Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 4

Jan, 18, 2021

322 Review Exam
(125 submissions!)

Office Hours have been posted: all on zoom (see on Canvas)

- Giuseppe Carenini carenini@cs.ubc.ca Wed 11-12
-
- Deka Namrata dnamrata@cs.ubc.ca Mon 10am
- Ivanova Inna inna.ivanova@alumni.ubc.ca

- Tootooni Mofrad Amirhossein tootooni@cs.ubc.ca Fri 11:30-1 What to do with readings? In a few lectures we will discuss the first research paper. Instructions on what to do are available on the course webpage.

422 big picture

	Deterministic	Stochastic Markov L
Query	Logics First Order Logics Ontologies	Belief Nets Approx. : Gibbs Markov Chains and HMMs Forward, Viterbi.... Approx. : Particle Filtering
	- Full Resolution - SAT	Undirected Graphical Models Markov Networks Conditional Random Fields
Plannin		Markov Decision Processes and Partially Observable MDP - Value Iteration - Approx. Inference Reinforcement Learning

Representation
Reasoning
Technique

Just a few datapoints (from NLP, same trends in other areas of AI)

When the popularity of these $R \& R$ methods started to explode

17th Annual SIGdial Meeting on Discourse and Dialogue
Los Angeles, USA, September 13-15, 2016

Four papers in 2016 using
(PO)MDP \& Reinforcement Learning!

Four papers in 2017 as well......

Now e.g., EMNLP 2020: seven papers with reinforcement learning in the title and many more using it !

Lecture Overview

Markov Decision Processes

- Some ideas and notation
- Finding the Optimal Policy
- Value Iteration
- From Values to the Policy (if there is time)
- Rewards and Optimal Policy

Agent moves in the above grid via actions Up, Down, Left, Right Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agents bumps into a wall, it says there

Eleven states

Two terminal states $(4,3)$ and $(4,2)$

Example MDP: Rewards

$$
R(s)=\left\{\begin{array}{l}
-0.04 \\
\pm 1
\end{array}\right.
$$

(small penalty) for nonterminal states \Varangle for terminal states

Discounted Reward Function

$>$ Suppose the agent goes through states $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$ and receives rewards $r_{1}, r_{2}, \ldots, r_{k}$
$>$ We will look at discounted reward to define the reward for this sequence, i.e. its utility for the agent
γ discount factor, $0 \leq \gamma \leq 1$

$$
U\left[s_{1}, s_{2}, s_{3}, . .\right]=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\ldots \ldots
$$

MDPs: Policy

- The robot needs to know what to do as the decision process unfolds...
- It starts in a state, selects an action, ends up in another state selects another action....
- Needs to make the same decision over and over: Given the current state what should I do?
- So a policy for an MDP is a single decision function $\pi(s)$ that specifies what the agent should do for each state s

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)
We first need a couple of definitions
(sorry (column ,row) to indicstestate)

- $\mathbf{V}^{\pi}(\mathbf{s})$: the expected value of following policy π in state \mathbf{s}
- $\mathbf{Q}^{\boldsymbol{\pi}}(\mathbf{s}, \mathbf{a})$, where \mathbf{a} is an action: expected value of performing \boldsymbol{a} in \boldsymbol{s}, and then following policy $\boldsymbol{\pi}$.

Example

$$
V^{\frac{1}{\pi}}((1,3)) \quad Q^{\pi}\left((2,1), U_{p}\right)
$$

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

- ${ }^{\Pi}(\mathrm{s}):$

- $Q^{\pi}(\mathrm{s}, \mathrm{a})$

We have, by definition

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $\mathrm{V}^{\mathrm{n}}(\mathrm{s})$: the expected value of following policy π in state s
- $Q^{\pi}(s, a)$, where a is an action: expected value of performing a in s, and then following policy π.
We have, by definition

Value of a policy and Optimal policy

- $\mathrm{V}^{\mathrm{n}}(\mathrm{s})$:

- $Q^{\Pi}(\mathrm{s}, \mathrm{a})$

We can also compute $V^{\pi}(s)$ in terms of $Q^{\pi}(s, a)$

$$
\left.V^{\pi}(s)=Q^{\pi}(? ? ?)\right)
$$

A. $\left.\quad V^{\pi}(s)=Q^{\pi}(s, a)\right)$
B. $V^{\pi}(s)=Q^{\pi}(\pi(s), a)$
C. $V^{\pi}(s)=Q^{\pi}(s, \pi(s))$

Value of a policy and Optimal policy

 We can also compute $V^{\Pi}(s)$ in terms of $Q^{\Pi}(s, a)$$$
V^{\pi}(s)=Q^{\pi}(s, \pi(s))
$$

