
On the Complexity of Space Bounded Interactive Proofs

Anne Condon ∗

Computer Sciences Department

University of Wisconsin-Madison

1210 West Dayton Street

Madison, WI 53706

condon@cs wisc.edu

Richard J. Lipton †

Computer Science Department

Princeton University

Princeton, NJ 08540

rjl@cs.princeton.edu

November 29, 2005

Abstract

We prove two results on interactive proof systems with 2-way probabilistic finite state verifiers.

The first is a lower bound on the power of such proof systems, if they are not required to halt

with high probability on rejected inputs: we show that they can accept any recursively enumerable

language. The second is an upper bound on the power of interactive proof systems that halt with high

probability on all inputs: any language they accept is in ATIME(22
O(n)

). Our results generalize to

other space bounds. The proof techniques we develop have other interesting applications. The proof

method for the lower bound also shows that the emptiness problem for 1-way probabilistic finite

state machines is undecidable. In proving the upper bound, we obtain some results of independent

interest on the rate of convergence of time-varying Markov chains and of non-Markov chains, called

feedback chains, to their halting states.

1 Introduction

We study the class of interactive proof systems (IPS) introduced by Goldwasser, Micali and Rackoff [13].

Roughly, a IPS for a language L is a 2-party protocol between two computational processes, a “prover”

P and a “verifier” V . The prover must convince the verifier, which has limited resources, that inputs

in L are actually in L. We study the case where the verifier is space bounded, in particular when the

verifier is a 2-way probabilistic finite state machine (2pfa), with the ability to flip “private” coins. Prior

to this work, no upper bounds on the complexity of this model were known.

Two different definitions of language acceptance for space bounded IPS’s have been proposed. In the

weaker definition (Condon and Ladner [5]), a prover-verifier pair (P, V) is an IPS for a language L with

error probability ǫ < 1/2 if

1. for all x ∈ L, (P, V) accepts x with probability at least 1 − ǫ and

∗Work supported by NSF grant numbers DCR-8402565 and CCR-9257241 and by a matching grant from AT&T Bell

Labs.
†Work supported by DARPA and ONR contracts N00014-85-C-0456 and N00014-85-K-0465, and by NSF Cooperative

Agreement DCR-8420948

1

2. for all x 6∈ L and all provers P ∗, (P ∗, V) accepts x with probability at most ǫ.

Note that we do not insist that these systems halt with high probability on inputs not in L. Following

the notation of Dwork and Stockmeyer [8], the class of languages accepted by IPS’s satisfying these

conditions is denoted by IPw(2pfa) when the verifier is a 2pfa. We are able to show that such systems

are very powerful.

Theorem (3.1) Any recursively enumerable language is in IPw(2pfa).

The proof of this theorem requires us to extend a result of Frievalds [9]. He shows that the emptiness

problem for 2-way probabilistic finite state machines is undecidable. We can use our method to prove:

Theorem (3.2) The emptiness problem for 1-way probabilistic finite state machines is undecidable.

The emptiness problem appears to have first been raised in the late 1960’s. See for example, Paz [17].

The key insight into this generalization is that it is possible to “simulate” the 2-way input tape by a

1-way input tape. The 1-way tape repeats over and over the contents of the 2-way tape. The critical

point is that the 1-way tape can “cheat”, i.e. it need not repeat exactly the same string each time. Thus,

the 1-way machine must be a kind of verifier and check that no cheating occurs. In this way ideas from

IPS’s play an essential role in the proof of Theorem 3.2. Since we often measure the importance of a

new area by how well it solves existing problems, Theorem 3.2 is evidence for the importance of space

bounded IPS’s.

A stronger definition of language acceptance for IPS’s (Dwork and Stockmeyer [8]) is obtained by

replacing the condition 2 above by the following condition.

2′. For all x 6∈ L and all provers P ∗, (P ∗, V) rejects x with probability at least 1 − ǫ.

We denote this class by IP(2pfa). The best known lower bound, shown by Dwork and Stockmeyer

[8], is that IP(2pfa) contains any language in DTIME(2O(n)). Since the stronger definition requires that

the IPS halt with high probability on all inputs, it is not hard to show that all languages in IP(2pfa) are

recursive. Our next result provides the first non-trivial upper bound for this class.

Theorem (6.2) IP(2pfa) ⊆ ATIME(22O(n)
).

In proving Theorem 6.2, we obtain some results of independent interest on the rate of convergence

of discrete time-varying Markov chains to their halting (absorbing) states. We consider the family M of

all n-state time-varying Markov chains, all with the same initial state, such that the transition matrices

of every chain in the family are from some fixed finite set, say {A, B}. We assume that all entries of A

and B are of the form p/q where p and q are integers, p ≤ q ≤ 2n.

Theorem (4.1) Let M be a family of n-state time-varying Markov chains. Suppose that for all chains

M in M, n is a halting state which is eventually reached from the initial state with probability p. Then

the probability that M halts in 22O(n)
steps is at least p− o(1). Moreover, this bound is the best possible.

For comparison sake, we mention a well known result for stationary n-state Markov chains under

similar conditions: if a halting state is reachable with probability p, then the expected time to reach

that state with probability p − o(1) is 2O(n).

Theorem 4.1 is related to some previous work on weak ergodicity of families of time-varying Markov

chains. Seneta [19] devotes two chapters to the following question: Given an infinite sequence of n × n

stochastic matrices, M1, . . . , Mj, . . ., do the rows of the matrix M (j) =
∏j

i=1 Mi tend to equality as j →

∞? If so, the sequence is weakly-ergodic. In the case that all matrices in the sequence M1, . . . , Mj, . . .

2

are in the set {A, B} as above, clearly convergence to a halting state is a special case of weak ergodicity.

Motivated by problems from coding theory on finite state channels, Blackwell et al. [3], Paz [16] and

Wolfowitz [20] studied what conditions on A, B imply weak ergodicity of all infinite sequences over

{A, B}. Also, building on the work we present in this paper, bounds on the rate of convergence to

ergodicity for various sets {A, B} were obtained in [6].

The rest of the paper is organized as follows. In Section 2, the interactive proof system model is

defined precisely. Section 3 contains the lower bound result for IPw(2pfa); and the undecidability result

for 1-way probabilistic finite state automata. Our results on time-varying Markov chains are presented in

Section 4. In order to obtain our results on space bounded IPS’s, we extend our results on time-varying

Markov chains to non-Markov chains, which we call feedback chains in Section 5. These results are used

to obtain our upper bound on IP(2pfa) in Section 6. Conclusions and open problems are presented in

Section 7.

2 Definitions

The following definition of an interactive proof system is similar to that used by Dwork and Stockmeyer

[8]. An interactive proof system consists of a prover P and a verifier V . The verifier is a probabilistic

Turing machine with a 2-way, read-only input tape, a read-write work tape and a source of random bits (a

coin). The states of the verifier are partitioned into reading and communication states. In addition, the

Turing machine is augmented with a special communication cell that allows the verifier to communicate

with the prover.

A transition function describes the one-step transitions of the verifier. Whenever the verifier is in a

reading state, the transition function of the verifier determines the next state of the verifier, based on

the symbol under the tape heads, the current state and the outcome of an unbiased coin toss. Whenever

the verifier is in a communication state, the next configuration is determined as follows. Associated

with each communication state is a symbol; without loss of generality we assume that the set of such

symbols is {0, 1}. When in communication state c, the verifier writes the symbol associated with c in

the communication cell and in response, the prover writes a symbol in the cell. Based on the current

state and the symbol written by the prover, the verifier’s transition function defines the next state of

the verifier.

The prover P is specified by a prover transition function. This function determines what communi-

cation symbol is written by the prover in response to a symbol of the verifier, based on the input and

the sequence of all past communication symbols written by the verifier. Without loss of generality we

assume that all symbols written by the prover in the communication cell are from the set ∆ and that

the input alphabet is Σ. Thus the prover’s transition function is a mapping from Σ∗ × {0, 1}∗ to ∆.

(Unlike the definition of Dwork and Stockmeyer, the prover’s transition function is deterministic, not

probabilistic. This does not weaken the model; see Condon [4]).

An interactive proof system is one-way if the verifier writes the same symbol in the communication

cell for all communication states. Thus, in a one-way IPS the kth symbol written in the communication

cell by the prover is just a function of k and the input.

Fix an input x. The probability that (P, V) accepts (rejects) x is the limit as k → ∞ of the probability,

(taken over all coin tosses of the verifier), that (P, V) reaches the accepting (rejecting) state on x in k

steps.

