Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 3

Jan, 15 2019

Lecture Overview

Markov Decision Processes

- Formal Specification and example
- Policies and Optimal Policy
- Intro to Value Iteration

Decision Processes

Often an agent needs to go beyond a fixed set of decisions – Examples?

Infinite horizon problems: process does not stop

Robot surviving on planet, Monitoring Nuc. Plant,

Indefinite horizon problem: the agent does not know when the process may stop

resolving location

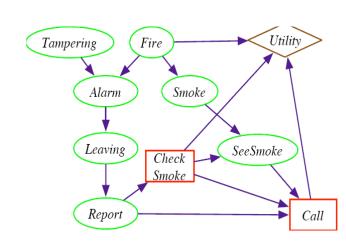
Finite horizon: the process must end at a give time N

In N steps

Goal: represent (and optimize) an indefinite sequence of decisions

Decision networks

Represent (and optimize) a fixed number of decisions



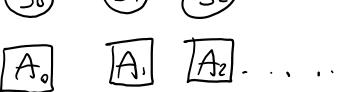
Markov models

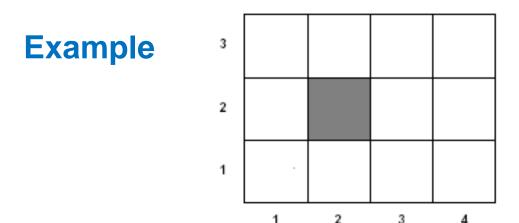
The network can extend indefinitely

How can we deal with indefinite/infinite Decision processes?

Like in a Markov Chain one random variable S_t for each time slice represents the state at time t.

And A_t be the action/decision at time t





Agent moves in the above grid:

- States are the cells of the grid
- Actions Up, Down, Left, Right

How can we deal with indefinite/infinite **Decision processes?**

Like in a Markov Chain one random variable S, for each time slice represents the state at time t.

And A_t be the action/decision at time t

Make the same two assumptions we made for Markov Chains

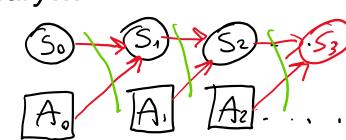
(a) The action outcome (the state S_{t+1} at time t+1) only depends

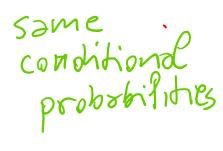
on
$$S_t$$
 and A_t

$$P(S_{t+1}|S_t)$$

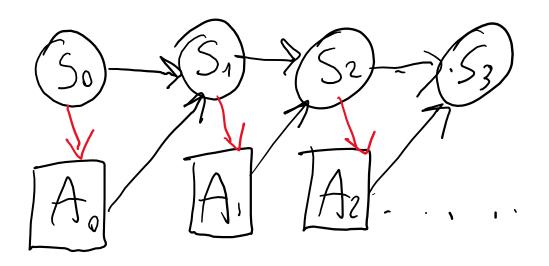
$$P(S_{t+1}|S_{t},A_{t},S_{t},A_{t-1}) = P(S_{t+1}|S_{t},A_{t})$$

(b) The process is stationary...

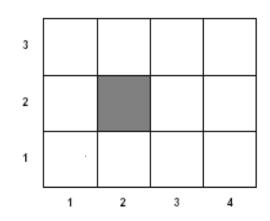




Agent knows in which state it is at time t when it selects the action at time t

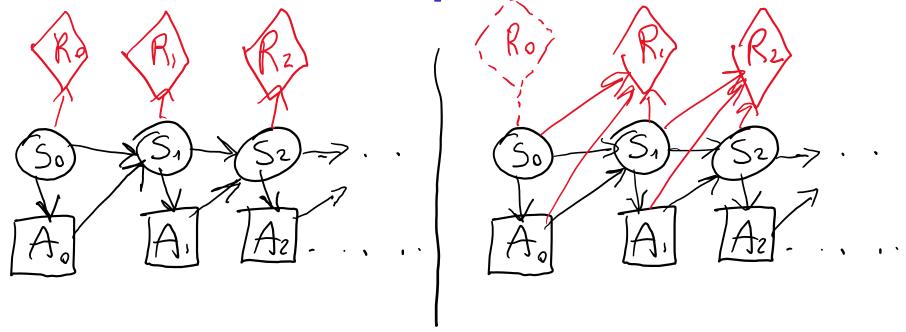


The robot always knows in which cell it is...



So what will be a policy?

How can we deal with indefinite/infinite Decision processes?

