Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 28

March, 26, 2021

Slide source: from Pedro Domingos UW

422 big picture

StarAl (statistical relational Al)
Hybrid: Det +Sto
Prob CFG
Prob Relational Models
Markov Logics

Deterministic Stochastic

Logics First Order Logics Ontologies

- Full Resolution
- SAT

Query

Planning

Belief Nets

Approx. : Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx. : Particle Filtering

Undirected Graphical Models
Markov Networks
Conditional Random Fields

Markov Decision Processes and

Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of Al

Representation

Reasoning Technique

Lecture Overview

- Statistical Relational (Star-AI) Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic

Statistical Relational Models

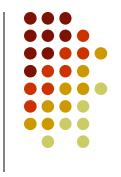
Goals:

- Combine (subsets of) logic and probability into a single language (R&R system)
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems

L. Getoor & B. Taskar (eds.), *Introduction to Statistical Relational Learning*, MIT Press, 2007.

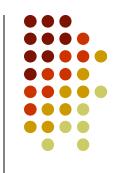
CPSC 322, Lecture 28

Plethora of Approaches



- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson & Domingos, 2006]
- And many others....!

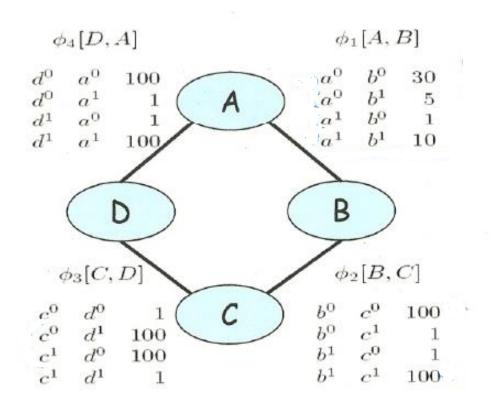
Prob. Rel. Models vs. Markov Logic



Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic
 - Markov Logic Network (MLN)

Parameterization of Markov Networks



X set of random
Vovs: Afactor is
$$\Phi(Val(x)) \rightarrow |P|$$

Factors define the local interactions (like CPTs in Bnets)
What about the global model? What do you do with Bnets?

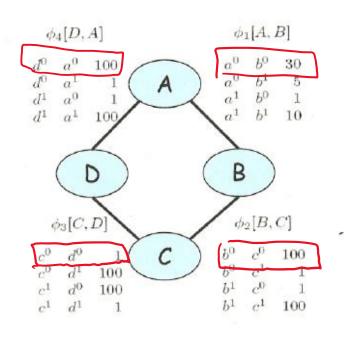
How do we combine local models?

As in BNets by multiplying them!

$$\tilde{P}(A,B,C,D) = \phi_1(A,B) \times \phi_2(B,C) \times \phi_3(C,D) \times \phi_4(A,D)$$

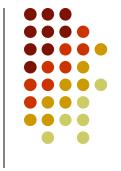
$$P(A,B,C,D) = \frac{1}{Z}\tilde{P}(A,B,C,D)$$

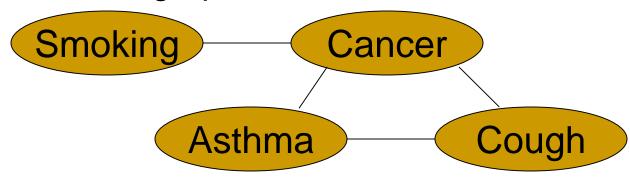
Assignment				Unnormalized	Normalized
a^0	b0	c^0	d^0	300000	.04
a^0	b^0	c^0	d^1	300000	.04
a^0 a^0 a^0	b^0	c^1	d^0	300000	.04 4.1 x 10-6
a^0	b^0	c^1	d^1	30	4.1 x 10 -6
a^{o}	b^1	c^0	d^0	500	•
a^0	b^1	c^0	d^1	500	
a^0	b^1	c^1	d^0	5000000	. 69
a^0	b^1	c^1	d^1	500	
a^1	b^0	c^0	d^0	100	
a^1	b^0	c^0	d^1	1000000	•
a^1	b^0	c^1	d^0	100	1
a^1	b^0	c^1	d^1	100	•
a^1	b^1	c^0	d^0	10	•
a^1	b^1	c^0	d^1	100000	
a^1	b^1	c^1	d^0	100000	•
a^1	b^1	c^1	d^1	100000	\