3

We consider two possible definitions of language acceptance for IPS’s. We say that the prover-verifier

pair (P, V) is a weak interactive proof for language L with error probability ǫ < 1/2 if

1. for all x ∈ L, (P, V) accepts x with probability at least 1 − ǫ and

2. for all x 6∈ L and all provers P ∗, (P ∗, V) accepts x with probability at most ǫ.

Note that we do not insist that these systems halt with high probability on inputs not in L. A

stronger definition of language acceptance for IPS’s (Dwork and Stockmeyer [8]) is obtained by replacing

the condition 2 above by the following condition.

2′. For all x 6∈ L and all provers P ∗, (P ∗, V) rejects x with probability at least 1 − ǫ.

If for some language L, the prover-verifier pair (P, V) satisfies properties 1 and 2′, we say that

(P, V) is an interactive proof system for L with error probability ǫ < 1/2. An interactive proof system

(P, V) is s(n) space bounded if for all provers P ∗, the number of work tape cells read or written by

the verifier is at most s(n), on any input of length n. If the number of work tape cells used by the

verifier is O(1), the verifier is a probabilistic 2-way finite state automaton, or 2pfa. We denote the class

of languages accepted by interactive proof systems that are O(s(n)) space bounded by IP(space(s(n)).

We denote the class of languages accepted by weak interactive proof systems that are O(s(n)) space

bounded by IPw(space(s(n)). To be consistent with the notation of Dwork and Stockmeyer, we denote

IP(space(O(1)) and IPw(space(O(1)) by IP(2pfa) and IPw(2pfa), respectively.

In the following sections, we use the expression “V requests a symbol” from a prover to mean

that V enters a communication state and writes a symbol in the communication cell. In the case of

one-way proofs, the same symbol is written in the communication cell every time the verifier enters a

communication state. Similarly we use the expression “V receives a symbol” from a prover to mean that

the prover writes the symbol in the communication cell. We say “V receives a string” from a prover if

V receives the symbols of the string, one at a time, from the prover.

3 Lower Bound Results

In this section we show that any recursively enumerable language can be accepted by some IPS with

only a 2pfa as a verifier. We first need a technical lemma about conditional probability.

Lemma 3.1 Let A,B be independent events with 0 < kPr[B] = Pr[A] < 1, where k ≥ 1. Then,

Pr[A|AB̄ ∨ ĀB] ≥ 1 −
1

k + 1
.

Proof: Let α = Pr[A] and β = Pr[B]. Then, 0 < kβ = α < 1. Now, since A and B are independent

events,

Pr[A|AB̄ ∨ ĀB] =
Pr[AB̄]

Pr[AB̄] ∨ Pr[ĀB]

=
α(1 − β)

α(1 − β) + (1 − α)β

=
1

1 + δ

4

where δ = (1−α)β
(1−β)α . Since α = kβ and k ≥ 1 it follows that

1 + δ = 1 +
(1 − kβ)

(1 − β)k
≤ 1 +

1

k

1

1 + δ
≥

1

1 + 1/k
≥ 1 −

1

k + 1
.

Therefore, Pr[A|AB̄ ∨ ĀB] ≥ 1 − 1
k+1 as required. 2

We will later describe how to construct an IPS with finite state verifier for a recursively enumerable

language. In that IPS, on input x, the prover will repeatedly send to the verifier a description of the

computation of a counter machine on input x. We now consider a kind of game that our finite state

verifiers will use to check the prover. This game is based on a method of Frievalds [9]. We assume that

the verifier receives in the communication cell the sequence of symbols in the string aibj , from left to

right. Fix a large number p. Using a fair coin, the verifier performs five independent computations:

1. For each letter a, the verifier flips two coins.

2. For each letter b, the verifier flips two coins.

3. For each letter a and b, the verifier flips one coin.

4. For each letter a and b, the verifier flips one coin.

5. The verifier checks that i ≡ j mod p.

The outcome of the game is determined as follows: if step (5) discovers that i and j are not equal modulo

p, then the game outcome is not-equal. Therefore, assume that this is not the case. Let A be true if

either step (1) or step (2) gets only heads; let B be true if either step (3) or step (4) gets only heads.

Then say that the outcome of the game is a tie if both A and B are false or both are true. Say that the

outcome is double wins if A is true and B is false; say that the outcome is sum wins if B is true and A

is false. Say that the outcome is a win provided either double or sum wins.

Lemma 3.2 For any fixed p, the outcome of a game can be computed by a probabilistic finite state

machine.

Proof: Clearly, each of the five subcomputations can be done with a finite number of states. This

follows since for each computation, only one bit about the sequence of coin flips needs to be stored,

namely whether all the coins are heads. Moreover, the decision on the game’s outcome is also finite

state, so the claim follows. 2

It is convenient to have one more definition concerning games. Say that a game is fair if the string

is aibj where i = j; say it is unfair otherwise. The next lemma states that in any fair game, double or

sum are equally likely to win; in any unfair game, double is much more likely to win than sum.

Lemma 3.3 Consider the action of the game on the string aibj with number p and i ≡ j mod p.

1. If i = j, then Pr[double wins|win] = Pr[sum wins|win].

2. If i 6= j, then Pr[double wins|win] ≥ 1 − 1
2p−1+1 .

3. If i 6= j, then Pr[sum wins|win] ≤ 1
2p−1+1 .

5

Proof: First, suppose that i = j. Then each of the computations flips exactly the same number of

independent coins, i.e. 2i = 2j = i + j. Thus, by symmetry it follows that (1) is true. Now assume that

i < j. Now let A denote the event that double wins; also let B denote the event that sum wins. Then,

Pr[A] ≥ Pr[2i heads in a row] = 1/22i.

Also,

Pr[B] ≤ 2Pr[i + j heads in a row] = 1/2i+j−1.

Thus, Pr[A] ≥ kPr[B] where k is 2j−i−1. Since i is congruent to j modulo p, j − i ≥ p. So k ≥ 2p−1.

Lemma 3.1 then shows that Pr[A|AB̄∨ĀB] is at least 1− 1
2p−1+1 . Now assume that i > j. The argument

follows in exactly the same manner replacing i by j. This proves (2). Finally, (3) follows directly from

(2) since either double or sum must win each game that has a winner. 2

We are now ready to show that if L is a recursively enumerable language, then L is in IPw(2pfa). It

is well known that there is a counter machine with two counters that accepts exactly L (see Hopcroft

and Ullman [1]). Our counter machine model is standard; a counter machine operates as follows. At

each step the machine reads the contents of the read-only input tape and tests whether or not each of

its two counters is zero or not. Then based on its current control state it may move the input head

left or right; increment a counter; decrement a counter provided it is nonzero; and finally enter its next

state. We encode the instantaneous descriptions (ID) of such a machine as follows: #uckdl# where u

is a symbol that encodes the control state, k is the value of the first counter and l is the value of the

second counter.

Theorem 3.1 For any recursively enumerable language L, L is in IPw(2pfa).

Proof: Fix a counter machine that accepts L. We will show that there is an IPS (P, V) that accepts

exactly language L. In fact, the IPS is one-way. The idea is that on input x, V repeatedly receives from

P the sequence of ID’s that correspond to a computation of the counter machine; and V checks the ID’s

for correctness.

Let the computation be #u1c
k1dl1#, . . . , #utc

ktdlt# and denote it by C. Without loss of generality we

assume that t is even. The prover P is defined so that V repeatedly receives a copy of this computation.

V checks each computation C as follows. First, V checks that it is “locally” correct. This includes: (i)

checking that the initial and final states are correct; (ii) checking that the correct state transitions are

taken. All of these checks can be done in a straightforward manner with a deterministic finite state

control. If any of these fail, then V rejects.

Second, V checks that the computation C is “globally” correct. This means that each of the two

counters is modeled correctly. Thus, it must be the case that for each i = 1, . . . , t − 1,

ki+1 = ki + ri (1)

li+1 = li + si (2)

where ri (resp. si) is the action performed on the first (resp. second) counter, i.e. ri (resp. si) is −1, 0, 1

provided the first (resp. second) counter is decremented, left alone, or incremented at the i step of the

computation. The probabilistic nature of the verifier V must be used to check these conditions.

Fix a large number p and another large constant q. It is convenient to select their exact values later

on; they determine the error probability ǫ of the IPS. V has two “counters” which we call D and S:

each is initially 0 and can take values from 0 to q. V performs four computations as it receives the

6

computation C from the prover. We denote these by Ai and Bi where i is 0 or 1. We describe A0. This

computation first performs a finite state transduction on the computation C mapping it to

ak2+r2bk3 , ak4+r4bk5 , . . . , ak2m−2+r2m−2bk2m−1

where m = t/2. Since ri is easy to compute given the ID’s, this transduction is computable with only a

finite state control. Now V considers each of the pairs ak2i+r2ibk2i+1 as a game. It plays these games in

the order as they appear. If some game’s outcome is not-equal, then it immediately rejects. Otherwise,

it records the following information: whether or not all the games were won by double or whether or not

all were won by sum. Again, this can be done with its finite state control. Essentially, A0 is checking

(1) for even i’s. In the same way A1 checks (1) for odd i’s, B0 checks (2) for even i’s, and B1 checks (2)

for odd i’s.