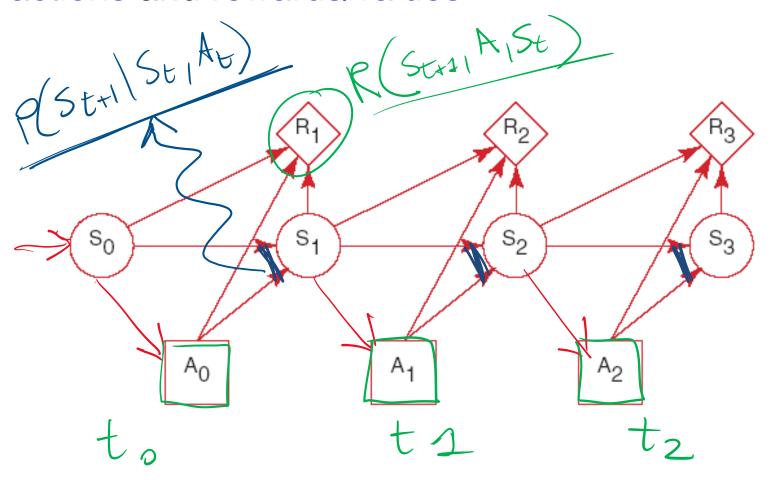


We also need a more flexible specification for the utility. How?

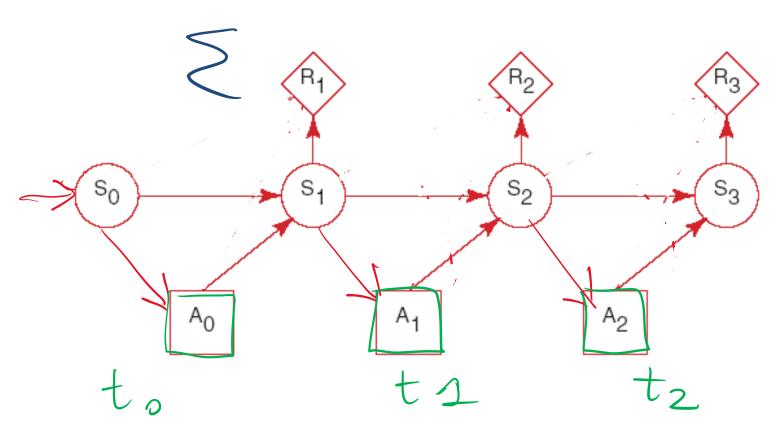
- Defined based on a reward/punishment that the agent receives in each time slice
- Typically summing them up

MDP graphical specification

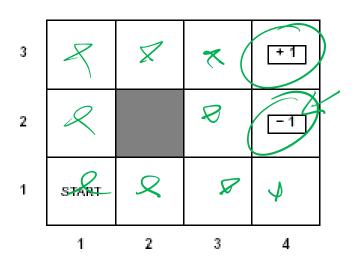
Basically a MDP is a Markov Chain augmented with actions and rewards/values



When Rewards only depend on the state



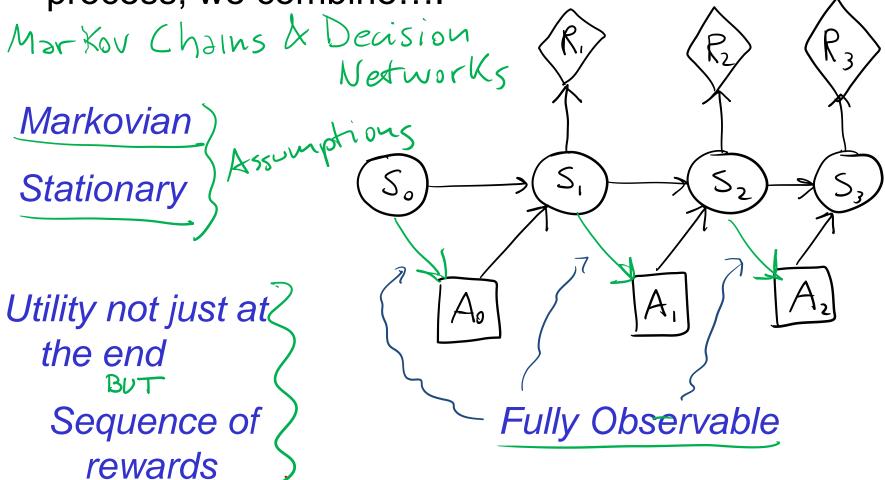
Example MDP: Rewards



$$R(s) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

Summary Decision Processes: MDPs

To manage an ongoing (indefinite... infinite) decision process, we combine....