Markov Networks

Undirected graphical models





Factors/Potential-functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

$$Z = \sum_{x} \prod_{c} \Phi_{c}(x_{c})$$

Smoking	Cancer	Ф(S,C)
F	F	4.5
F	Т	4.5
Т	F	2.7
Т	Т	4.5

Markov Networks : log-linear model

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

Log-linear model:

each
$$\Phi(x_c) = e^{w_c + c(x_c)}$$

$$w_1 = 0.51$$

$$w_1 = 0.51$$

$$f_1(\text{Smoking, Cancer}) = \begin{cases} 1 & \text{if } \neg \text{ Smoking } \lor \text{ Cancer } \approx 5 \end{cases}$$

$$0 & \text{otherwise}$$

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x_{i})\right)$$
Weight of Feature *i* Feature *i*

Cancer

Cough

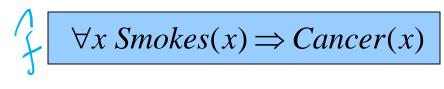
Asthma

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks
- Markov Logic

Markov Logic: Intuition(1)

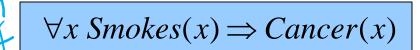
 A logical KB is a set of hard constraints on the set of possible worlds _ CONSTANT

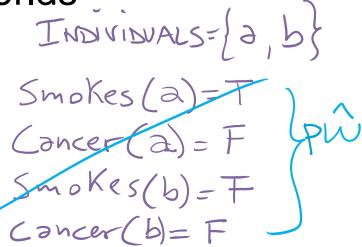


INDIVIDUALS= 12, b} Smokes (a)=T Anna A and Bob Bncer (a) = F Smokes(b)= + possible IN FOZPW 15... Cancer(b)=F

Markov Logic: Intuition(1)

 A logical KB is a set of hard constraints on the set of possible worlds





Let's make them soft constraints:
 When a world violates a formula,
 the world becomes less probable, not impossible

Markov Logic: Intuition (2)

 The more formulas in the KB a possible world satisfies the more it should be likely

- Give each formula a weight
- Adopting a log-linear model, by design, if a possible world satisfies a formula its probability should go up proportionally to exp(the formula weight).

P(world)
$$\propto \exp(\sum \text{weights of formulas it satisfies})$$

That is, if a possible world satisfies a formula its **log probability** should go up proportionally to the formula weight.

$$log(P(world)) \propto \left(\sum weights of formulas it satisfies\right)$$

CPSC 322, Lecture 28

Markov Logic: Definition

- A Markov Logic Network (MLN) is
 - a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
 - Together with a set C of constants,
- It defines a Markov network with
 - One binary node for each grounding of each predicate in the MLN
 - One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

Grounding: substituting vars with constants

(not required)consider Existential and functions

Table 2.2: Construction of all groundings of a first-order formula under Assumptions 2.2-2.4.

```
function Ground(F)
  input: F, a formula in first-order logic
  output: G_F, a set of ground formulas
for each existentially quantified subformula \exists x \ S(x) in F
   F \leftarrow F with \exists x \ S(x) replaced by S(c_1) \lor S(c_2) \lor \ldots \lor S(c_{|C|}),
     where S(c_i) is S(x) with x replaced by c_i
G_F \leftarrow \{F\}
for each universally quantified variable x
  for each formula F_i(x) in G_F
     G_F \leftarrow (G_F \setminus F_i(x)) \cup \{F_i(c_1), F_i(c_2), \dots, F_i(c_{|C|})\},\
        where F_i(c_i) is F_i(x) with x replaced by c_i
for each formula F_i \in G_F
  repeat
     for each function f(a_1, a_2, ...) all of whose arguments are constants
     F_j \leftarrow F_j with f(a_1, a_2, ...) replaced by c, where c = f(a_1, a_2, ...)
   until F_i contains no functions
return GF
```


Smoking causes cancer.