V updates its two counters D and S as follows. If double (resp. sum) wins all the games played by

A0, A1, B0, B1, then increase D (resp. S) by 1. V then considers the values of the counters D and S.

1. If D and S are both less than q, then it gets another computation C from the prover and repeats

the four computations A0, A1, B0, B1 as before.

2. If D equals q, then accept if S 6= 0, else reject.

3. If S equals q, then accept.

It remains to show that this protocol is correct. There are two cases. First, suppose that the input x is

in the language L. Then there is an accepting computation of the counter machine, and V repeatedly

receives this computation from the prover P . Since the computation is correct, every game played by

the A0, A1, B0, B1 is fair. Thus, the probability that all are won by double is exactly the same as the

probability that all are won by sum. Now the only way that V can reject is for D to equal q while S is

still 0. This happens with probability 2−q. Thus, if 2−q < ǫ, in this case V accepts with probability at

least 1 − ǫ.

Second, assume that x is not in L. Then, there is no accepting computation of the counter machine

on x. If V ever receives a computation C that violates any condition except (1) and (2), V immediately

rejects. Thus, consider the case that in a computation V receives, only (1) or (2) is violated. We can also

assume that no game played ever ends in the outcome not-equal. Otherwise, V immediately rejects. The

key insight is that for each computation C, at least one game played by A0, A1, B0, B1 must be unfair.

Therefore, if either double or sum wins all the games played by A0, A1, B0, B1 on C, the probability

that double wins all these games is always much higher than the probability that sum wins all these

games. In fact, from Lemma 3.3, the probability that doubles wins all the games, given that either

sum or doubles wins all the games, is at least 1 − 1/(2p−1 + 1). Now, consider the probability that V

rejects, that is, that D equals q while S is still equal to 0. The probability that this occurs is at least

(1 − 1/(2p−1 + 1))q. Choose p so that this quantity is at least 1 − ǫ (recall that q is already fixed, so p

may depend on q). Then, the probability that V rejects when x 6∈ L is at least 1 − ǫ. This completes

the proof of the theorem. 2

The emptiness problem for 1-way probabilistic finite state machines (1pfa’s) is the problem of deter-

mining whether or not there is some input that the machine accepts with probability at least 1− ǫ. Our

model of 1pfa is that transition probabilities are rational and the input head never moves left.

Theorem 3.2 The emptiness problem for 1-way probabilistic finite state machines is undecidable.

7

Proof: We describe a computable reduction from the halting problem for counter machines on empty

input to the emptiness problem for 1pfa’s. Since the halting problem on empty input is undecidable (see

[1]), this is sufficient to prove the theorem.

Let M be a counter machine. From M , we construct a 1pfa in essentially the same way that the

verifier is constructed in the proof of Theorem 3.1. There are the following differences in the computation

of the verifier and the 1pfa. The first difference is that the 1pfa does not have a communication cell.

Instead, whenever the 1pfa enters a communication state, the next symbol of the input is read. This

input symbol determines the transition of the 1pfa in the same way that the symbol in the communication

cell determines the transition of the verifier. Thus informally, the role of the prover is now played by the

1-way input tape. Another difference is that whereas the verifier reads the input (in order to check that

the correct state transitions are taken by C), the 1pfa does not do this; instead, the 1pfa proceeds as

the verifier would on an empty input tape. Finally, if the 1pfa reaches the end of its input tape before

a halting state is reached, the 1pfa halts in a rejecting state. By this construction, the probability that

the 1pfa accepts an input is equal to the probability that the verifier accepts on empty input, when the

string that the verifier receives from the prover equals the input of the 1pfa.

Suppose that M accepts on empty input. Then we claim that there is some input on which the 1pfa

accepts with probability at least 1 − ǫ. Namely, this is the input which is the concatenation of many

copies of the accepting computation for M ; the number of copies is chosen to be large enough that the

1pfa accepts with probability at least 1− ǫ after processing these copies. However, if M does not accept

on empty input, then on all inputs, the 1pfa accepts with probability less than ǫ. 2

4 Time-varying Markov Chains

In this section, we derive new bounds on the halting properties of time varying Markov chains and

feedback chains. In Section 6, we discuss the relationship between these chains and IPS’s. A time-

varying Markov chain (see Seneta [19]) is a sequence of random variables X1, X2, . . . , Xk, . . . over state

space {1, . . . , n} with the following property. For all integers i, j and k there is a real number pijk ∈ [0, 1]

such that pijk is the probability that the kth random variable, Xk, is j, given that the (k − 1)st random

variable is i. That is,

Prob[Xk = j|X1 = a1, . . . , Xk−2 = ak−2, Xk−1 = i] = pijk.

For all k > 0, let Pk be the matrix [pijk], 1 ≤ i, j ≤ n. The matrices Pk and the value of X1 completely

determine the chain. For any k, if Prob[Xk = j] = p, we say that the chain is in state j with probability

p at time step k.

In this paper, we consider time-varying Markov chains where the matrices Pk come from a finite set

of stochastic matrices. We assume that this set is of size two, say {A, B}, but our results generalize

to any finite set. Furthermore, we assume that A and B have the following two properties. First, all

of the entries of A and B are rational numbers of the form p/q where p and q are integers such that

p ≤ q ≤ 2n. Second, the nth row of both A and B has 0’s everywhere, except at the (n, n)th position,

which is 1. We let M denote the family of n-state time-varying Markov chains with initial state 1. State

n is an absorbing, or halting, state of M, that is, whenever a chain enters the halting state n it never

leaves that state. Let {A, B}ω denote the set of infinite strings over the alphabet {A, B}. Then there

is a one-to-one correspondence between the chains in M and the strings α = α1α2 . . . αk . . . in {A, B}ω.

Mα is the chain corresponding to α if and only if Pk = αk.

8

We next define what we mean by the halting probability of a family of time-varying Markov chains.

Throughout, we denote the jth entry of an n-vector x̄ by (x̄)j or x̄j . Let α(k) denote the matrix product
∏k

i=1 αi. Then α
(k)
ij is the probability that the value of the kth random variable in the chain Mα is

j given that the chain is initially in state i. We say n is reachable in k steps from i on sequence α if

α
(k)
in > 0. Similarly, we say that n is reachable from i on sequence α if for some k, n is reachable in k

steps from i. Since n is a halting state, for any α, the sequence {α
(k)
in }, k = 1, 2, . . . , is non-decreasing.

Also every element of the sequence is bounded above by 1. Hence lim
k→∞

α
(k)
in exists. We call this limit the

probability that Mα halts, that is, reaches n, from i. When i = 1 we call this the halting probability of

Mα and denote it by pα. We call inf
α

pα the halting probability of M.

The goal of this section is to show in Theorem 4.1 that if the halting probability of M is at least

p then for any α, the probability that Mα halts in k22O(n)
steps is at least p − 1/2k. We first give an

overview of the proof of Theorem 4.1. Consider any string α as composed of substrings of length 2n and

let pα,i be the probability that Mα halts in i2n steps. An important part of the proof is to derive a lower

bound on the difference pα,i+1 − pα,i, which is the probability that Mα halts in (i + 1)2n steps but not

in i2n steps. This lower bound is obtained in two steps. Let [i] denote the set {1, . . . , i}. Let S be the

set of states in [n − 1] that are reachable from 1 in i2n steps of α and from which the halting state n is

reachable in a further 2n steps of α. The first step in obtaining a lower bound on pα,i+1−pα,i is to show

that if the chain Mα is in some state of S at step i2n with probability at least q, then the probability

that the halting state is reached in a further 2n steps is ≥ q/(2n)2
n
. This is proved in Lemma 4.1. The

second step in obtaining the lower bound is to show that with probability at least p − pα,i, Mα is in a

state of S at step i2n. This is proved in Lemma 4.3. Also in Lemma 4.3, the results of these two steps

are combined to show that pα,i+1 − pα,i ≥ (p − pα,i)/(2n)2
n
. Finally, this result is used in Lemma 4.4

to get an upper bound on the rate of convergence of pα,i to p and to complete the proof.