MDP: formal specification

For an MDP you specify:

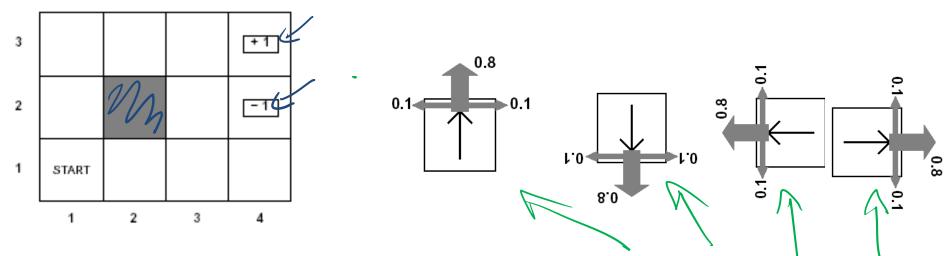
- set S of states and set A of actions
- the process' dynamics (or *transition model*) $P(S_{t+1}|S_t, A_t)$
- The reward function
 - R(s) is used when the reward depends only on the state s and not on how the agent got there
 - More complex R(s, a, s') describing the reward that the agent receives when it performs action a in state s and ends up in state s'

• Absorbing/stopping/terminal state
$$S_{ab}$$
 for M action $P(S_{ab}|a,S_{ab})=1$ $R(S_{ab},a,S_{ab})=0$

CPSC 422, Lecture 2

Slide 13

Example MDP: Scenario and Actions



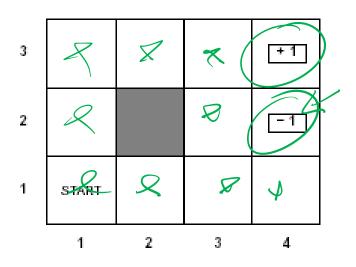
Agent moves in the above grid via actions *Up, Down, Left, Right* Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agents bumps into a wall, it says there

How many states? $11 \{ (1), (12), \dots, (24), (34) \}$

There are two terminal states (3,4) and (2,4)

Example MDP: Rewards



$$R(s) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

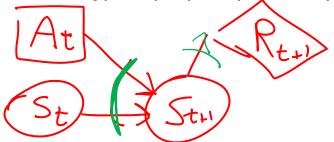
Example MDP: Underlying infostructures

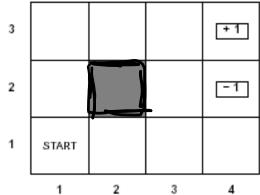
Four actions Up, Down, Left, Right 3 +1 Eleven States: {(1,1), (1,2)..... (3,4)} 2 - 1 START 3 Table 4x11X11 2,1 Slide 16 CPSC 422, Lecture 3

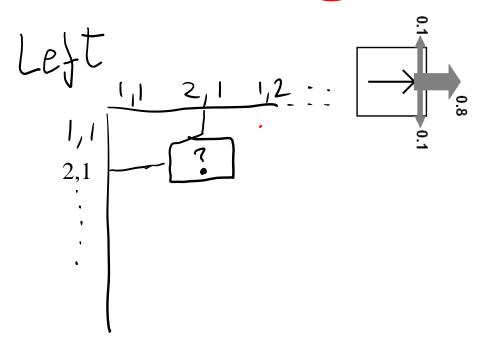
Example MDP: Underlying infostructures

Four actions Up, Down, Left, Right

Eleven States: {(1,1), (1,2)..... (3,4)}





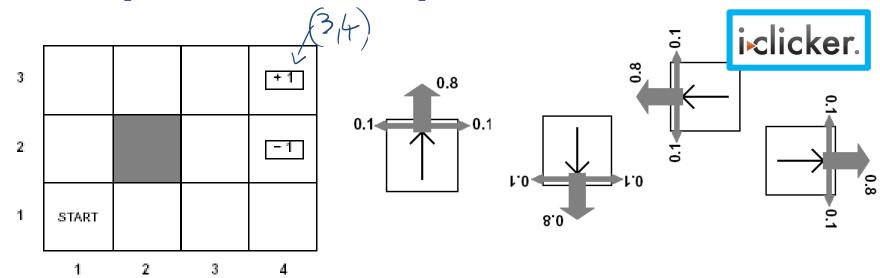


A. 0.1

B. 0.8

C. 0.2

Example MDP: Sequence of actions



The sequence of actions [*Up, Up, Right, Right*, *Right*] will take the agent in terminal state (3,4)...