Friends have similar smoking habits.


```
\forall x \ Smokes(x) \Rightarrow Cancer(x)\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```


1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$$


```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```

Two constants: Anna A and Bob B

MLN nodes

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$



Two constants: Anna A and Bob B

One binary node for each grounding of each predicate in the MLN

Grounding: substituting vars with constants

Cancer(A)

i¤licker.

Cancer(B)

Any nodes missing?

MLN nodes (complete)

```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$$

Two constants: **Anna** (A) and **Bob** (B)

One binary node for each grounding of each predicate in the MLN

Friends(A,B)

Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Friends(B,A)

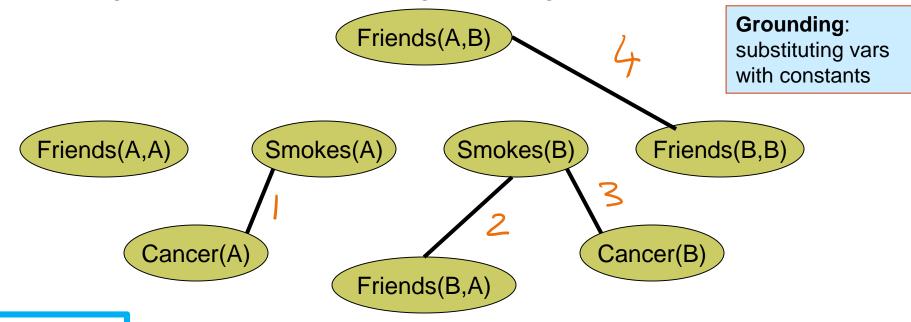
Cancer(B)

MLN features

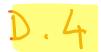
- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)

Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula

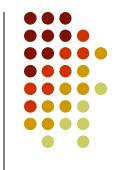


Which edge should not be there?



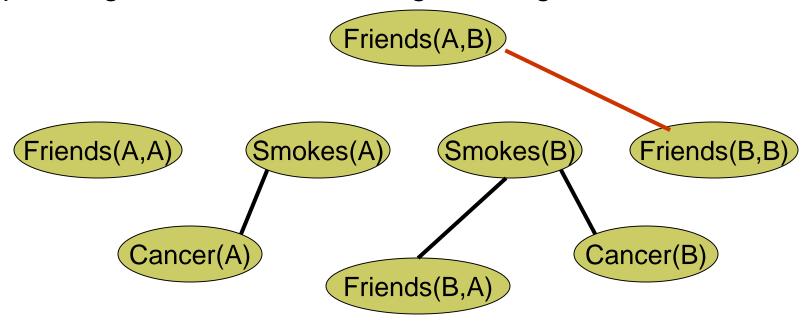
MLN features

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$



Two constants: **Anna** (A) and **Bob** (B)

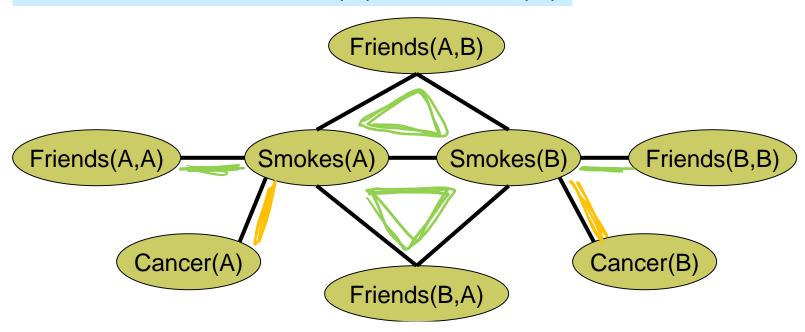
Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula



MLN features

- $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 40
- $\forall x, y \ Friends(x, y) \Rightarrow \big(Smokes(x) \Leftrightarrow Smokes(y)\big)$

Two constants: **Anna** (A) and **Bob** (B)



One feature/factor for each grounding of each formula F in the MLN

MLN: parameters

For each formula i we have a factor

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

$$f(\text{Smokes}(x), \text{ Cancer}(x)) = \begin{cases} 1 & \text{if } \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \\ 0 & \text{otherwise} \end{cases}$$

MLN: prob. of possible world

- 6
- 1.5

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

- (1)
- 1.1