Lemma 4.1 Let α ∈ {A, B}ω. Suppose that with probability at least q, Mα reaches a state of set

S ⊆ [n − 1] at time t and that the halting state n is reachable from every j ∈ S in k steps. Then the

probability that Mα halts between steps t + 1 and t + k is at least q/(2n)k.

Proof: Let α′ be the same as the sequence α with the first t symbols removed. By definition, (α′)
(k)
jn

is the probability of reaching n from j in k steps on sequence α′. Since the entries of the αi are rational

numbers of the form p/q where p ≤ q ≤ 2n it follows that every non-zero entry of (α′)(k) is at least

1/(2n)k. This can be proved easily by induction on k. Hence if j ∈ S, (α′)
(k)
jn ≥ 1/(2n)k.

The probability of halting between steps t + 1 and t + k is at least the probability of reaching a state

j of S in exactly t steps of Mα, times the probability of reaching state n from j in a further k steps.

The first of these probabilities is at least q, by the statement of the lemma, and the second is at least

1/(2n)k, from the last paragraph. Thus, the probability that Mα halts between steps t + 1 and t + k is

at least q/(2n)k. 2

We define a set S ⊆ [n − 1] to be k-safe for any integer k, if for all sequences α ∈ {A, B}ω, there

exists i ∈ S such that n is reachable from i on α in k steps. Similarly, a set S ⊆ [n − 1] is safe if for all

α there exists i ∈ S such that n is reachable from i on α. In Lemma 4.2 we prove that any safe set is

2n-safe.

Lemma 4.2 Let S ⊆ [n − 1]. If S is safe then S is 2n-safe.

Proof: Suppose S is not 2n-safe, so that n is not reachable from any state of S in 2n steps on some

sequence α. Let Si be the set of states reachable from S in i steps of Mα. Since each Si is a subset of

[n], by the pigeon hole principle Sj = Sk for some j, k, 1 ≤ j < k ≤ 2n. If α′ = α1 . . . αj(αj+1 . . . αk)∗,

9

then the halting state is not reachable from any state of S on α′. This contradicts the fact that S is

safe. 2

Consider each string α ∈ {A, B}ω as composed of substrings of length 2n. Let pα,i be the probability

that Mα halts, that is, reaches state n from state 1, in i2n steps. Thus pα,i = α(i2n)
1n. Recall that pα

denotes the halting probability of Mα . Therefore, pα = lim
i→∞

pα,i. Recall that p = inf
α

pα is the halting

probability of M.

Lemma 4.3 Let p be the halting probability of M and for each α let pα,i be the probability that Mα

halts at step i2n. Then for any α and any i ≥ 0,

pα,i+1 − pα,i ≥ (p − pα,i)/(2n)2
n
.

Proof: If p − pα,i ≤ 0 the inequality is trivially true so we restrict our attention to the case where

p − pα,i > 0.

Let α′ be the string αi2n+1, αi2n+2, . . .; that is, the string α with the first i2n symbols removed. Let

S be the set of states that are reachable from state 1 in i2n steps of α and which reach the halting state

n in a further 2n steps. Thus,

S = {j ∈ [n − 1] | α(i2n)
1j > 0 and (α′)(2

n)
jn > 0}.

Also let S̄ be the set of states that are reachable from state 1 in i2n steps of α, but from which the

halting state n cannot be reached in a further 2n steps. Thus,

S̄ = {j ∈ [n − 1] | α(i2n)
1j > 0 and (α′)(2

n)
jn = 0}.

We claim that S̄ is not 2n-safe. This is because on sequence α′, no state in S̄ reaches the halting

state in 2n steps, by definition of S̄. Then from Lemma 4.2, S̄ is not safe. Thus there is some sequence

α′′ ∈ {A, B}ω such that n is not reachable from any state of S̄ on α′′.

We use the fact that S̄ is not safe to argue that the probability that Mα is in a state of S̄ after

exactly i2n steps is less than 1 − p. Otherwise, with probability at least 1 − p, Mα would never halt on

the sequence obtained by concatenating the first i2n symbols of α with α′′. This would contradict the

fact that p is the halting probability of M.

The probability that Mα is in a state of S after exactly i2n steps is exactly 1− (the probability that

Mα has already halted) − (the probability that Mα is in a state of S̄). Hence, the probability that Mα

is in a state of S after exactly i2n steps is at least 1 − pα,i − (1 − p) = p − pα,i.

From Lemma 4.1 it follows that the probability that Mα halts between steps i2n + 1 and (i + 1)2n,

that is, pα,i+1 − pα,i, is at least (p − pα,i)/(2n)2
n
, completing the proof of the lemma. 2

Lemma 4.4 Let the halting probability of M be p and for every α let the probability that Mα halts at

step i2n be pα,i. Then p − pα,i ≤ (1 − 1/µ)i, where µ = (2n)2
n
.

Also for any integer k > 0, the probability that Mα halts within k2nµ steps of Mα is at least p− 1/2k

for all α.

Proof: We prove the first part by induction on i. The basis, when i = 0, is trivial since then

10

p − pα,i = p ≤ 1 = (1 − 1/µ)i. Suppose that for some i ≥ 0, p − pα,i ≤ (1 − 1/µ)i. Then

p − pα,i+1 = (p − pα,i) − (pα,i+1 − pα,i)

≤ (p − pα,i) − (p − pα,i)/µ from Lemma 4.3

= (p − pα,i)(1 − 1/µ)

≤ (1 − 1/µ)i+1 (from the induction hypothesis).

This completes the first part of the proof. From this, the probability that Mα halts within i2n steps is

pα,i ≥ p − (1 − 1/µ)i. If i = kµ for some k then (1 − 1/µ)i < 2−k. Hence the probability that Mα halts

within k2nµ steps is at least p − 1/2k, as required. 2

The bound in Lemma 4.4 is fairly tight, as the next lemma shows.

Lemma 4.5 For any n, there is an integer m = O(n) and a family M of m-state Markov chains such

that the halting probability M is 1. Furthermore, for some chain in M, the expected time to reach the

halting state n is 22Ω(n)
.

The proof of this lemma is postponed until Section 6 because it is best described by constructing an

interactive proof that runs in expected time 22Ω(n)
.

The following theorem combines Lemmas 4.4 and 4.5 to obtain our main result on the rate of halting

of time-varying Markov chains.

Theorem 4.1 Suppose M is a family of n-state time-varying Markov chains with halting probability p.

Then for any chain in M, the probability of halting in 22O(n)
steps is at least p − o(1). Moreover, this

bound is the best possible.

5 Feedback Chains

In order to obtain our upper bounds on interactive proof systems, we need to generalize the definitions

and results of Section 4 to non-Markov chains which we call feedback chains. The reason for this is that

in an interactive proof, when the verifier communicates with the prover, it gives the prover information

about its current state, and the prover’s response to the verifier can depend on all of the information it

receives from the verifier. To model this, we associate a feedback symbol with each state of a feedback

chain; more than one state may be associated with the same feedback symbol. The value of the kth

random variable of a feedback chain may depend not only on k and the value of the (k − 1)st random

variable, but also on the feedback symbols of the values of random variables 1, . . . , k − 1. Without loss

of generality we assume that the set of feedback symbols is {0, 1}; the results extend easily to larger sets

of feedback symbols.

Formally, let S be a set of states {1, . . . , n} and let f be a function from S to {0, 1}, called the

feedback function. Then a feedback chain is a sequence of random variables X1, X2, . . . , Xk, . . . over

state space {1, . . . , n} such that for all integers i, j and states a1, . . . ak−1 there is a real number

p(i, j, f(a1), . . . , f(ak−1)) ∈ [0, 1] such that

Prob[Xk = j|X1 = a1, . . . , Xk−2 = ak−2, Xk−1 = i] = p(i, j, f(a1), f(a2), . . . , f(ak−1)).

The number p(i, j, b1, . . . , bk−1) is the probability of entering state j at time k given that the chain is

in state i at time k − 1 and the feedback symbols at steps 1, . . . k − 1 are b1, . . . , bk−1, respectively. Let

11

Pb1...bk
= [p(i, j, b1, . . . , bk)], 1 ≤ i, j ≤ m denote the probability transition matrix at step k when the

feedback is b1, . . . , bk.

As with the time-varying Markov chains, we consider the special case where the transition matrices

come from the set {A, B} where A and B are stochastic matrices whose entries are rational numbers

of the form p/q where p and q are integers such that p ≤ q ≤ 2n. We let M denote the family of all

such feedback chains when X1 = 1. Just as there is a one-to-one correspondence between the family of

time-varying Markov chains in M and the strings in {A, B}ω, there is a similar correspondence between

the feedback chains in M and infinite binary trees whose nodes are labeled A or B. We next describe

this correspondence and introduce some useful notation. We illustrate these definitions in Figure 1.