A. always

B. never

C. Only sometimes

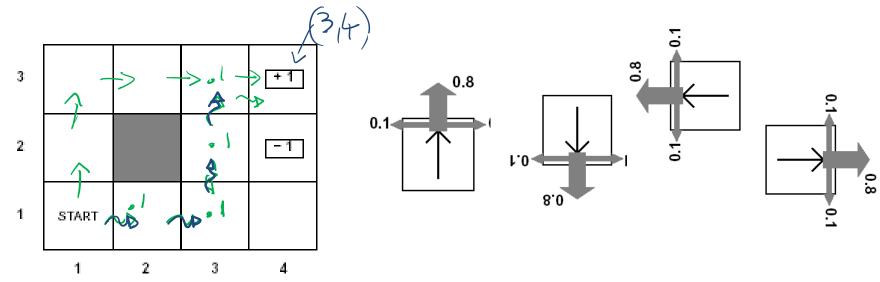
With what probability?

A. $(0.8)^5$

B. $(0.8)^5 + ((0.1)^4 \times 0.8)$

C. $((0.1)^4 \times 0.8)$

Example MDP: Sequence of actions

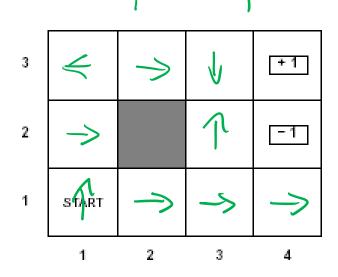


Can the sequence [*Up, Up, Right, Right, Right*] take the agent in terminal state (3,4)?

Can the sequence reach the goal in any other way?

MDPs: Policy

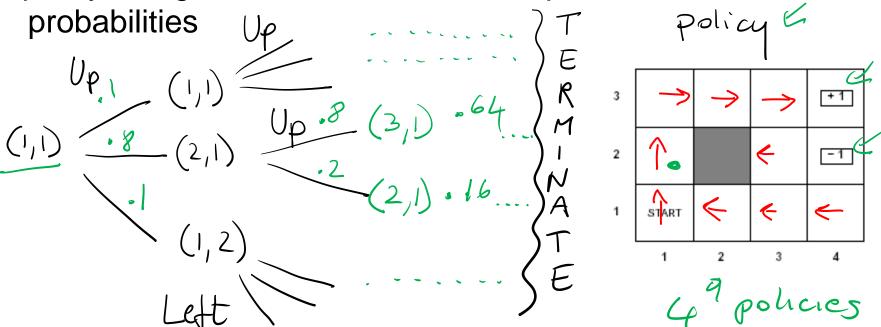
- The robot needs to know what to do as the decision process unfolds...
- It starts in a state, selects an action, ends up in another state selects another action....
- Needs to make the same decision over and over: Given the current state what should I do?
 - So a policy for an MDP is a single decision function π(s) that specifies what the agent should do for each state s



How to evaluate a policy

(in essence how to compute $V^{\pi}(s)$ brute force)

A policy can generate a set of state sequences with different

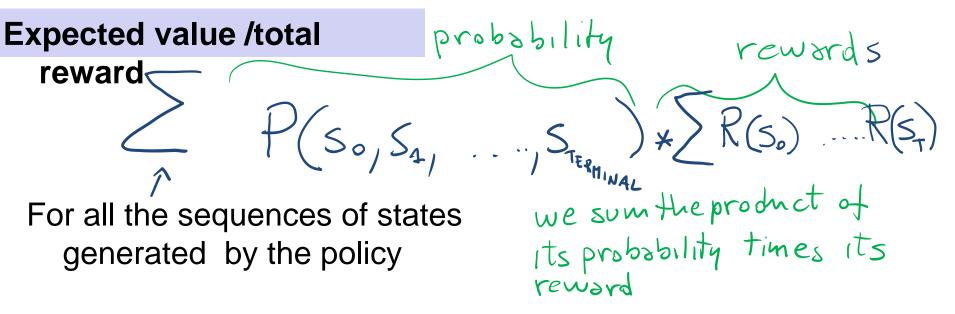


Each state sequence has a corresponding reward. Typically the (discounted) sum of the rewards for each state in the sequence

MDPs: expected value/total reward of a policy and optimal policy

Each sequence of states (environment history) associated with a policy has

- a certain probability of occurring
- a given amount of total reward as a function of the rewards of its individual states