 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Friends(B,A)

Cancer(B)

MLN: prob. of possible world

- 6
- 1.5

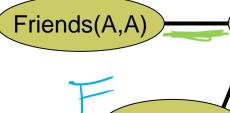
 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

- 40
- 1.1

 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

Friends(A,B)
$$P(pw) = \frac{1}{Z} \prod_{c} \Phi_{c}(pw_{c})$$



Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Friends(B,A)

Cancer(B)

MLN: prob. Of possible world

Probability of a world pw:

$$P(pw) = \frac{1}{Z} \exp \left(\sum_{i} w_{i} | n_{i}(pw) \right)$$
Weight of formula *i*
No. of true groundings of formula *i* in *pw*

Friends(A,B)

Cancer(A)

Smokes(B)

Friends(B,B)

Cancer(B)

Friends(B,A)

$$M_2(pw) = 2$$
 $M_1(pw) = 1$

 $P(world) \propto exp(\sum weights of grounded formulas it satisfies)$

Learning Goals for today's class

You can:

- Describe the intuitions behind the design of a Markov Logic
- Define and Build a Markov Logic Network
- Justify and apply the formula for computing the probability of a possible world

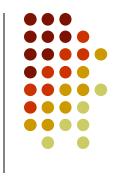
Next class on Mon

Markov Logic

- Relation to FOL
- Inference (MAP and Cond. Prob)

Assignment-3 due on Mon Assignment-4 will be out on the same day

Relation to First-Order Logic



Example pag 17

Infinite weights ⇒ First-order logic

- Satisfiable KB, positive weights ⇒
 Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

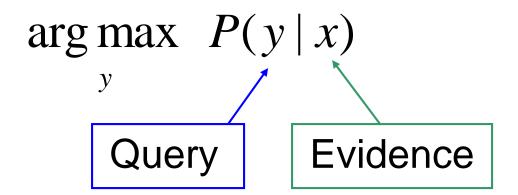
Relation to Statistical Models

- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Max. entropy models
 - Gibbs distributions
 - Boltzmann machines
 - Logistic regression
 - Hidden Markov models
 - Conditional random fields

- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

MAP Inference

 Problem: Find most likely state of world given evidence



CPSC 322, Lecture 28

 Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y) \right)$$

CPSC 322, Lecture 28

 Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

 Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al., 1997]

CPSC 322, Lecture 28

The MaxWalkSAT Algorithm