- ${ }^{\mathrm{n}}(\mathrm{s})$:

- $Q^{\pi}(\mathbf{s}, \mathrm{a})$

For the optimal policy π * we also have

$$
V^{\pi^{*}}(s)=Q^{\pi^{*}}\left(s, \pi^{*}(s)\right)
$$

Value of a policy and Optimal policy

 We can also compute $V^{\pi}(s)$ in terms of $Q^{\Pi}(s, a)$$$
V^{\pi}(s)=Q^{\pi}(s, \pi(s))
$$

For the optimal policy π * we also have

$$
V^{\pi^{*}}(s)=Q^{\pi^{*}}\left(s, \pi^{*}(s)\right)
$$

Value of Optimal policy

$$
\text { (1) } V^{\pi *}(s)=Q^{\pi *}(s, \pi *(s))
$$

Remember for any policy π and any action a

$$
Q^{\pi}(s, a)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a V^{\pi}\left(s^{\prime}\right)\right)
$$

So for $a=\pi(s)$

$$
\left.Q^{\pi}(s, \pi(s))=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) \times V^{\pi}\left(s^{\prime}\right)\right)
$$

Which is true also for the optimal policy
(2) $\left.Q^{\pi^{*}}\left(s, \pi^{*}(s)\right)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi^{*}(s)\right) \times V^{\pi^{*}}\left(s^{\prime}\right)\right)$

So from (1) and (2)

$$
\left.V^{\pi *}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \stackrel{\pi}{\pi}^{*}(s)\right) \times V^{\pi^{*}}\left(s^{\prime}\right)\right)
$$

Value of Optimal policy

$$
\left.V^{\pi *}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \stackrel{*}{\pi}^{\prime}(s)\right) \times V^{\pi^{*}}\left(s^{\prime}\right)\right)
$$

But the Optimal policy π^{*} is the one that gives the action that maximizes the future reward for each state

$$
\left.V^{\pi *}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \times V^{\pi *}\left(s^{\prime}\right)\right)
$$

Value Iteration Rationale

> Given N states, we can write an equation like the one below for each of them

$$
\begin{aligned}
& V\left(s_{1}\right)=R\left(s_{1}\right)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s_{1}, a\right) V\left(s^{\prime}\right) \\
& V\left(s_{2}\right)=R\left(s_{2}\right)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s_{2}, a\right) V\left(s^{\prime}\right) \\
& V\left(s_{3}\right)=\cdots \\
& \cdots \cdots \\
& V\left(s_{N}\right)=\cdots
\end{aligned}
$$

Example for state $(1,1)$

$$
V\left(s_{1}\right)=R\left(s_{1}\right)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s_{1}, a\right) V\left(s^{\prime}\right)
$$

$>$ Example for state $(1,1)$

Value Iteration Rationale

> Given N states, we can write an equation like the one below for each of them
$V\left(s_{1}\right)=R\left(s_{1}\right)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s_{1}, a\right) V\left(s^{\prime}\right)$
$V\left(s_{2}\right)=R\left(s_{2}\right)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s_{2}, a\right) V\left(s^{\prime}\right)$

- Each equation contains N unknowns - the V values for the N states
> N equations in N variables (Bellman equations): It can be shown that they have a unique solution: the values for the optimal policy
$>$ Unfortunately the N equations are non-linear, because of the max operator: Cannot be easily solved by using techniques from linear algebra
$>$ Value Iteration Algorithm: Iterative approach to find the V values and the corresponding
$>$ optimal policy

Value Iteration in Practice

$>$ Let $V^{(i)}(s)$ be the utility of state s at the $i^{\text {ith }}$ iteration of the algorithm
$>$ Start with arbitrary utilities on each state $s: V^{(0)}(s)$
> Repeat simultaneously for every suntil there is "no change"

$$
V^{(\mathrm{k}+1)}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{(\mathrm{k})}\left(s^{\prime}\right)
$$

$>$ True "no change" in the values of $\mathrm{V}(\mathrm{s})$ from one iteration to the next are guaranteed only if run for infinitely long.

