reassuringly, we found that this problem did not arise for the
SATenstein-LS solvers considered in our study. Specifically,
the SATenstein-LS solvers outperformed their challengers
in terms of PAR on all of our distributions regardless of the cut-
off times used, and likewise the qualitative results from Table
5 were unaffected by cutoff time. Figure 2 gives an example of
the data we examined to draw these conclusions, considering
instance distribution FAC. We see that while the choice of
cutoff time affected the raw PAR scores, for no cutoff would a
challenger have outscored the SATenstein-LS solver. PAR
first increased and then decreased with cutoff, because increas-
ing the cutoff increases the penalty for unsolved instances (and
thus also PAR), but decreases the score for solved instances
(because the penalty for previously capped runs is replaced
by the true runtime). Once all instances in a given test set are
solved, PAR remains constant as cutoff increases.

To better understand the SATenstein-LS[D] solvers, we
compared them with the SATenstein-LS instantiations cor-



Distribution GNOV AG20 AG2+ RANOV G2 VW ANOV AG2p SAPS RSAPS PAWS

QCP 99 87 87 100 91 92 83 81 82 79 79

SW-GCP 100 98 97 100 100 100 63 93 100 100 100

R3SAT 55 55 64 96 44 100 72 55 99 99 38

HGEN 100 100 96 99 100 100 99 100 100 100 100

FAC 100 100 100 100 100 100 100 100 73 78 80

CBME(SE) 100 100 100 100 100 100 100 100 80 75 100

Table 6: Percentage of instances on which SATenstein-LS achieved better median runtime than each of the challengers. Medians were
taken over 10 runs on each instance with a cutoff time of 600 CPU seconds/run. When both SATenstein-LS and a challenger solved a
given instance with indistinguishable median runtimes, we counted that instance as 0.5 for SATenstein-LS and 0.5 for the challenger.

10-2 10-1 100 101 102 10310-2

10-1

100

101

102

103

SATenstein-LS[R3SAT] median runtime (CPU sec)

P
A

W
S

 m
ed

ia
n 

ru
nt

im
e 

(C
P

U
 s

ec
)

 

 

Figure 1: Scatter plot of median runtimes of
SATenstein-LS[R3SAT] vs PAWS on the test set for
R3SAT. Every algorithm was run 10 times on each instance with a
cutoff of 600 CPU seconds per run.

responding to each challenger.4 SATenstein-LS[QCP] uses
blocks 1, 3, and 5 and an adaptive parameter update mech-
anism similar to that in AG2+. In block 3, selectHeuris-
tic is based on R-Novelty+, and in block 1, diversifica-
tion flips the variable with minimum variable weight as in
VW1 [Prestwich, 2005]. SATenstein-LS[SW-GCP] uses
blocks 1 and 3, resembling Novelty++ as used within G2.
SATenstein-LS[R3SAT] uses blocks 4 and 5; it is clos-
est to RSAPS, but uses a different tie-breaking mechanism.
SATenstein-LS[HGEN] uses blocks 1, 3, and 5. In block
1 it is similar to G2 and in block 3 is closest to VW. In
block 5 it uses the same adaptive parameter update mech-
anism as ANOV. SATenstein-LS[FAC] uses blocks 4 and
5; its instantiation closely resembles that of SAPS, but dif-
fers in the way the score of a variable is computed. Finally,
SATenstein-LS[CBMC(SE)] uses blocks 1, 4, and 5, draw-
ing on elements of GNOV and RSAPS.

6 Conclusion
In this work we have advocated a new approach for construct-
ing heuristic algorithms that is based on (1) a framework that
can flexibly combine components drawn from existing high-
performance solvers, and (2) a generic algorithm configuration
tool for finding instantiations that perform well on given sets
of instances. We applied this approach to stochastic local
search algorithms for SAT and demonstrated empirically that
it was able to produce new SLS-based solvers that represent
considerable improvements over the previous state of the art in

4Due to space constraints, we describe our conclusions only at a
high level. More detailed information about the SATenstein-LS
configurations is given in [KhudaBukhsh, 2009].

10-1 100 101 102 1030

10

20

30

40

50

60

70

80

90

Cutoff time (CPU seconds)

P
A

R

Training cutoff Test cutoff

 

 

SATenstein-LS[FAC]
SAPS
RSAPS
PAWS

Figure 2: Penalised average runtime for our SATenstein-LS
solver and the top three challengers for FAC, as a function of cutoff,
based on 10 runs on each test-set instance.

solving several widely studied distributions of SAT instances.
Source code and documentation for our SATenstein-LS
framework are available online at http://www.cs.ubc.ca/
labs/beta/Projects/SATenstein.