Let T (A, B) be the family of infinite binary trees α where every node of α has two children, each

node is labeled either A or B and the left and right edges from a node are labeled 0 and 1 respectively.

Denote the root of tree α by root(α) and denote the matrix labeling node η by matrix(η). Define the

level of a node η in a tree to be the number of edges on the path from the root to η. In particular, the

level of the root is 0. Suppose that η is a node at level k of some tree α and that for 1 ≤ i ≤ k, bi is the

label of the ith edge on the path from the root of α to η. Denote the string b1 . . . bk by feedback(η).

Then there is a one-to-one correspondence between the chains in M and the set of infinite binary

trees α ∈ T (A, B), where the chain Mα corresponds to tree α if and only if for all b1 . . . bk ∈ {0, 1}∗,

Pb1...bk
= matrix(η), where feedback(η) = b1 . . . bk.

For each i and each node η of tree α, we define a vector x̄(η, i) with the following property. Suppose

that η is at level k of tree α. Then (x̄(η, i))j is the probability that the (k + 1)st random variable in the

chain corresponding to α is j and that the feedback from the first k steps is feedback(η), given that the

chain starts in state i.

The vector x̄(η, i) is defined inductively as follows. The base case is root(α) and we define x̄(root(α),i)

the n-vector with 0’s everywhere, except from the ith entry, which is 1. Let F0 be the matrix such that

entry [i, i] = 1 if the feedback symbol f(i) associated with state i is 0 and all other entries of F0 are

0. Let F1 = I − F0. F0 and F1 are defined so that for any vector v̄, the ith component of v̄F0 is v̄i

if f(i) = 0 and is 0 otherwise. Similarly, (v̄F1)i = v̄i if f(i) = 1 and is 0 otherwise. Then if η is any

node with left and right children η0 and η1 respectively then (x̄(η0, i))j = (x̄(η, i)matrix(η)F0)j and

(x̄(η1, i))j = (x̄(η, i)matrix(η)F1)j .

Figure 1 depicts the first four levels of a tree in T (A, B) that corresponds to a feedback chain with

states {1, 2, 3, 4}. The feedback symbol of the first two states is 0 and of the second two is 1. The

initial state is 1 and state 4 is the halting state. The vector adjacent to each node η is x̄(η, 1). Thus

for example, the vector (0, 0, 1
16 , 1

4) adjacent to the rightmost node at level three of the tree indicates

that in the first two steps, the probability that the feedback is 1,1 and that the chain is in state 3 is 1
16 .

Similarly, the probability that the feedback is 1,1 and the chain is in state 4 is 1
4 . Also, if the feedback is

1,1 then the probability of being in either state 1 or 2 is 0 since the feedback symbol of these two states

is 0.

We define α(k) to be the matrix whose (ij)th entry is the probability that Xk+1 = j, given that

X1 = i. To do this, we let α(0) = I and for k ≥ 1, α
(k)
ij =

∑

η(x̄(η, i))j , where the sum is taken over all

nodes η at level k of tree α. If α is any extension of the tree of Figure 1, the vector α
(k)
1 is the sum of

the vectors at level k. Hence for example, α
(3)
1 = (11

64 , 19
64 , 15

64 , 19
64). Thus the probability of being in state

1 in three steps of Mα is 11/64.

The definitions of reachability for feedback chains is a natural extension of the definition for time-

12

l
�����������9

XXXXXXXXXXXzl
�������

HHHHHHjl

l l

�
��	

@
@@R

l

l l

�
��	

@
@@R

l
�������

HHHHHHjl

l l

�
��	

@
@@R

l

l l

�
��	

@
@@R

B (1, 0, 0, 0)

A (1
4 , 1

4 , 0, 0) B (0, 0, 1
4 , 1

4)

A (1
8 , 0, 0, 0) B (0, 0, 3

8 , 0) B (1
16 , 1

8 , 0, 0) A (0, 0, 1
16 , 1

4)

A B A B A A A B

0 1

0 1 0 1

0 1 0 1 0 1 0 1

(0, 0, 0, 0) (0, 0,

1
8
, 0) (3

32
,

3
16

, 0, 0) (0, 0,

3
32

, 0) (5
64

,

5
64

, 0, 0) (0, 0,

1
64

,

1
64

) (0,

1
32

, 0, 0) (0, 0, 0,

9
32

)

A =

0 0 1 0
1
2 0 1

2 0

0 1
2 0 1

2

0 0 0 1

B =

1
4

1
4

1
4

1
4

1
2

1
2 0 0

1
4

1
2

1
4 0

0 0 0 1

Figure 1: The first three levels of a tree in T (A, B) that corresponds to a feedback chain with states

{1, 2, 3, 4}. The feedback function f is defined by f(1) = f(2) = 0, f(3) = f(4) = 1. Beside each node η

is the vector x̄(η, 1).

varying Markov chains. We say that n is reachable from i at η, where η is a node in tree α, if (x̄(η, i))n > 0.

Similarly, n is reachable from i in k steps on α if α
(k)
in > 0; equivalently, if n is reachable from i at some

node η at level k of tree α. Finally, n is reachable from i on α if n is reachable from i on α in k steps,

for some k.

As before, assume that n is a halting state of A and B. Then for any tree α and state i, the sequence

{α
(k)
in }, k = 0, 1, 2, . . . is non-decreasing. Also every element of the sequence is bounded above by 1.

Hence lim
k→∞

α
(k)
in exists. We call this limit the probability of reaching n from i on the chain Mα. When

i = 1 we call this the halting probability of Mα and denote it by pα. We call inf
α

pα the halting probability

of M.

Our goal is to show that if for all trees α ∈ T (A, B), the halting probability pα of Mα is at least p

then for any α, the probability of halting in kt steps of Mα is at least p − 1/2k, where t = 2n(2n)2
n
.

The structure of the proof is just as in Section 4.

Lemma 5.1 Let α ∈ T (A, B). Suppose that on some fixed feedback sequence of length t, with probability

at least q, Mα reaches a state of set S ⊆ [n − 1] at time t and that the halting state n is reachable from

every j ∈ S in k steps. Then the probability that, Mα halts between steps t + 1 and t + k, given the fixed

feedback sequence up to time t, is at least q/(2n)k.

Proof: The proof is very similar to Lemma 4.1. 2

We define a set S ⊆ [n − 1] is k-safe if for all trees α, there is some i ∈ S such that n is reachable

from i on α. We say the set S is safe if S is k-safe for some k.

Lemma 5.2 If a set S is safe then it is 2n-safe.

13

Proof: Fix some safe set S. For each tree α and each node η of α we define the set reachable(η) ⊆ [n]

to be {j ∈ [n]|(x̄(η, i))j > 0 for some i ∈ S}. That is, j is in reachable(η) if and only if j is reachable at

η from some i ∈ S. Clearly n is reachable from i in k steps on α if and only if n ∈ reachable(η) for some

η at level k of α.

Now suppose that S is not 2n-safe. Then for some α, for all nodes η of α in levels 0, . . . , 2n, n 6∈

reachable(η). We construct an infinite tree α′ such that for all i ∈ S, n is not contained in any set

labeling a node of α′, proving that S is not safe.

We first prune α to obtain a finite tree that will be used as a template in the construction of α′.

An example of such a template is given in Figure 2 following this lemma. Let prune(α) be any subtree

of α with the following properties: (i) if η and η′ are internal nodes of prune(α) then reachable(η) 6=

reachable(η′); (ii) if η is a leaf of prune(α) then reachable(η) = reachable(η′′) for some internal node η′′

of prune(α); and (iii) prune(α) is a full tree, that is, each node is either a leaf or has two children. A

tree prune(α) exists whose depth is at most 2n. This is because if η0, . . . η2n are nodes forming a path

of α starting at the root, then for two distinct nodes ηi, ηj on the path, reachable(ηi) = reachable(ηj) by

the pigeon-hole principle.

Now define α′ as follows. Let matrix(root(α′)) be matrix(root(α)). For any node η′ in α′ suppose

that η is the unique internal node of prune(α) such that reachable(η) = reachable(η′). Let η0 and η1

be the left and right children of η. Then if η′
0 and η′

1 are the left and right children of η′, define

matrix(η′
0) = matrix(η0) and matrix(η′

1) = matrix(η1). From the definition of reachable(), reachable(η′
l)

= reachable(ηl) for l = 0, 1. By the construction of prune(α), there are internal nodes ηi, ηj in prune(α)

such that reachable(η′
0) = reachable(ηi) and reachable(η′

1) = reachable(ηj). From this it follows that α′

is well defined.