- In the limit, this process converges to a unique set of solutions for the Bellman equations
- They are the total expected rewards (utilities) for the optimal policy

$$
\begin{gathered}
\text { Example } \left.\begin{array}{c}
\text { sorry (column, row) } \\
\text { to indicste stote }
\end{array}\right)
\end{gathered}
$$

- Suppose, for instance, that we start with values $\mathrm{V}^{(0)}(\mathrm{s})$ that are all 0

Iteration 1

$$
V^{(1)}(1,1)=-0.04+1^{*} \max \left[\begin{array}{lc}
0.8 V^{(0)}(1,2)+0.1 V^{(0)}(2,1)+0.1 V^{(0)}(1,1) & U P \\
0.9 V^{(0)}(1,1)+0.1 V^{(0)}(1,2) & L E F T \\
0.9 V^{(0)}(1,1)+0.1 V^{(0)}(2,1) & D O W N \\
0.8 V^{(0)}(2,1)+0.1 V^{(0)}(1,2)+0.1 V^{(0)}(1,1) & R I G H T
\end{array}\right]
$$

$$
V^{(1)}(1,1)=-0.04+\max \left[\begin{array}{ll}
0 & U P \\
0 & L E F T \\
0 & D O W N \\
0 & R I G H T
\end{array}\right]
$$

Example (cont'd) (Sorry (solumn, row) Example (cont'd) (oindicste state)

Let's compute $\mathrm{V}^{(1)}(3,3)$

Iteration 0

Iteration 1

$$
V^{(1)}(3,3)=-0.04+1 * \max \left[\begin{array}{lc}
0.8 V^{(0)}(3,3)+0.1 V^{(0)}(2,3)+0.1 V^{(0)}(4,3) & U P \\
0.8 V^{(0)}(2,3)+0.1 V^{(0)}(3,3)+0.1 V^{(0)}(3,2) & L E F T \\
0.8 V^{(0)}(3,2)+0.1 V^{(0)}(2,3)+0.1 V^{(0)}(4,3) & D O W N \\
0.8 V^{(0)}(4,3)+0.1 V^{(0)}(3,3)+0.1 V^{(0)}(3,2) & \text { RIGHT }
\end{array}\right]
$$

CPSC 422, Lecture 4

$$
V^{(1)}(3,3)=-0.04+\max \left[\begin{array}{ll}
0.1 & U P \\
0 & L E F T \\
0.1 & D O W N \\
0.8 & R I G H T
\end{array}\right]
$$

Example (cont'd)

$>$ Let's compute $\mathrm{V}^{(1)}(4,1)$

(sorry (column, row) to indicste state)

Iteration 0

Iteration 1

$$
V^{(1)}(4,1)=-0.04+\max \left[\begin{array}{lc}
0.8 V^{(0)}(4,2)+0.1 V^{(0)}(3,1)+0.1 V^{(0)}(4,1) & U P \\
0.8 V^{(0)}(3,1)+0.1 V^{(0)}(4,2)+0.1 V^{(0)}(4,1) & L E F T \\
0.9 V^{(0)}(4,1)+0.1 V^{(0)}(3,1) & D O W N \\
0.9 V^{(0)}(4,1)+0.1 V^{(0)}(4,2) & R I G H T
\end{array}\right]
$$

CPSC 422, Lecture 4

$$
V^{(1)}(4,1)=-0.04+\max \left[\begin{array}{cc}
-0.8 & U P \\
-0.1 & L E F T \\
0 & D O W N \\
-0.1 & R I G H T
\end{array}\right]
$$

After a Full Iteration

Iteration 1

3	-. 04	-. 04	0.76	+1
2	-. 04		-. 04	-1
1	-. 04	-. 04	-. 04	-. 04
	1	2	3	4

> Only the state one step away from a positive reward $(3,3)$ has gained value, all the others are losing value

Some steps in the second iteration

Iteration 2

3	-.04	-.04	0.76	+1
20	-.04		-.04	-1
	-.04	-.04	-.04	-.04
1				

3	-. 04	-. 04	0.76	+1
2	-. 04		-. 04	-1
1	-0.08	-. 04	-. 04	-. 04
	1	2	3	4

$$
V^{(2)}(1,1)=-0.04+1^{*} \max \left[\begin{array}{lc}
0.8 V^{(1)}(1,2)+0.1 V^{(1)}(2,1)+0.1 V^{(1)}(1,1) & U P \\
0.9 V^{(1)}(1,1)+0.1 V^{(1)}(1,2) & L E F T \\
0.9 V^{(1)}(1,1)+0.1 V^{(1)}(2,1) & D O W N \\
0.8 V^{(1)}(2,1)+0.1 V^{(1)}(1,2)+0.1 V^{(1)}(1,1) & R I G H T
\end{array}\right]
$$