Unlike the tragic figure of Dr. Frankenstein from Mary Shel-
ley’s novel, whose monstrous creature haunted him enough
to quench forever his ambitions to create a ‘perfect’ human,
we feel encouraged to unleash not only our new solvers, but
also the full power of our automated solver-building process
onto other classes of SAT benchmarks. Like Dr. Frankenstein
we find our creations somewhat monstrous, recognising that
our SATenstein solvers do not always embody the most ele-
gant designs. Thus, we are currently working towards more
detailed understanding of how our SATenstein solvers relate
to previously-known SAT algorithms. Other interesting lines
of future work include the extension of our solver framework
to capture combinations of components from the G2WSAT ar-
chitecture and dynamic local search algorithms, as well as
preprocessors (as used, for example, in Ranov); the combi-
nation of SATenstein solvers trained on various types of SAT
instances by means of an algorithm selection approach (see,
e.g., [Xu et al., 2008]); and the investigation of algorithm con-
figuration procedures other than ParamILS in the context of
our approach. Finally, encouraged by the results achieved on
SLS-algorithms for SAT, we believe that the general approach
behind SATenstein is equally applicable to non-SLS-based
solvers and to other combinatorial problems. To paraphrase
the words of Mary Shelley’s Victor Frankenstein, we hope that
ultimately many effective solvers will owe their being to this
line of work.

References
[Carchrae and Beck, 2005] T. Carchrae and J.C. Beck. Applying

machine learning to low knowledge control of optimization algo-



rithms. Computational Intelligence, 21(4):373–387, 2005.
[Chiarandini et al., 2008] M. Chiarandini, C. Fawcett, and H.H.

Hoos. A modular multiphase heuristic solver for post enroll-
ment course timetabling (extended abstract). In Proc. PATAT,
2008.

[Clarke et al., 2004] E. Clarke, D. Kroening, and F. Lerda. A tool
for checking ANSI-C programs. In Proc. TACAS, pages 168–176,
2004.

[Eén and Biere, 2005] N. Eén and A. Biere. Effective preprocessing
in SAT through variable and clause elimination. In Proc. SAT,
pages 61–75, 2005.

[Fukunaga, 2002] A.S. Fukunaga. Automated discovery of com-
posite SAT variable-selection heuristics. In Proc. AAAI, pages
641–648, 2002.

[Fukunaga, 2004] A.S. Fukunaga. Evolving local search heuristics
for SAT using genetic programming. In Proc. GECCO, pages
483–494, 2004.

[Gagliolo and Schmidhuber, 2006] M. Gagliolo and J. Schmidhuber.
Learning dynamic algorithm portfolios. Annals of Mathematics
and Artificial Intelligence, 47(3-4):295–328, 2006.

[Gaspero and Schaerf, 2007] L.D. Gaspero and A. Schaerf.
Easysyn++: A tool for automatic synthesis of stochastic local
search algorithms. In Proc. SLS, pages 177–181, 2007.

[Gent et al., 1999] I. P. Gent, H. H. Hoos, P. Prosser, and T. Walsh.
Morphing: Combining structure and randomness. In Proc. AAAI,
pages 654–660, 1999.

[Gomes and Selman, 1997] C. P. Gomes and B. Selman. Problem
structure in the presence of perturbations. In Proc. AAAI, pages
221–226, 1997.

[Gomes and Selman, 2001] C. P. Gomes and B. Selman. Algorithm
portfolios. Artificial Intelligence, 126(1-2):43–62, 2001.

[Gratch and Dejong, 1992] Jonathan Gratch and Gerald Dejong.
COMPOSER: A probabilistic solution to the utility problem in
speed-up learning. In Proc. AAAI, pages 235–240, 1992.

[Guerri and Milano, 2004] A. Guerri and M. Milano. Learning tech-
niques for automatic algorithm portfolio selection. In Proc. ECAI,
pages 475–479, 2004.

[Hirsch, 2002] E. A. Hirsch. Random generator hgen2 of satisfi-
able formulas in 3-CNF. http://logic.pdmi.ras.ru/
˜hirsch/benchmarks/hgen2-1.01.tar.gz, 2002.

[Hoos, 2002] H.H. Hoos. An adaptive noise mechanism for Walk-
SAT. In Proc. AAAI, pages 655–660, 2002.

[Hoos, 2008] Holger H. Hoos. Computer-aided design of high-
performance algorithms. Technical Report TR-2008-16, Uni-
versity of British Columbia, Department of Computer Science,
2008.