Also, for all nodes η′ in tree α′, n 6∈reachable(η′). Hence n is not reachable on α′ from any i ∈ S and

so S is not safe. This contradiction proves the lemma. 2

To illustrate the proof of this lemma, we consider the example of Figure 1. Denote by L the left child

of the root of the tree of Figure 1. Note that in the subtree rooted at L, the probability of reaching the

halting state 4 is 0. Also the probability of being in states 1 and 2 at L is > 0. Let S = {1, 2}; we show

that S is not safe. The tree of Figure 2 is derived directly from the left subtree of Figure 1 and is a

template for the construction of an infinite tree α′ such that n is never reached from set either state 1

or state 2 on α′. Each node η of the tree is labeled by reachable(η). Note that all internal nodes have a

unique label and all leaves are labeled by a set that also labels an internal node.

Let pα,i denote α(i2n)
1n. Thus pα,i is the probability that Mα halts, that is, reaches state n from state

1, in exactly i2n steps. Recall that pα denotes the halting probability of Mα . Therefore, pα = lim
i→∞

pα,i.

Lemma 5.3 Let the halting probability of M be p and for each α let pα,i be the probability that Mα

halts in at most i2n steps. Let µ = (2n)2
n
. Then for any α and any i ≥ 0,

pα,i+1 − pα,i ≥ (p − pα,i)µ.

Proof: As in Lemma 4.3, if p − pα,i ≤ 0 the inequality is trivially true so we restrict our attention

to the case where p − pα,i > 0.

Let η1, . . . , ηm be the nodes at level i2n of α. For 1 ≤ k ≤ m let α′
k be the tree rooted at ηk. Also

let Sk be the set of states that are reachable at ηk from state 1 in i2n steps of α and which reach the

14

m
�������

HHHHHHj
m

m m

�
�

�	

@
@

@R

m

m m

�
�

�	

@
@

@R

A {1, 2}

A {1} B {3}

A B A B{} {3} {1, 2} {3}

m mA A{} {}

�
�

�	

@
@

@R

Figure 2: Template that can be used to construct an infinite tree α′ such that state 4 is not reachable

from either of states 1,2 on α′.

halting state n in a further 2n steps. Thus,

Sk = {j ∈ [n − 1] | (x̄(ηk, 1))j > 0 and ((α′
k)(2

n))jn > 0}.

Let S̄k = {j ∈ [n−1] | (x̄(ηk, 1))j > 0 and ((α′
k)(2

n))jn = 0}. Then S̄k is not 2n-safe. This is because

on tree α′
k, no state in S̄k reaches the halting state in 2n steps. Then from Lemma 5.2, S̄k is not safe.

Therefore, for each k, 1 ≤ k ≤ m, since S̄k is not safe, there must exist a tree α′′
k such that n is not

reachable from any state in S̄k on α′′
k .

In the rest of this proof, let x̄k denote x̄(ηk, 1). We claim that with probability less than 1 − p, Mα

reaches node ηk in a state of S̄k for some k, 1 ≤ k ≤ m. Otherwise, with probability at least 1 − p, Mα

would never halt on the tree obtained from α by replacing the tree rooted at ηk by α′′
k , 1 ≤ k ≤ m. This

would contradict the fact that p is the halting probability of M.

Therefore the probability that Mα reaches node ηk in an a state of Sk for some k, 1 ≤ k ≤ m, after

exactly i2n steps, is exactly 1− (the probability that Mα has already halted) − (the probability that

Mα reaches node ηk in a state of S̄k for some k). This is at least 1 − pα,i − (1 − p) = p − pα,i.

From Lemma 5.1 it follows that the probability that Mα halts between steps i2n + 1 and (i + 1)2n,

that is, pα,i+1 − pα,i, is at least (p − pα,i)/(2n)2
n
, completing the proof of the lemma. 2

Lemma 5.4 . Let the halting probability of M be p and for every α let the probability that Mα halts in

at most i2n steps be pα,i. Then p − pα,i ≤ (1 − 1/µ)i, where µ = (2n)2
n
.

Also for any integer k > 0, the probability that Mα halts in at most k2nµ steps of Mα is at least

p − 1/2k for all α.

Proof: The proof is identical to the proof of Lemma 4.4. 2

To complete this section, we state our main result for feedback chains.

Theorem 5.1 Suppose M is a family of n-state feedback chains with halting probability p. Then for

any chain in M, the probability of halting in 22O(n)
steps is at least p − o(1). Moreover, this bound is

the best possible.

15

6 Space Bounded Interactive Proofs

We apply the results of the previous sections to obtain upper bounds on the power of space bounded

interactive proof systems.

We need the following notation. Just as for Turing machines, a configuration of an interactive proof

system for a fixed input is a tuple containing binary encodings of the work tape, the positions of the tape

heads on the input and work tapes, the state and the contents of the communication cell. If an interactive

proof system (P, V) is s(n) space bounded, the length of any configuration of (P, V) is log n + O(s(n)).

(All logs are to base 2.) This is because log n + O(1) space is required to write the position of the

input tape head, the state and the contents of the communication cell and O(s(n)) space is required

to write the work tape contents. Hence the number of configurations of (P, V) is 2log n+O(s(n)). We

call a configuration of (P, V) that contains a communication state or reading state a communication

configuration or reading configuration, respectively.

For convenience we make the following assumptions about interactive proof systems, without loss of

generality. First, we assume that the prover’s alphabet is {a, b}. Also, we assume that the initial, accept

and reject states of the interactive proof are communication states and that whenever the verifier enters

the accept and reject state it never leaves that state. We assume that the number of configurations of

(P, V) on x is 2(m − 1) for some m = 2log n+O(s(n)), where m − 1 are communication configurations

and m − 1 are reading configurations. We number the communication configurations {1, . . . , m − 1},

and assume that 1 is the initial configuration. Finally, we assume that there is a unique rejecting

configuration.

In the next lemma we describe the relationship between space bounded interactive proof systems and

feedback chains.

Lemma 6.1 Let (P, V) be an s(n) space bounded interactive proof system and let x be an input of length

n. Then for some m = 2log n+O(s(n)), there exist m × m matrices A and B, whose entries are rational

numbers of the form p/q where p ≤ q ≤ 2m, such that the family M of feedback chains over {A, B} has

the following properties.

There is a 1-1 correspondence between the set of all pairs (P ∗, V) and the chains in M, such that if

(P ∗, V) corresponds to M∗, then the probability that (P ∗, V) enters a communication state k times, with

the kth one being the rejecting state, equals the probability that M∗ reaches its halting state in k steps.

Proof: Given (P, V), let m be as in the assumptions above. We define a family of feedback chains

M with m states, m− 1 of which correspond to the communication configurations of V . We first define

the two m × m matrices A and B. For i, j < m let pija be the probability of reaching configuration j

from configuration i of V when the symbol a has just been written by a prover in the communication

cell. Note that this probability is completely determined by i, j, a and the transition function of V .

Also, we define pima to be the probability that V never reaches a communication configuration from i,

that is, the probability that the verifier loops forever in states that are not communication states. Thus,

for i 6= m let pima = 1 −
∑

k 6=m pika, let pmma = 1 and for i 6= m let pmia = 0. Let A = [pija]. Define

B = [pijb] similarly, replacing a everywhere by b.

All entries in A and B can be written as rational numbers of the form p/q where p ≤ q ≤ 2m. This

is because the computation of the verifier between two successive times it enters a communication state

can be modeled by a stationary Markov chain, as follows. We describe this chain as a directed graph

with probabilities labeling the edges. The graph has 2m− 1 vertices, corresponding to the states of the

16

chain. Of these, 2(m−1) correspond to the configurations of V on x. The communication configurations

of V are the halting states of the chain; that is, each has an edge labeled with probability 1 to itself. In

addition there is one extra halting state and all states from which there is no path to a communication

configuration have one edge labeled 1 to this additional halting state. Each other state corresponds to

a reading configuration from which a communication configuration is reachable and has two outgoing

edges, to the possible configurations reachable from it in 1 step. The edges of the graph are labeled

from the set {0, 1/2, 1} and represent transitions. Therefore, the graph has m halting states and m − 1

other states. It is well known that for any state in this chain, the probability of eventually reaching any

halting state from any state can be represented as the quotient of two integers p, q where p ≤ q ≤ 2m.

(See Gill [12]) for one explanation of this).