```
for i \leftarrow 1 to max-tries do
  solution = random truth assignment
  for j \leftarrow 1 to max-flips do
     if ∑ weights(sat. clauses) > threshold then
        return solution
     c \leftarrow random unsatisfied clause
     with probability p
        flip a random variable in c
     else
        flip variable in c that maximizes

∑ weights(sat. clauses)

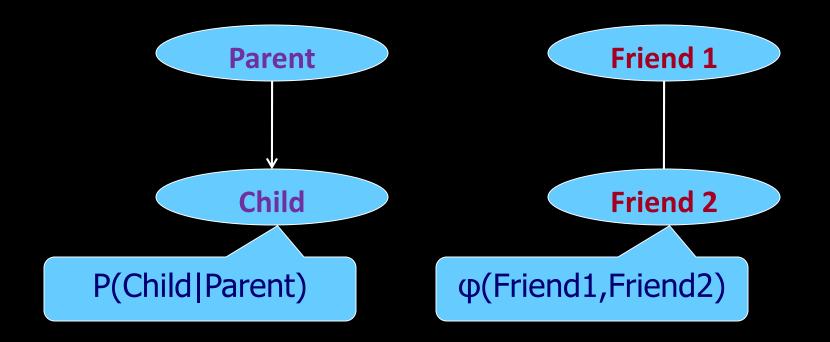
return failure, best solution found
```

Computing Probabilities

- P(Formula|MLN,C) = ?
- Brute force: Sum probs. of worlds where formula holds
- MCMC: Sample worlds, check formula holds
- P(Formula1|Formula2,MLN,C) = ?
- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives

CPSC 322, Lecture 28

Directed Models vs. Undirected Models



Undirected Probabilistic Logic Models

- Upgrade undirected propositional models to relational setting

 - Markov Random Fields \rightarrow Relational Markov Nets
 - Conditional Random Fields → Relational CRFs

Markov Logic Networks (Richardson & Domingos)

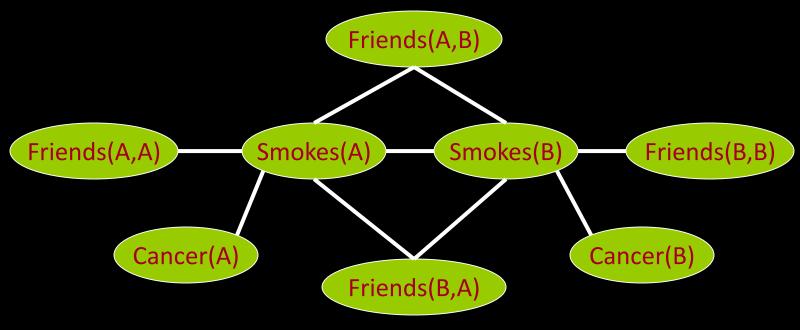
- Soften logical clauses
 - A first-order clause is a hard constraint on the world
 - Soften the constraints so that when a constraint is violated, the world is less probably, not impossible

- − Higher weight ⇒ Stronger constraint
- − Weight of ⇒ first-order logic

Probability(World S) = $(1/Z) \times \exp \{ \Sigma \text{ weight}_i \times \text{numberTimesTrue}(f_i, S) \}$

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: Anna (A) and Bob (B)



Alphabetic Soup => Endless Possibilities

- Probabilistic Relational Models (PRM)
- Bayesian Logic Programs (BLP)
- **PRISM**
- Stochastic Logic Programs (SLP)
- Independent Choice Logic (ICL)
- Markov Logic Networks (MLN)
- Relational Markov Nets (RMN)
- CLP-BN
- Relational Bayes Nets (RBN)
- Probabilistic Logic Progam (PLP)
- ProbLog

- Web data (web)
- Biological data (bio)
- Social Network Analysis (soc)
- Bibliographic data (cite)
- Epidimiological data (epi)
- Communication data (comm)
- Customer networks (cust)
- Collaborative filtering problems (cf)
- Trust networks (trust)

Recent Advances in SRL Inference

Preprocessing for Inference ☐ FROG – Shavlik & Natarajan (2009) Lifted Exact Inference Lifted Variable Elimination – Poole (2003), Braz et al(2005) Milch et al (2008) ☐ Lifted VE + Aggregation — Kisynski & Poole (2009) Sampling Methods ☐ MCMC techniques – Milch & Russell (2006) ☐ Logical Particle Filter — Natarajan et al (2008), ZettleMoyer et al (2007) Lazy Inference – Poon et al (2008) Approximate Methods ☐ Lifted First-Order Belief Propagation — Singla & Domingos (2008) ☐ Counting Belief Propagation — Kersting et al (2009) MAP Inference – Riedel (2008) **Bounds Propagation** ☐ Anytime Belief Propagation — Braz et al (2009)

Conclusion

- Inference is the key issue in several SRL formalisms
- FROG Keeps the count of unsatisfied groundings
 - □ Order of Magnitude reduction in number of groundings
 - ☐ Compares favorably to Alchemy in different domains
- Counting BP BP + grouping nodes sending and receiving identical messages
 - ☐ Conceptually easy, scaleable BP algorithm
 - ☐ Applications to challenging AI tasks
- Anytime BP Incremental Shattering + Box Propagation
 - ☐ Only the most necessary fraction of model considered and shattered
 - ☐ Status Implementation and evaluation