Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 31

March, 31, 2021

Slide source: from Pedro Domingos UW & Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

Lecture Overview

- MLN Recap
- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing!

Markov Logic: Definition

- A Markov Logic Network (MLN) is
 - a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
 - Together with a set C of constants,
- It defines a Markov network with
 - One binary node for each grounding of each predicate in the MLN
 - One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

Grounding: substituting vars with constants

MLN features

- 6
- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- **1.**1
- $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)

MLN: parameters

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

$$f(\text{Smokes}(x), \text{ Cancer}(x)) = \begin{cases} 1 & \text{if } \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \\ 0 & \text{otherwise} \end{cases}$$

MLN: prob. of possible world

- $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$ 40

Two constants: **Anna** (A) and **Bob** (B)

CPSC 422, Lecture 30

MLN: prob. Of possible world

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

Probability of a world pw:

$$P(pw) = \frac{1}{Z} \exp\left(\sum_{i} \frac{w_i n_i(pw)}{n_i(pw)}\right)$$

Weight of formula *i*

No. of true groundings of formula *i* in *pw*

Inference in MLN

 Most likely interpretation maximizes the sum of weights of satisfied formulas (MaxWalkSAT)

$$\underset{pw}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(pw)$$

P(Formula) = ? (Sampling interpretations)

P(ground literal | conjuction of ground literals)...
 Gibbs sampling on relevant sub-network

Lecture Overview

- Recap MLN
- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing!

Entity Resolution

 Determining which observations correspond to the same real-world objects

- (e.g., database records, noun phrases, video regions, etc)
- Crucial importance in many areas (e.g., data cleaning, NLP, Vision)

Entity Resolution: Example

SAME?

SAME?

SAME?

SAME?

SAME?

AUTHOR: H. POON & P. DOMINGOS

TITLE: UNSUPERVISED SEMANTIC PARSING

VENUE: *EMNLP-09*

AUTHOR: *Hoifung Poon and Pedro Domings*

TITLE: Unsupervised semantic parsing

VENUE: Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing

AUTHOR: Poon, Hoifung and Domings, Pedro

TITLE: Unsupervised ontology induction from text

VENUE: Proceedings of the Forty-Eighth Annual Meeting

of the Association for Computational Linguistics

AUTHOR: H. Poon, P. Domings

TITLE: Unsupervised ontology induction

VENUE: ACL-10

SAME?

11

Entity Resolution (relations)

Problem: Given citation database, find duplicate records Each citation has author, title, and venue fields We have 10 relations

```
Author (bib, author)

Title (bib, title)

Venue (bib, venue)

HasWord (author, word)

HasWord (title, word) indicate which words are present in each field;

HasWord (venue, word)
```

```
SameAuthor (author, author) represent field equality;
SameTitle(title, title)
SameVenue(venue, venue)

SameBib(bib, bib) represents citation equality;
```

Entity Resolution (formulas)

Predict citation equality based on words in the fields

```
of rules

one for

each word
Title(b1, t1) \wedge Title(b2, t2) \wedge
HasWord(t1,+word) \land HasWord(t2,+word) \Rightarrow
SameBib (b1, b2)
(NOTE: +word is a shortcut notation, you
actually have a rule for each word e.g.,
Title(b1, t1) \Lambda Title(b2, t2) \Lambda
HasWord(t1, "bayesian") A
HasWord(t2,"bayesian") \Rightarrow SameBib(b1, b2))
Same 1000s of rules for author
Same 1000s of rules for venue
```

CPSC 422, Lecture 31

Entity Resolution (formulas)

Transitive closure

SameBib (b1,b2) \land SameBib (b2,b3) \Rightarrow ???

A. SameBib (b1,b2)

B. SameBib (b1,b3)

i≿licker.

C. SameAuthor (a1, a2)

Entity Resolution (formulas)

Transitive closure

```
SameBib (b1,b2) \land SameBib (b2,b3) \Rightarrow SameBib (b1,b3)
```

Link fields equivalence to citation equivalence – e.g., if two citations are the same, their authors should be the same

```
Author(b1, a1) \land Author(b2, a2) \land SameBib(b1, b2) \Rightarrow SameAuthor(a1, a2)
```

...and that citations with the same author are more likely to be the same

```
Author(b1, a1) A Author(b2, a2) A SameAuthor(a1, a2)
```

 \Rightarrow SameBib(b1, b2)

Same rules for title

Same rules for venue

Benefits of MLN model

Standard non-MLN approach: build a classifier that given two citations tells you if they are the same or not, and then apply transitive closure

New MLN approach:

 performs collective entity resolution, where resolving one pair of entities helps to resolve pairs of related entities

e.g., inferring that a pair of citations are equivalent can provide evidence that the names *AAAI-06* and *21st Natl. Conf. on AI* refer to the same venue, even though they are superficially very different. This equivalence can then aid in resolving other entities.