The state of M that corresponds to the rejecting configuration of V is the halting state. Label this

state of M the reject state. We now describe a 1-1 correspondence between the pairs (P ∗, V) and the

feedback chains in M. To do this, it is sufficient to relate each pair (P ∗, V) to a tree α ∈ T (A, B). Let

δ∗ be the transition function of P ∗ and let α∗ be the infinite binary tree in T (A, B) such that for all

η ∈ α∗,

matrix(η) =

{

A, if δ∗(x, feedback(η)) = a,

B, if δ∗(x, feedback(η)) = b.

Since δ∗ is deterministic, α∗ is well defined.

Let M∗ = Mα∗ = X∗
1 , X∗

2 , . . . , X∗
k , From the definition of A and B, it is straightforward to

show by induction on k that for j < m, the probability that X∗
k = j is the probability that (P ∗, V)

enters k communication configurations and that the kth communication configuration is j. Similarly,

the probability that X∗
k is m is the probability that (P ∗, V) never enters k communication configurations

on x. From this it follows that the probability (P ∗, V) enters a communication state k times and rejects

x equals the probability that the kth random variable of chain M∗ is the reject state. 2

As a special case of Lemma 6.1, there is a 1-1 correspondence between one-way interactive proof

systems with space bounded verifiers on a fixed input and the family of time-varying Markov chains M

for some matrices A and B. This follows from the fact that in one-way interactive proof systems, the

kth symbol sent by the prover to the verifier is a function only of the input and k.

In the next theorem we use Lemma 6.1 and our results on feedback chains of Section 5 to bound

the running time of a space bounded interactive proof system on inputs it rejects. We prove this and

the other theorems of this section for 2pfa verifiers, but they all generalize immediately to other space

bounded verifiers.

Theorem 6.1 Let (P, V) be an interactive proof for language L with error probability ǫ < 1/2, where V

is a 2pfa verifier. Let x be any string of length n that is not in L. Then for some t = 22O(n)
, for any

prover P ∗ and any k > 0, the probability that (P ∗, V) rejects x in k2t steps is at least (1− ǫ)−2−k−1/k.

Proof: Fix any input x of length n such that x 6∈ L. From Lemma 6.1, for some m = 2log n+O(1) =

O(n), there is a 1-1 correspondence between the pairs (P ∗, V) and a family M of feedback chains, where

A and B are m × m matrices with entries of the form p/q, p ≤ q ≤ 2m.

Moreover, there is a halting state labeled reject of M such that for all provers P ∗, if (P ∗, V) cor-

responds to M∗ then the probability that (P ∗, V) enters a communication state k times and the kth

communication configuration is rejecting, equals the probability that M∗ reaches the reject state in k

steps. Define the halting probability of M to be the probability of reaching the reject state. Since for

every P ∗, (P ∗, V) rejects x with probability > 1 − ǫ, the halting probability of M is at least 1 − ǫ. We

17

now apply Lemma 5.4 to M. Let t′ = 2m(2m)2
m

, so that t′ = 22O(n)
. Then the probability of reaching

the state labeled reject in at most kt′ steps of any M∗ is at least (1 − ǫ) − 1/2k.

Hence from Lemma 6.1, for any P ∗, the probability that (P ∗, V) enters a communication state kt′

times, and the kt′ configuration is the rejecting configuration, is at least (1 − ǫ) − 2−k. If (P ∗, V)

reaches a communication configuration C2 from communication configuration C1 on some computation,

via transitions only through reading configurations, then the expected time for (P ∗, V) to reach C2

from C1 is at most 2O(n), for any pair (C1, C2). Hence the expected time for (P ∗, V) to reject x with

probability (1 − ǫ)− 1/2k is kt′2O(n). Then from Markov’s inequality, in k2t′2O(n) steps of (P ∗, V), the

rejecting state is reached with probability at least (1 − ǫ) − 1/2k − 1/k. Choose t = 22O(n)
so that for

sufficiently large n, t ≥ t′2O(n). Then t satisfies the theorem. 2

Theorem 6.2 IP(2pfa) ⊆ ATIME(22O(n)
).

Proof: Let (P, V) be an interactive proof for language L with error probability ǫ < 1/2. Let

t(n) = 22O(n)
be the function of Theorem 6.1 and let k be a constant such that (1−ǫ)−1/2k−1/k > 1/2.

We describe an interactive proof system (P, V ′) that accepts L with error probability ǫ + 1/2k + 1/k

and runs in time k2t(n). From this the result follows easily, by applying a result of Condon and Ladner

[5], that the class of languages accepted by interactive proof systems that are T (n) time bounded is

contained in the class ATIME(poly(T (n)).

The verifier V ′ simulates the transitions of V , but in addition it keeps a count of the number of steps

V has taken at each point of the computation. If V takes k2t(n) steps without ever halting, V ′ halts the

computation and accepts. Otherwise, if the computation halts within k2t(n) steps, V ′ halts and accepts

if and only if V does.

Clearly (P, V ′) runs in time 22O(n)
. We now show that (P, V ′) and (P, V) accept the same language.

Fix an input x. If x is in L, then the probability (P, V ′) accepts x is at least the probability that (P, V)

accepts x, since V ′ always accepts if it halts the computation before V halts. Hence (P, V ′) accepts x

with probability at least 1− ǫ. If x is not in L, then from Theorem 6.1, with probability ǫ− 1/2k − 1/k

V rejects within k2t steps on all provers P ∗, and hence so does V ′. Hence (P, V ′) accepts L with error

probability ǫ − 1/2k − 1/k, as required. 2

The following theorem states the upper bound for more general space bounded interactive proof

systems. The proof of this is identical to the proof of Theorem 6.2.

Theorem 6.3 For any space constructible function s(n) ≥ log n, IP(space(s(n)) ⊆ ATIME(22S(n)),

where S(n) = 2O(s(n)).

We can use the fact that one-way interactive proof systems correspond to time-varying Markov chains

to strengthen Theorem 6.2 for one-way proofs.

Theorem 6.4 One-way-IP(2pfa) ⊆ NTIME(22O(n)
).

Proof: Let (P, V) be a one-way IPS with a 2pfa verifier that accepts language L with error

probability ǫ. We describe a nondeterministic Turing machine M ′ that accepts L.

Fix an input x of length n and let A and B be the matrices defined in Lemma 6.1 where m = O(n).

From the transition function of V , M ′ first computes A and B. Let t(n) = 22O(n)
be the function of

Theorem 6.1 and let k be such that 1 − ǫ − 1/2k − 1/k > 1/2. M ′ guesses a string α1, . . . αt(n)k2 where

18

each αi ∈ {A, B}. Then M ′ computes the product α(t(n)k2). If the entry of α(t(n)k2) numbered [1, reject]

< 1/2, where reject is the number of the rejecting configuration, then M ′ accepts, else it rejects.

We first argue that M ′ and M accept the same language. If x is rejected by (P, V) then from Theorem

6.1, for all strings α of length k2t(n), the probability of reaching the reject state in k2t(n) steps is > 1/2.

Hence, for all guesses of M ′, M ′ rejects. On the other hand, if x is accepted by (P, V) then on some

string α, the reject state is reached with probability < 1/2. If α′ is the prefix of this string of length

k2t(n), M ′ accepts when it guesses α′.

It remains to show that M ′ runs in time 22O(n)
. The entries of the matrices A and B can be written

as the quotient of two integers of value ≤ 2O(n) and can be constructed in time 2O(n). The time required

by M ′ to guess the string α is 22O(n)
since this is the length of α. The α(t(n)k2) is the product of k2t(n)

matrices from the set {A, B}, whose entries can be represented in binary as the quotient of two numbers

of length O(n). Hence the entries of the matrix can be represented as the quotient of two binary numbers

of length 22O(n)
, and the matrix can be computed in time 22O(n)

. Hence the total running time of M ′

is 22O(n)
. 2

To complete this section, we show that the bounds of Theorem 6.1 are fairly tight, by constructing

an interactive proof system with a 2pfa verifier (P, V) that accepts the empty set but runs in expected

time 22Ω(n)
on an input of length n. Moreover, the interactive proof halts with probability 1; that is, on

all inputs x and all provers P ∗ on x, the probability that (P ∗, V) reaches either the accept or the reject

state is 1. The protocol followed by the prover and verifier which causes the game to run for this time

is a counting protocol. Similar protocols have been used previously by Peterson and Reif [18] and in a

multi-prover setting by Feige and Shamir [10]. The interactive proof we construct is one-way.

Theorem 6.5 There is a one-way interactive proof system with a 2pfa verifier that halts with probability

1 and whose expected running time on an input of length n is 22Ω(n)
.

Proof: We describe an interactive proof system (P, V) that accepts the empty set. Informally on

an input of length n, the pair (P, V) repeatedly executes a protocol which we call the interactive count

protocol. The idea is that in each iteration of this protocol, the verifier tosses 2n coins and halts in the

reject state at the end of that iteration if all coin tosses are heads. Thus, the expected time for the

interactive proof to halt is double exponential in n.

