Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 31

March, 31, 2021

Slide source: from Pedro Domingos UW \& Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

Lecture Overview

- MLN Recap
- Markov Logic: applications
- Entity resolution
- Statistical Parsing!

Markov Logic: Definition

- A Markov Logic Network (MLN) is
- a set of pairs (F, w) where
- F is a formula in first-order logic
- w is a real number
- Together with a set C of constants,
- It defines a Markov network with

Grounding:
substituting vars with constants

- One binary node for each grounding of each predicate in the MLN
- One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

MLN features

```
1.5 \forallx Smokes (x) => Cancer ( }x\mathrm{ )
1.1 \forallx,y Friends(x,y)=>(Smokes(x)\LeftrightarrowSmokes (y))
```

Two constants: Anna (A) and Bob (B)

MLN: parameters

- For each grounded formula i we have a factor

- Same for all the
w_{i} weight of formula groundings of the same formula

$$
f_{i}(p w)= \begin{cases}1 & \text { when formula is true in pw } \\ 0 & \text { otherwise }\end{cases}
$$

1.5 $\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$

$$
f(\operatorname{Smokes}(\mathrm{x}), \operatorname{Cancer}(\mathrm{x}))= \begin{cases}1 & \text { if } \operatorname{Smokes}(\mathrm{x}) \Rightarrow \operatorname{Cancer}(\mathrm{x}) \\ 0 & \text { otherwise }\end{cases}
$$

pos.

$$
\begin{aligned}
& \text { surges }(A) \quad T \\
& \text { cancer }(A) \quad F e^{0}=1
\end{aligned}
$$

MLN: prob. of possible world

(1) $1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

$$
P(p w)=\frac{1}{Z} \prod_{i} \Phi_{i}(p w)
$$

$P(p \omega)=\left(e^{1.1} * e_{6}^{1.1} * e_{\substack{3 \\ \text { cPSC } 422 . \operatorname{Lecture} \text { 30 }}}^{0} * e_{2}^{0} * e^{1.5} * e^{0}\right) / Z^{0}$

MLN: prob. Of possible world

(2) $1.1 \forall x, y$ Friends $(x, y) \Rightarrow($ Smok

$$
P(p w)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(p w)\right)
$$

Inference in MLN

- Most likely interpretation maximizes the sum of weights of satisfied formulas (MaxWalkSAT)

$$
\underset{p w}{\arg \max } \sum_{i} w_{i} n_{i}(p w)
$$

- $\mathrm{P}($ Formula $)=$? (Sampling interpretations)

P(ground literal | conjuction of ground literals)... Gibbs sampling on relevant sub-network

Lecture Overview

- Recap MLN
- Markov Logic: applications
- Entity resolution
- Statistical Parsing!

Entity Resolution

- Determining which observations correspond to the same real-world objects
- (e.g., database records, noun phrases, video regions, etc)
- Crucial importance in many areas
(e.g., data cleaning, NLP, Vision)

Entity Resolution: Example

Entity Resolution (relations)

Problem: Given citation database, find duplicate records Each citation has author, title, and venue fields We have 10 relations

Author (bib, author) Title (bib ,title)
provided os evidence Venue (bib, venue)

HasWord (author, word) HasWord (title, word) HasWord (venue, word)
indicate which words are present in each field;

SameAuthor (author, author) represent field equality; SameTitle (title, title) SameVenue (venue, venue)

SameBib (bib, bib) represents citation equality;

Entity Resolution (formulas)

Predict citation equality based on words in the fields

Title (b1, t1) ^ Title(b2, t2) ^ HasWord(t1,+word) ^ HasWord(t2,+word) \Rightarrow SameBib (b1, b2)

Entity Resolution (formulas)

Transitive closure

 SameBib(b1,b2) ^ SameBib(b2,b3) \Rightarrow ???A. SameBib (b1 ,b2)
B. SameBib (b1 ,b3)
iclicker.
C. SameAuthor (a1,a2)

Entity Resolution (formulas)