Similar to.....

CPSC 422, Lecture 31

Image segmentation

clossfying each superpites in dependently CPSC 422, Lecture 17

With a
Markey
Random
Field!

Markov Networks Applications (1): Computer V Each vars correspond to a pixel (or superpixel)

- Edges (factors) correspond to interactions between adjacent pixels in the image
 - E.g., in segmentation: from generically penalize discontinuities, to road under car

Other MLN applications

- Information Extraction
- Co-reference Resolution Robot Mapping (infer the map of an indoor environment from laser range data)
- Link-based Clustering (uses relationships among the objects in determining similarity)
- Ontologies extraction from Text

•

Lecture Overview

- Recap of MLN
- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing!

Statistical Parsing

Input: Sentence

Output: Most probable parse

 PCFG: Production rules with probabilities

E.g.:
$$0.7 \text{ NP} \rightarrow \text{N}$$

 $0.3 \text{ NP} \rightarrow \text{Det N}$

- WCFG: Production rules with weights (equivalent)
- Chomsky normal form:

$$A \rightarrow B C \text{ or } A \rightarrow a$$

Logical Representation of CFG

$$\sim$$
 NP(i,j) ^ VP(j,k) => S(i,k)

$$S(i,k) => NP(i,j) \wedge VP(j,k)$$

Which one would be a reasonable representation in logics?

Logical Representation of CFG

$$S \rightarrow NP \ VP$$
 $NP(i,j) \land VP(j,k) => S(i,k)$
 $NP \rightarrow Adj \ N$ $Adj(i,j) \land N(j,k) => NP(i,k)$
 $NP \rightarrow Det \ N$ $Det(i,j) \land N(j,k) => NP(i,k)$
 $VP \rightarrow V \ NP$ $V(i,j) \land NP(j,k) => VP(i,k)$

Lexicon....

```
// Determiners U+ 1
Token("a",i) => Det(i,i+1)
Token("the",i) => Det(i,i+1)
// Adjectives
Token("big",i) \Rightarrow Adj(i,i+1)
Token("small",i) => Adj(i,i+1)
// Nouns
Token("dogs",i) => N(i,i+1)
Token("dog",i) => N(i,i+1)
Token("cats",i) => N(i,i+1)
Token("cat",i) => N(i,i+1)
Token("fly",i) => N(i,i+1)
Token("flies",i) \Rightarrow N(i,i+1)
```

// Verbs
Token("chase",i) => V(i,i+1)
Token("chases",i) => V(i,i+1)
Token("eat",i) => V(i,i+1)
Token("eats",i) => V(i,i+1)
Token("fly",i) => V(i,i+1)
Token("fly",i) => V(i,i+1)

Avoid two problems (1)

 If there are two or more rules with the same left side (such as NP -> Adj N and NP -> Det N need to enforce the constraint that only one of them fires:

$NP(i,k) \wedge Det(i,j) => \neg Adj(i,j)$

"If a noun phrase results in a determiner and a noun, it cannot result in and adjective and a noun".

CPSC 422, Lecture 31

Avoid two problems (2)

- Ambiguities in the lexicom.
- homonyms belonging to different parts of speech,
- e.g., fly (noun or verb),
- only one of these parts of speech should be assigned.

We can enforce this constraint in a general manner by making mutual exclusion rules for each part of speech pair, i.e.:

CPSC 422. Lecture 31

```
Pet(i,j) v PAdj(i,j)
Det(i,j) v N(i,j)
Det(i,j) v V(i,j)
Adj(i,j) v N(i,j)
Adj(i,j) v V(i,j)
```

 $\neg N(i,j) \lor \neg V(i,j)$

28

Statistical Parsing Representation: Summary


```
E.g.: NP(i,j) ^ VP(j,k) => S(i,k)
```

- For each rule of the form A → a:
 Formula of the form Token(a,i) =>
 A(i,i+1)
 - E.g.: Token("pizza", i) => N(i,i+1)
- For each nonterminal: state that exactly one production holds (solve problem 1)
- Mutual exclusion rules for each part of speech pair (solve problem 2)

Statistical Parsing: Inference

Evidence predicate: Token (token, position)

```
E.g.: Token ("pizza", 3) etc.
```

Query predicates:

Constituent (position, position)

```
E.g.: S(0,7) "is this sequence of seven words a sentence?" but also NP(2,4)
```

What inference yields the most probable parse?

MAP! Find the most likely interpretation

Learning Goals for today's class

You can:

- Describe the entity resolution application of ML and explain the corresponding representation
- Probabilistic parsing as MLN nt required

Next Class on Mon

Start Probabilistic Relational Models

Keep working on Assignment-4

Due Apr 14

In the past, a similar hw took students between 8 - 15 hours to complete. Please start working on it as soon as possible!