Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 30

March, 29, 2021

Slide source: from Pedro Domingos UW & Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

CPSC 422, Lecture 30

Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability

Prob. Rel. Models vs. Markov Logic

PRM - Relational Skeleton - Dependency Graph - Parameters (CPT) -weighted logical formulas

NETWORK

Constants Morker July Network

Second example

12 groundings of the predicates 2^12 possible worlds / interpretations

MLN: parameters

CPSC 422, Lecture 30

MLN: prob. Of possible world

Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability

How MLN s generalize FOL

First order logic (with some mild assumptions) is a special Markov Logics obtained when

- all the weight are equal
- and tend to infinity

Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability

Inference in MLN

- MLN acts as a template for a Markov Network
- We can always answer prob. queries using standard Markov network inference methods on the instantiated network
- **However**, due to the size and complexity of the resulting network, this is often infeasible.
- Instead, we combine probabilistic methods with ideas from logical inference, including satisfiability and resolution.
- This leads to efficient methods that take full advantage of the logical structure.

MAP Inference

• Problem: Find most likely state of world

 $\operatorname{arg\,max} P(pw)$

pw

• Probability of a world *pw*:

$$P(pw) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(pw)\right)$$

Weight of formula *i* No. of true groundings of formula *i* in *pw*

$$\underset{pw}{\operatorname{arg\,max}} \quad \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(pw)\right)$$

MAP Inference

$$\underset{pw}{\operatorname{arg\,max}} \quad \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(pw)\right)$$

$$\underset{pw}{\operatorname{arg\,max}} \quad \sum_{i} w_{i} n_{i}(pw)$$

• Are these two equivalent? iclicker. A. Yes B. No C. It depends

MAP Inference

- Therefore, the MAP problem in Markov logic reduces to finding the truth assignment that maximizes the sum of weights of satisfied formulas (let's assume clauses)

$$\underset{pw}{\operatorname{arg\,max}} \quad \sum_{i} w_{i} n_{i}(pw)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al., 1997])

WalkSAT algorithm (in essence) (from lecture 21 - one change)

- (Stochastic) Local Search Algorithms can be used for this task!
- **Evaluation Function** *f(pw)* : number of satisfied clauses
- **WalkSat:** One of the simplest and most effective algorithms:
- Start from a randomly generated interpretation (pw)
- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)
 - 1. Randomly
 - 2. To maximize # of satisfied clauses

fall clauses satisfied DONE

MaxWalkSAT algorithm (in essence)

Evaluation Function *f(pw)* : \sum weights(sat. clauses in pw)

current pw <- randomly generated interpretation Generate *new pw* by doing the following

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)
 - 1. Randomly
 - 2. To maximize \sum weights(sat. clauses in resulting *pw*)

Computing Probabilities

 $P(Formula|M_{L,C}) = ?$

- Brute force: Sum probs. of possible worlds where formula holds
 - M_{L,C} Markov Logic Network PW_F possible worlds in which F is true

$$P(F \mid M_{L,C}) = \sum_{pw \in PW_F} P(pw, M_{L,C})$$

MCMC: Sample worlds, check formula holds
 S all samples
 S_F samples (i.e. possible worlds) in which Fistrue

$$P(F \mid M_{L,C}) = \frac{\mid S_F \mid}{\mid S \mid}$$

Computing Cond. Probabilities

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Let's look at the simplest case

P(ground literal | conjuction of ground literals, M_{L,C}) P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

To answer this query do you need to create (ground) the whole network? $A \cdot Yes$ $B \cdot No$ $C \cdot It$ depends

Computing Cond. Probabilities

Let's look at the simplest case

- P(ground literal | conjuction of ground literals, $M_{L,C}$)
- P(Cancer(B) Smokes(A), Friends(A, B), Friends(B, A))

You do not need to create (ground) the part of the Markov Network from which the query is independent given the evidence CPSC 422, Lecture 30

Computing Cond. Probabilities

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

Then you can perform Gibbs Sampling in this Sub Network

Learning Goals for today's class

You can:

- Show on an example how MLNs generalize FOL
- Compute the most likely pw (given some evidence)
- Probability of a formula, Conditional Probability

Next class

- Markov Logic: applications
- Start. Prob Relational Models

Assignment-4 will be posted shortly Due Apr 14 In the past, a similar hw took students between 8 -15 hours to complete. Please start working on it as soon as possible!