Transitive closure

SameBib (b1,b2) ^ SameBib (b2,b3) \Rightarrow SameBib (b1,b3)
SameAuthor (a1,a2) ^ SameAuthor (a2,a3) \Rightarrow SameAuthor (a1,a3)
Same rule for title
Same rule for venue
Link fields equivalence to citation equivalence - e.g., if two citations are the same, their authors should be the same
Author (b1, a1) ^ Author (b2, a2) ^ SameBib (b1, b2) \Rightarrow SameAuthor (a1, a2)
...and that citations with the same author are more likely to be the same Author (b1, a1) ^ Author (b2, a2) ^ SameAuthor(a1, a2)
\Rightarrow SameBib (b1, b2)
Same rules for title
Same rules for venue

Benefits of MLN model

Standard non-MLN approach: build a classifier

 that given two citations tells you if they are the same or not, and then apply transitive closure
New MLN approach:

- performs collective entity resolution, where resolving one pair of entities helps to resolve pairs of related entities
e.g., inferring that a pair of citations are equivalent can provide evidence that the names AAAI-06 and 21st Natl. Conf. on Al refer to the same venue, even though they are superficially very different. This equivalence can then aid in resolving other entities.

Similar to......

Image segmentation

Markov Networks Applications (1): Computer Vision

- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
- E.g., in segmentation: from generically penalize discontinuities, to road under car
simple example
,

Other MLN applications

- Information Extraction
- Co-reference Resolution Robot Mapping (infer the map of an indoor environment from laser range data)
- Link-based Clustering (uses relationships among the objects in determining similarity)
- Ontologies extraction from Text

Lecture Overview

- Recap of MLN
- Markov Logic: applications
- Entity resolution
- Statistical Parsing!

Statistical Parsing

- Input: Sentence
- Output: Most probable parse
- PCFG: Production rules with probabilities
E.g.: $0.7 \mathrm{NP} \rightarrow \mathrm{N}$
$0.3 \mathrm{NP} \rightarrow$ Det N
- WCFG: Production rules with weights (equivalent)
- Chomsky normal form: $A \rightarrow B C$ or $A \rightarrow a$

Logical Representation of CFG \rightarrow rewrites os

$$
\begin{aligned}
& \Rightarrow \log ^{i} \\
& \lim ^{\wedge} \theta
\end{aligned}
$$

(A) $\mathrm{NP}^{\wedge} \mathrm{VP} \stackrel{\text { implication }}{\Rightarrow} \mathrm{S}$

$$
S \rightarrow N P V P
$$

$$
\rightarrow \mathrm{BP}(\mathrm{i}, \mathrm{j})^{\wedge} \mathrm{VP}(\mathrm{j}, \mathrm{k}) \Rightarrow \mathrm{S}(\mathrm{i}, \mathrm{k})
$$

$$
\text { (C) } \mathrm{S}(\mathrm{i}, \mathrm{k}) \Rightarrow \mathrm{NP}(\mathrm{i}, \mathrm{j}) \wedge \mathrm{VP}(\mathrm{j}, \mathrm{k})
$$

Which one would be a reasonable representation in logics?

Logical Representation of CFG

$$
\begin{aligned}
S & \rightarrow N P V P \\
N P & \rightarrow \operatorname{Adj} N \\
N P & \rightarrow \operatorname{Det} N \\
V P & \rightarrow V N P
\end{aligned}
$$

$$
N P(i, j) \wedge V P(j, k)=>S(i, k)
$$

$$
\operatorname{Adj}(\mathrm{i}, \mathrm{j}) \wedge \mathrm{N}(\mathrm{j}, \mathrm{k})=>\mathrm{NP}(\mathrm{i}, \mathrm{k})
$$

$$
\operatorname{Det}(\mathrm{i}, \mathrm{j}) \wedge \mathrm{N}(\mathrm{j}, \mathrm{k})=>N P(\mathrm{i}, \mathrm{k})
$$

$$
V(\mathrm{i}, \mathrm{j}) \wedge \mathrm{NP}(\mathrm{j}, \mathrm{k}) \Rightarrow \mathrm{VP}(\mathrm{i}, \mathrm{k})
$$

Lexicon....