$\left[\begin{array}{ll}-.04 & U P \\ -.04 & \text { LEFT } \\ -.04 & \text { DOWN } \\ -.04 & \text { RIGHT }\end{array}\right]=-0.08$

Slide 27

Example (cont'd)

> Let's compute $\mathrm{V}^{(2)}(2,3)$

3	-. 04	-. 04	0.76	+1
2	-. 04		-. 04	-1
1	-. 04	-. 04	-. 04	-. 04
	1	2	3	4

Iteration 2

-.04	0.56	0.76	+1
-.04		-.04	-1
-0.08	-.04	-.04	-.04
$\mathbf{1}$	2	3	4

$$
V^{(2)}(2,3)=-0.04+1 * \max \left[\begin{array}{ll}
0.8 V^{(1)}(2,3)+0.1 V^{(1)}(1,3)+0.1 V^{(1)}(3,3) & U P \\
0.8 V^{(1)}(1,3)+0.1 V^{(0)}(2,3)+0.1 V^{(1)}(2,3) & L E F T \\
0.8 V^{(1)}(2,3)+0.1 V^{(1)}(1,3)+0.1 V^{(1)}(3,3) & D O W N \\
0.8 V^{(1)}(3,3)+0.1 V^{(1)}(2,3)+0.1 V^{(1)}(2,3) & R I G H T
\end{array}\right]
$$

$$
V^{(1)}(2,3)=-0.04+(0.8 * 0.76+0.2 *-0.04)=0.56
$$

$>$ Steps two moves away from positive rewards start increasing their value

State Utilities as Function of Iteration \#

 (only for 5 states)

		$(3,3)$	$(4,3)$
			$(4,2)$
$(1,1)$		$(3,1)$	$(4,1)$

Number of iterations
$>$ Note that values of states at different distances from $(4,3)$ accumulate negative rewards until a path to $(4,3)$ is found

Value Iteration: Computational

 Complexity
iclicker.

Value iteration works by producing successive approximations of the optimal value function.

$$
\forall s: V^{(\mathrm{k}+1)}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{(\mathrm{k})}\left(s^{\prime}\right)
$$

What is the complexity of each iteration?

$$
\text { A. } \left.\mathrm{O}\left(|\mathrm{~A}|^{2}|\mathrm{~S}|\right) \quad \text { B. } \mathrm{O}\left(|\mathrm{~A}||\mathrm{S}|^{2}\right)\right) \quad \text { C. } \mathrm{O}\left(|\mathrm{~A}|^{2}|\mathrm{~S}|^{2}\right)
$$

...or faster if there is sparsity in the transition function.
small sets

Relevance to state of the art MDPs

FROM : Planning with Markov Decision

 Processes: An Al Perspective Mausam(UW), Andrey Kolobov (MSResearch)
Synthesis Lectures on Artificial Intelligence and Machine Learning Jun 2012

Free online through UBC

" Value Iteration (VI) forms the basis of most of the advanced MDP algorithms that we discuss in the rest of the book."

Lecture Overview

Markov Decision Processes

- Finding the Optimal Policy
- Value Iteration
- From Values to the Policy
- Rewards and Optimal Policy

Value Iteration: from state values V to

ת*

3	0.812	0.868	0.912	++1
	0.762		0.660	$\boxed{-1}$
1	0.705	0.655	0.611	0.388

$>$ Now the agent can chose the action that implements the MEU principle: maximize the expected utility of the subsequent state

Value Iteration: from state values V to

ת*

$>$ Now the agent can chose the action that implements the MEU principle: maximize the expected utility of the subsequent state

Example: from state values V to $\boldsymbol{\pi}^{*}$

$>$ To find the best action in $(1,1)$

Optimal policy

$>$ This is the policy that we obtain....

Learning Goals for today's class

You can:

Define/read/write/trace/debug the Value Iteration (VI) algorithm. Compute its complexity.

- Compute the Optimal Policy given the output of VI - Explain influence of rewards on optimal policy

TODO for Mon

- Read Textbook 9.5.6 Partially Observable MDPs
-Also Do Practice Ex. 9.C http://www.aispace.org/exercises.shtml