Optimal policy is the policy that maximizes expected total

Lecture Overview

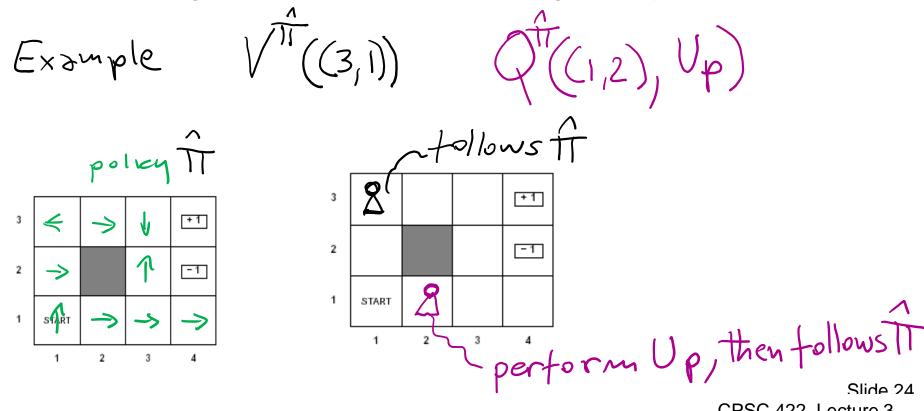
Markov Decision Processes

- Formal Specification and example
- Policies and Optimal Policy
- Intro to Value Iteration

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $V^{\pi}(s)$: the expected value of following policy π in state s
- $Q^{\pi}(s, a)$, where a is an action: expected value of performing **a** in **s**, and then following policy π .



Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $V^{\pi}(s)$: the expected value of following policy π in state s
- $Q^{\pi}(s, a)$, where a is an action: expected value of performing a in s, and then following policy π .

Can we express $Q^{\pi}(s, a)$ in terms of $V^{\pi}(s)$?

$$Q^{\pi}(s, a) = \sqrt{(s)} + R(s)$$
 $Q^{\pi}(s, a) = R(s) + \sum_{s' \in X} P(s'|s, a) * \sqrt{(s')} = R(s') + \sum_{s' \in X} P(s'|s, a) * \sqrt{(s')} = R(s') *$

$$Q^{\pi}(s, a) = \mathbb{R}(s) + \sum_{s' \in X} \sqrt{\frac{\pi}{s'}} c.$$

D. None of the above

 \mathbf{X} : set of states reachable from s by doing a

CPSC 422, Lecture 3

Discounted Reward Function

- ➤ Suppose the agent goes through states s₁, s₂,...,s_k and receives rewards r₁, r₂,...,r_k
- > We will look at *discounted reward* to define the reward for this sequence, i.e. its *utility* for the agent

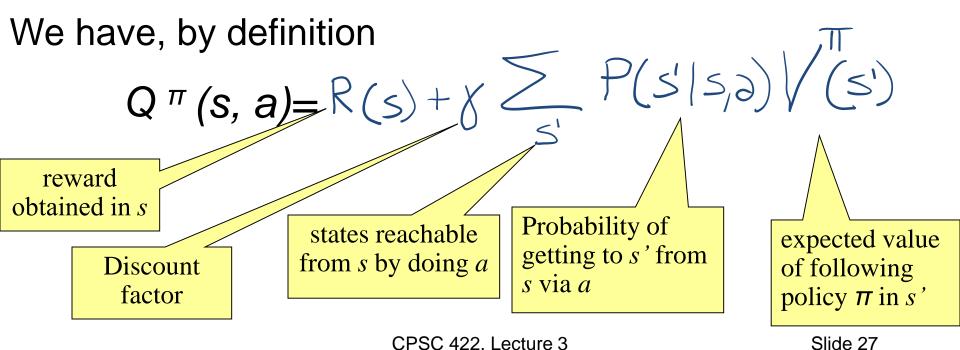
$$\gamma$$
 discount factor, $0 \le \gamma \le 1$

$$U[s_1, s_2, s_3,...] = r_1 + \gamma r_2 + \gamma^2 r_3 +$$

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $V^{\pi}(s)$: the expected value of following policy π in state s
- Q π (s, a), where a is an action: expected value of performing a in s, and then following policy π .



Learning Goals for today's class

You can:

- Compute the probability distribution on states given a sequence of actions in an MDP
- Define a policy for an MDP
- Define and Justify a discounted reward function
- Derive the Bellman equations on which Value Iteration is based (we will likely finish this in the next lecture)

TODO for Mon

Read textbook

9.5.3 Value Iteration

CPSC 322 Review "Exam"

https://forms.gle/SpQwrXfonTZrVf4P7

Based on CPSC 322 material

- Logic
- Uncertainty
- Decision Theory

Review material (e.g., 322 slides from 2017):

https://www.cs.ubc.ca/~carenini/TEACHING/CPSC322-17S/index.html