// Determiners U +1

Token("a",i) => Det(i,i+1)
Token("the", i$)=>\operatorname{Det}(\mathrm{i}, \mathrm{i}+1)$
// Adjectives
Token("big",i) => Adj(i,i+1)
Token("small",i) => Adj(i,i+1)

// Nouns

Token("dogs",i) => N(i,i+1)
Token("dog",i) => N(i,i+1)
Token("cats",i) $=>\mathrm{N}(\mathrm{i}, \mathrm{i}+1)$
Token("cat",i) => N(i,i+1)
Token("fly",i) => N(i,i+1)
Token("flies",i) $=>\mathrm{N}(\mathrm{i}, \mathrm{i}+1)^{\text {cpsc } 222 . \text { Lecture } 31}$
// Verbs
Token("chase",i) => V(i,i+1)
Token("chases",i) => V(i,i+1)
Token("eat",i) => V(i,i+1)
Token("eats",i) => V(i,i+1)
Token("fly",i) => V(i,i+1)=
Token("flies",i) => V(i,i+1)
$\begin{array}{cc}\operatorname{Det}(0,1) & N(1,2) \\ \uparrow & \uparrow\end{array}$
the cat ate the mooss

Avoid two problems (1)

- If there are two or more rules with the same left side (such as NP -> Adj N and NP -> Det N need to enforce the constraint that only one of them fires

NP(i,k) ^ $\operatorname{Det}(\mathbf{i}, \mathrm{j})=>7 \mathrm{Idj}(\mathrm{i}, \mathrm{j})$

"If a noun phrase results in a determiner and a noun, it cannot result in and adjective and a noun".

Avoid two problems (2)

- Ambiguities in the lexicon.

homonyms belonging to different parts of speech, e.g., fly (noun or verb),
only one of these parts of speech should be assigned.
We can enforce this constraint in a general manner by making mutual exclusion rules for each part of speech pair, i.e.:

$$
\begin{aligned}
& 7 \operatorname{Det}(\mathrm{i}, \mathrm{j}) \vee \vee \operatorname{Adj}(\mathrm{i}, \mathrm{j}) \\
& 7 \operatorname{Det}(i, j) \vee 7 N(i, j) \\
& 7 \operatorname{Det}(i, j) \vee 7 \mathrm{~V}(\mathrm{i}, \mathrm{j}) \\
& 7 \operatorname{Adj}(\mathrm{i}, \mathrm{j}) \vee \mathrm{l} \mathrm{~N}(\mathrm{i}, \mathrm{j}) \\
& \text { า } \operatorname{Adj}(\mathrm{i}, \mathrm{j}) \vee \mathrm{\imath} \text { V(i,j) } \\
& \urcorner N(i, j) \vee\urcorner V(i, j)
\end{aligned}
$$

Statistical Parsing

Representation: Summary

- For each rule of the form $A \rightarrow B C$:

Formula of the form B(i,j) ^C(j,k) => A(i,k)
E.g.: NP (i,j) ^ VP (j,k) => S(i,k)

- For each rule of the form $\mathrm{A} \rightarrow \mathrm{a}$:

Formula of the form Token (a,i) => A (i,i+1)
E.g.: Token("pizza", i) => N(i,i+1)

- For each nonterminal: state that exactly one production holds (solve problem 1)
- Mutual exclusion rules for each part of speech pair (solve problem 2)

Statistical Parsing : Inference

- Evidence predicate: Token (token, position) E.g.: Token("pizza", 3) etc.
- Query predicates:

Constituent(position, position)
E.g.: $S(0,7\}$ "is this sequence of seven words a sentence?" but also NP (2,4)

- What inference yields the most probable parse?

MAP! Find the most likely interpretation

StarAI (statistical relational AI) Hybrid: Det +Sto Prob CFG
Prob Relational Models Markov Logics

422 big picture

Deterministic AP Stochastic

Learning Goals for today's class

You can:

- Describe the entity resolution application of ML and explain the corresponding representation
- Probabilistic parsing as MLN nt required

Next Class on Mon

- Start Probabilistic Relational Models

Keep working on Assignment-4
Due Apr 14
In the past, a similar hw took students between 8 15 hours to complete. Please start working on it as soon as possible!