Let P be the prover defined by the string ($N1$N2$. . . $N2n$)ω, where Ni is the number i in binary,

padded with 0’s on the left to be of length exactly n. That is, the kth symbol V receives from P is the

kth symbol of this string. (Here, we assume that the prover’s alphabet has three symbols).

While receiving the prover’s string via the communication cell, the verifier performs some checks that

the prover’s string is of the form ($N1$N2$. . . $N2n$)ω. If any of the checks reveal an error, the verifier

halts and rejects. In this way we can prove that for all provers P ∗, the probability of eventually halting

is 1. The checks performed at random times by the verifier are as follows:

• check-length, which is started just after the prover sends a $ and, using the input as a ruler, checks

that the next $ occurs after exactly n symbols from {0, 1} have been sent by the prover. If not,

the verifier halts in a reject state.

• check-bit, which selects a random bit between two $’s, say the jth bit of the binary number after

the ith $ symbol and checks that the jth bit of the number after the (i + 1)st $ is correct. To

choose a bit randomly, the verifier tosses a coin for every bit sent by the prover from the time the

19

check-bit procedure is called, until the coin-toss is heads at some bit or the prover sends a $. In

the latter case the verifier checks bit n of Ni+1. To check the correctness of the bit chosen, the

verifier does the following.

– V stores the value of the jth bit of Ni on its work tape. Call this bit bj .

– V initializes a binary value B to 0 and changes it to 1 if any bit k < j of Ni is 0. This can be

done simply by observing all the bits sent by the prover before the next $, since the bits of lower

order than j are sent after j by the prover.

– Using the input as a ruler, V counts until the prover has sent n + 1 bits and stores the (n + 1)st

bit on its work tape. Let this bit be b′j . V also checks that a $ appears during that time. If not,

the verifier halts in a reject state.

– Otherwise, V checks that if B = 1 then b′j = bj and if B = 0 that b′j equals the complement of

bj. If not, the verifier halts in a reject state.

While executing the interactive count protocol, the verifier tosses a coin each time a $ is sent by the

prover. When the prover sends a string of all 1’s between two $’s, the verifier terminates that iteration

of the interactive count protocol. If all coins tossed during that iteration are heads, the verifier halts

and rejects; otherwise the verifier starts another iteration of the above protocol. Since both checks use

the input as a ruler, only one can be performed at any time. Therefore the verifier initially chooses one

of the two checks at random. Whenever it completes a check successfully, it randomly chooses one of

the two checks again and repeats this until it detects an error or the protocol ends.

We claim that the expected running time of pair (P, V) is at least 22n
. This is true because the only

way (P, V) can halt is if it tosses 2n heads in one round of the protocol and the chance of this occurring

is 1/22n
.

Secondly, we need to show that for all provers P ∗, (P ∗, V) eventually halts with probability 1.

Define a string $x1$x2$. . . xi . . . to be valid if all the xi’s are of length n and xi+1 = xi + 1(mod 2n).

Similarly, define a string $x1$x2$. . . xi . . . to be invalid at i if all the xi’s are of length n and

xi+1 6= xi + 1(mod 2n) for all i.

For any prover P ∗, the string sent by P ∗ to V must satisfy one of four properties. For each property,

we argue that (P ∗, V) eventually halts. (i) If a finite prefix is removed, the remaining string is valid. In

this case the verifier will halt in expected time double exponential in n from the time the prover starts to

send the correct part of the string. (ii) If a finite prefix is removed, the remaining string contains no $’s;

in this case, both check-length and check-bit will cause the verifier to halt. (iii) Infinitely many xi’s are

not of length n. In this case, the check-length procedure will cause the verifier to halt. (iv) The string

is invalid at infinitely many i. In this case, the check-bit procedure will eventually cause the verifier to

halt. 2

7 Conclusions and Open Problems

We considered interactive proof systems with a 2pfa verifier and obtained new upper bounds on the

power of single-prover interactive proof systems. Our results extend to other types of space bounded

verifiers. In proving these results, we also obtained bounds on the rate of convergence of time-varying

Markov chains and feedback chains.

20

It is interesting to contrast the power of single-prover and multi-prover IPS’s. Multi-prover systems

were introduced in Ben-Or et al. [2]; space bounded multi-prover systems have been investigated in-

dependently by Feige and Shamir [10] and Condon and Lipton [7]. Informally, in a k-prover IPS, the

verifier communicates with k provers that cooperate with each other to convince the verifier that an

input is in some language. The provers cannot communicate with each other during the execution of

the verifier’s protocol. Feige and Shamir [10] showed that any language accepted by a multi-prover IPS

is recursive. Also, any recursive language has a 2-prover interactive proof with a 2pfa verifier that halts

with probability 1.

From this result and Theorem 6.2, is is clear that for 2pfa verifiers, a 2-prover IPS is much more

powerful than a 1-prover system; but three or more provers is no more powerful than two.

Some interesting questions remain unresolved. For example, there is a large gap between the best

known upper and lower bounds for IP(2pfa); the best known lower bound being deterministic exponential

time and the best known upper bound being alternating double exponential time. How can either of

these bounds be improved? Also, we do not know the power of one-way multi-prover interactive proofs

with a 2pfa verifier.

Acknowledgement. We thank Larry Stockmeyer for pointing out an improvement to our original

upper bound of Theorem 6.2. Thanks also to Joan Feigenbaum for several helpful comments.

References

[1] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation,

Addison Wesley, 1979.

[2] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson, Multi-Prover Interactive Proofs: How to

Remove Intractability, Proc. 20th Symposium on the Theory of Computing, ACM, 1988, pp. 113-

131.

[3] D. Blackwell, L. Breiman and A. J. Thomasian. Proof of Shannon’s transmission theorem for finite-

state indecomposable channels. Annals of Math. Stat. 29 (1958), pp. 1209-1220.

[4] A. Condon, Computational models of games, MIT Press, 1989.

[5] A. Condon and R. Ladner, Probabilistic Game Automata, J. Comput. System Sci., 36:3 (1988),

pp. 452-489.

[6] A. Condon and D. Hernek, Random Walks on Colored Graphs Random Structures and Algorithms,

5:1, 1994.

[7] A. Condon and R. J. Lipton, Upper Bounds on the Complexity of Space Bounded Interactive Proof

Systems, Technical Report #841, Computer Sciences Department, University of Wisconsin-Madison,

1989.

[8] C. Dwork and L. Stockmeyer, Finite State Verifiers I: The Power of Interaction, J. ACM, 39:4

(1992), pp. 800-828.

[9] R. Frievalds, Probabilistic two-way machines, Proc. International Symposium on Mathematical

Foundations of Computer Science, Springer-Verlag Lecture Notes in Computer Science, 118, New

York, 1981, pp. 33-45.

21

[10] U. Feige and A. Shamir, Multi-Oracle Interactive Protocols with Space Bounded Verifiers,

Proc. Fourth Annual Conference on Structure in Complexity Theory, IEEE, June 1989, pp. 158-164.

[11] L. Fortnow, J. Rompel and M. Sipser, On the Power of Multi-Prover Interactive Protocols,

Proc. Third Annual Conference on Structure in Complexity Theory, IEEE, 1988, pp. 156-161.

[12] J. Gill, Computational Complexity of Probabilistic Turing Machines, SIAM J. Comput., 6:4 (1977),

pp. 675-695.

[13] S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive protocols,

Proc. 17th Symposium on the Theory of Computing, ACM, 1985, pp. 291-304.

[14] J. Kilian, Zero Knowledge with Log-Space Verifiers, Proc. 29th Symposium on Foundations of Com-

puter Science, IEEE, 1988, pp. 25-35.

[15] R. J. Lipton, Recursively Enumerable Languages have Finite State Interactive Proofs, Technical

Report Number CS-TR-213-89, Computer Science Department, Princeton University, 1989.

[16] A. Paz, Definite and quasi-definite sets of stochastic matrices, AMS Proceedings, 16(4):634-641,

1965.

[17] A. Paz, Introduction to Probabilistic Automata, Academic Press, 1971.

[18] G. L. Peterson and J. H. Reif, Multiple-Person Alternation, Proc. 20th Symposium on Foundations

of Computer Science, IEEE, 1979, pp. 348-363.

[19] E. Seneta, Non-negative Matrices and Markov Chains (2nd Edition), Springer-Verlag, New York,

1981.

[20] J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices, AMS Proceedings 14

(1963), pp. 733-737.

22

