Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 30

March, 29, 2021

Slide source: from Pedro Domingos UW \& Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
- MAP Inference (most likely pw)
- Probability of a formula, Conditional Probability

Prob. Rel. Models vs. Markov Logic
PR
$\left.\begin{array}{l}\text { - Relational SKeleton } \\ \text { - Dependency Graph } \\ \text { - Parameters (CPT) }\end{array}\right\} \Rightarrow$ BNET
ML

- weighted logical formulas\} ~
- set of constants

Constants
$A B C$

Correspomstug
Markov
Network

Second example
12 groundings of the predicates
$2^{\wedge} 12$ possible worlds / interpretations

MLN features

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

MLN: parameters

- For each grounded formula i we have a factor

- Same for all the
w_{i} weight of formula groundings of the same formula

$$
f_{i}(p w)= \begin{cases}1 & \text { when formula is true in pw } \\ 0 & \text { otherwise }\end{cases}
$$

1.5 $\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$

$$
f(\operatorname{Smokes}(\mathrm{x}), \operatorname{Cancer}(\mathrm{x}))= \begin{cases}1 & \text { if } \operatorname{Smokes}(\mathrm{x}) \Rightarrow \operatorname{Cancer}(\mathrm{x}) \\ 0 & \text { otherwise }\end{cases}
$$

pos.

$$
\begin{aligned}
& \text { surges }(A) \quad T \\
& \text { cancer }(A) \quad F e^{0}=1
\end{aligned}
$$

MLN: prob. of possible world

(1) $1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

$$
P(p w)=\frac{1}{Z} \prod_{i} \Phi_{i}(p w)
$$

MLN: prob. Of possible world

(2) $1.1 \forall x, y$ Friends $(x, y) \Rightarrow($ Smok

$$
P(p w)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(p w)\right)
$$

Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
- MAP Inference (most likely $p w$)
- Probability of a formula, Conditional Probability

How MLN s generalize FOL

- Consider MLN containing only one formula

$$
\begin{array}{lll}
w & \forall x R(x) \Rightarrow S(x) & C=\{A\} \tag{A}\\
\Phi(p w)=e^{w} f(p w) & \Phi_{1}(S(A) & Z=1+3 e^{w} \\
4(p w s & & P(p w) \\
R(A) S(A) & f_{1}(p w) & \Phi_{1}(p w) \\
T & T & 1 \\
F & e^{w} & e^{w} / 1+3 e^{w} \\
T & F & 1 \\
= & F & e^{w}
\end{array}
$$

$\omega \rightarrow \infty$

$w \rightarrow \infty, P(S(A) \mid R(A)) \rightarrow 1$ "recovering logical entailment"

How MLN s generalize FOL

First order logic (with some mild assumptions) is a special Markov Logics obtained when

- all the weight are equal
- and tend to infinity

Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
- MAP Inference (most likely $p w$)
- Probability of a formula, Conditional Probability

Inference in MLN

- MLN acts as a template for a Markov Network
- We can always answer prob. queries using standard Markov network inference methods on the instantiated network
- However, due to the size and complexity of the resulting network, this is often infeasible.
- Instead, we combine probabilistic methods with ideas from logical inference, including satisfiability and resolution.
- This leads to efficient methods that take full advantage of the logical structure.

MAP Inference

- Problem: Find most likely state of world

$\arg \max P(p w)$
 pw

- Probability of a world $p w$:

$$
\begin{aligned}
& P(p w)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} \mid n_{i}(p w)\right. \\
& \quad \text { Weight of formula } i \quad \text { No. of true groundings of formula } i \text { in } p w
\end{aligned}
$$

$$
\underset{p w}{\arg \max } \frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(p w)\right)
$$

MAP Inference

$$
\underset{p w}{\arg \max } \frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(p w)\right)
$$

$$
\underset{p w}{\arg \max } \sum_{i} w_{i} n_{i}(p w)
$$

- Are these two equivalent?

icslicker.

A. Yes
B. No
C. It depends

MAP Inference

- Therefore, the MAP problem in Markov logic reduces to finding the truth assignment that maximizes the sum of weights of satisfied formulas (let's assume clauses)

$$
\underset{p w}{\arg \max } \sum_{i} w_{i} n_{i}(p w)
$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver (e.g., MaxWalkSAT [Kautz et al., 1997])

WalkSAT algorithm (in essence) (from lecture 21 - one change)
(Stochastic) Local Search Algorithms can be used for this task!
Evaluation Function $f(p w)$: number of satisfied clauses
WalkSat: One of the simplest and most effective algorithms:
Start from a randomly generated interpretation (pw)

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)

1. Randomly
2. To maximize \# of satisfied clauses
if all
else
clauses satisfied DONE

MaxWalkSAT algorithm (in essence)

Evaluation Function $f(p w): \Sigma$ weights(sat. clauses in $p w)$

current pw <- randomly generated interpretation
Generate new pw by doing the following

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)

1. Randomly
2. To maximize \sum weights(sat. clauses in resulting pw)

$$
\begin{aligned}
& \text { If } f(\text { new pw })>f(\text { current pw }) \\
& \text { current pw } \& \text { new pw }
\end{aligned}
$$

Computing Probabilities

$\mathrm{P}\left(\right.$ Formula $\left.\mid \mathrm{M}_{\mathrm{L}, \mathrm{C}}\right)=$?

- Brute force: Sum probs. of possible worlds where formula holds

$$
\begin{aligned}
& M_{L, C} \text { Markov Loge Network } \\
& P W_{F} \text { possible worlols in which } F \text { is true }
\end{aligned}
$$

$$
P\left(F \mid M_{L, C}\right)=\sum_{p w \in P W_{F}} P\left(p w, M_{L, C}\right)
$$

- MCMC: Sample worlds, check formula holds

$$
\begin{aligned}
& S \text { all samples } \\
& S_{F} \text { samples (ie. possible worlds) in which F is true } \\
& P\left(F \mid M_{L, C}\right)=\frac{\left|S_{F}\right|}{|S|}
\end{aligned}
$$

Computing Cond. Probabilities

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Let's look at the simplest case
P (ground literal | conjuction of ground literals, $\mathrm{M}_{\mathrm{L}, \mathrm{C}}$) P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

irslicker.

To answer this query do you need to create (ground) the whole network?

C. It depends....

Computing Cond. Probabilities

Let's look at the simplest case
P (ground literal | conjuction of ground literals, $\mathrm{M}_{\mathrm{L}, \mathrm{C}}$)
P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

You do not need to create (ground) the part of the Markov Network from which the query is independent given the evidence

Computing Cond. Probabilities

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

Then you can perform Gibbs Sampling in this Sub Network

Learning Goals for today's class

You can:

- Show on an example how MLNs generalize FOL
- Compute the most likely pw (given some evidence)
- Probability of a formula, Conditional Probability

Next class

- Markov Logic: applications
- Start. Prob Relational Models

Assignment-4 will be posted shortly
Due Apr 14
In the past, a similar hw took students between 8 15 hours to complete. Please start working on it as soon as possible!