[Hutter et al., 2002] F. Hutter, D. A. D. Tompkins, and H. H. Hoos.
Scaling and probabilistic smoothing: Efficient dynamic local
search for SAT. In Proc. CP, pages 233–248, 2002.

[Hutter et al., 2007a] F. Hutter, D. Babić, H.H. Hoos, and A.J. Hu.
Boosting verification by automatic tuning of decision procedures.
In Proc. FMCAD, pages 27–34, 2007.

[Hutter et al., 2007b] F. Hutter, H. H. Hoos, and T. Stützle. Au-
tomatic algorithm configuration based on local search. In
Proc. AAAI, pages 1152–1157, 2007.

[Hutter et al., 2008] F. Hutter, H. H. Hoos, T. Stützle, and K. Leyton-
Brown. ParamILS version 2.2. http://www.cs.ubc.ca/
labs/beta/Projects/ParamILS, 2008.

[KhudaBukhsh, 2009] A.R. KhudaBukhsh. SATenstein: Auto-
matically building local search SAT solvers from components.
http://www.cs.ubc.ca/labs/beta/Projects/
SATenstein/ashique_masters_thesis.pdf, 2009.

[Li and Huang, 2005] C.M. Li and W. Huang. Diversification and
determinism in local search for satisfiability. In Proc. SAT, pages
158–172, 2005.

[Li et al., 2007a] C. M. Li, W. X. Wei, and H. Zhang. Combin-
ing adaptive noise and look-ahead in local search for SAT. In
Proc. SAT, pages 121–133, 2007.

[Li et al., 2007b] C.M. Li, W. Wei, and H. Zhang. Combining adap-
tive noise and promising decreasing variables in local search for
SAT. Solver description, SAT competition 2007, 2007.

[McAllester et al., 1997] D. McAllester, B. Selman, and H. Kautz.
Evidence for invariants in local search. In Proc. AAAI, pages
321–326, 1997.

[Minton, 1993] S. Minton. An analytic learning system for special-
izing heuristics. In Proc. IJCAI, pages 922–929, 1993.

[Monette et al., 2009] J. Monette, Y. Deville, and P.V. Hentenryck.
Aeon: Synthesizing scheduling algorithms from high-level models.
In Proc. INFORMS (to appear), 2009.

[Oltean, 2005] M. Oltean. Evolving evolutionary algorithms us-
ing linear genetic programming. Evolutionary Computation,
13(3):387–410, 2005.

[Pham and Anbulagan, 2007] D.N. Pham and Anbulagan. Resolu-
tion enhanced SLS solver: R+AdaptNovelty+. Solver description,
SAT competition 2007, 2007.

[Pham and Gretton, 2007] D. N. Pham and C. Gretton. gNovelty+.
Solver description, SAT competition 2007, 2007.

[Prestwich, 2005] S. Prestwich. Random walk with continuously
smoothed variable weights. In Proc. SAT, pages 203–215, 2005.

[SAT Competition, 2009] SAT Competition. http://www.
satcompetition.org, 2009.

[Selman et al., 1994] B. Selman, H. Kautz, , and B. Cohen. Noise
strategies for improving local search. In Proc. AAAI, pages 337–
343, 1994.

[Simon, 2002] L. Simon. SAT competition random 3CNF
generator. http://www.satcompetition.org/2003/
TOOLBOX/genAlea.c, 2002.

[Thornton et al., 2004] J. Thornton, D. N. Pham, S. Bain, and V. Fer-
reira. Additive versus multiplicative clause weighting for SAT. In
Proc. AAAI, pages 191–196, 2004.

[Tompkins and Hoos, 2004] D.A.D. Tompkins and H.H. Hoos.
UBCSAT: An implementation and experimentation environment
for SLS algorithms for SAT & MAX-SAT. In Proc. SAT, pages
37–46, 2004.

[Uchida and Watanabe, 1999] T. Uchida and O. Watanabe. Hard
SAT instance generation based on the factorization prob-
lem. http://www.is.titech.ac.jp/˜watanabe/
gensat/a2/GenAll.tar.gz, 1999.

[Westfold and Smith, 2001] S.J. Westfold and D.R. Smith. Synthe-
sis of efficient constraint-satisfaction programs. The Knowledge
Engineering Review, 16(1), 2001.

[Xu et al., 2008] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown.
SATzilla: portfolio-based algorithm selection for SAT. Journal of
Artificial Intelligence Research, 32:565–606, 2008.

[Xu et al., 2009] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown.
SATzilla2009: An automatic algorithm portfolio for SAT. Solver
description, 2009 SAT Competition, 2009.


