Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 26

March 19, 2021

CPSC 422, Lecture 26

422	big picture		StarAl (stat Hybrid: Det Prob Prob	tistic t +St CFC Rel	al relational Al)
	Deterministic	Stochastic	Mark	ov L	ogics
		Belief Nets			
	Logics First Order Logics	Approx. : Gibbs Markov Chains and HMMs			
Query	Ontologies	Forward, Vit Approx. : Pa			
	Full ResolutionSAT	Undirected (Markov N Conditiona			
Planning		Markov Decision Processes and Partially Observable MDP • Value Iteration • Approx Inference			
		Reinforcement Learning		Representatior	
	Applicatio	ons of A			Reasoning Technique

Linguistic Knowledge Formalisms NLP Map

Lecture Overview

- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning

Key Constitue	ents	Exam	ples	5_Hesd	
NP->N NP->DetX	(Spe	cifier) X	(Cor	nplement	t)
• Noun phrases (NP)	•	(Det)	Ν	(PP)	
		the	cat	on the ta	abl
 Verb phrases (VP) 	•	(Qual)	V	(NP)	
		never	eat	a cat	
 Prepositional phrases 	(PP).	(Deg)	Ρ	(NP)	
		almost	in	the net	
 Adjective phrases(AP 	?) .	(Deg)	A	(PP)	
		very	happ	y abou	t if
 Sentences (S) 	•	(NP)	(-)	(VP)	
CPSC 422, Lecture 26		a mouse	;	ate it	

Context Free Grammar (CFG)

- 4-tuple (non-term., term., productions, start)
- (N, ∑, P, S)
- P is a set of rules $A \rightarrow \alpha$; $A \in N$, $\alpha \in (\Sigma \cup N)^*$ $N = \{X,Y\} \quad \sum \{a,b,c\} \quad P = X \rightarrow Xb$

 $Y \rightarrow X X$

X->acY

Toy CFG Example for English

Grammar wit	ises	Le	xicon		
$S \rightarrow NP VP$ $NP \rightarrow Pronoun$ Proper-Noun Det Nominal Nominal $\rightarrow Noun Nominal$ Noun	I + want a morning flight I Los Angeles a + flight morning + flight flights	Not Ver Adjectiv Pronot Pronot	$un \rightarrow rb \rightarrow ve \rightarrow un \rightarrow u$	flights breeze is prefer like cheapest non – s other direct me I you it Alaska Baltimor	trip morning need want fly stop first latest e Los Angeles
VP → Verb Verb NP Verb NP PP Verb PP PP → Preposition NP	do want + a flight leave + Boston + in the morning leaving + on Thursday from + Los Angeles	Determin Prepositio Conjunctio	$er \rightarrow$ on \rightarrow on \rightarrow	Chicago Unite the a an this from to on n and or but	d American these that ear

Derivations as Trees

Example of relatively complex parse tree

Journal of the American Medical Informatics Association, 2005, Improved Identification of Noun Phrases in Clinical Radiology Reports Using a High-Performance Statistical Natural Language Parser Augmented with the UMLS Specialist Lexicon

Lecture Overview

- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning

Structural Ambiguity (Ex.2)

"I saw Mary passing by cs2"

"I saw Mary passing by cs2" (ROOT (ROOT (S **(S** (NP (PRP I)) (NP (PRP I)) (VP (VBD saw) (VP (VBD saw) (NP (NNP Mary)) **(S** (NP (NNP Mary)) **(S** (VP (VBG passing) (VP (VBG passing) (PP (IN by) (PP (IN by) (NP (NNP cs2)))))))) (NP (NNP cs2))))))))

Approx. # of parses ?

 The <u>famous Chinese cosmologists</u> and astrophysicists saw a <u>new spiral galaxy</u> with the <u>wide mirror telescope</u> in Hawaii on the night of Jan 21st at 2:34 AM.

- Catalan of 5 = 14 (5 prepositions)
- Tot= <u>2</u> x <u>2</u> x <u>2</u> x <u>2</u> x <u>14</u> = 224

Lecture Overview

- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning (acquiring the probabilities)
- Intro to Parsing PCFG

Probabilistic CFGs (PCFGs)

- GOAL: assign a probability to parse trees and to sentences
- Each grammar rule is augmented with a conditional probability
 - If these are <u>all the rules for VP</u> and .55
 is P(VP->Verb | VP)
 VP > Verb 55
 - VP -> Verb .55
 - VP -> Verb NP .40
 - VP -> Verb NP NP ??
 - What should ?? be ?

- B. 0 C. 0.05
- D. 0.42
- E. None of the above

Probabilistic CFGs (PCFGs)

- GOAL: assign a probability to parse trees and to sentences
- Each grammar rule is augmented with a conditional probability
 - The expansions for a given non-terminal sum to 1
 - $VP \rightarrow Verb NP VP \rightarrow Verb NP NP VP \rightarrow Verb NP NP VP \rightarrow Verb NP NP (VP \rightarrow Verb NP NP VP) VP (VP \rightarrow Verb NP NP) VP)$

Formal Def: 5-tuple (N, Σ, P, S, D)

Sample PCFG

$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.05] \mid the [.80] \mid a$	a[.15]
$S \rightarrow Aux NP VP$	[.15]	Noun \rightarrow book	[.10]
$S \rightarrow VP$	[.05]	Noun \rightarrow flights	[.50]
$NP \rightarrow Det Nom$	[.20]	Noun \rightarrow meal	[.40]
$NP \rightarrow Proper-Noun$	[.35]	$Verb \rightarrow book$	[.30]
$NP \rightarrow Nom$	[.05]	$Verb \rightarrow include$	[.30]
$NP \rightarrow Pronoun$	[.40]	$Verb \rightarrow want$	[.40]
$Nom \rightarrow Noun$	[.75]	$Aux \rightarrow can$	[.40]
$Nom \rightarrow Noun Nom$	[.20]	$Aux \rightarrow does$	[.30]
Nom ightarrow Proper-Noun Nom	[.05]	$Aux \rightarrow do$	[.30]
$VP \rightarrow Verb$	[.55]	$Proper-Noun \rightarrow TWA$	[.40]
$VP \rightarrow Verb NP$	[.40]	$Proper-Noun \rightarrow Denver$	[.40]
$VP \rightarrow Verb NP NP$	[.05]	$Pronoun \rightarrow you[.40] \mid I[.60]$	

PCFGs are used to

- Estimate Prob. of parse tree
 - A. Sum of the probs of all the rules applied
 - B. Product of the probs of all the rules applied
 - Estimate Prob. of a sentence
 A. Sum of the probs of all the parse trees
 - B. Product of the probs of all the parse trees

PCFGs are used to....

• Estimate Prob. of parse tree

• Estimate Prob. to sentences

CPSC 422, Lecture 26

Lecture Overview

- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning (acquiring the probabilities)

Treebanks

- Definition: corpora in which each sentence has been paired with a parse tree
- These are generally created
 - Parse collection with parser
 - human annotators revise each parse
- Requires detailed annotation guidelines
 - POS tagset
 - Grammar
 - instructions for how to deal with particular grammatical constructions.

Treebanks

- Definition: corpora in which each sentence has been paired with a parse tree
- These are generally created
 - By human annotators
- Requires detailed annotation guidelines
 - POS tagset
 - Grammar
 - instructions for how to deal with particular grammatical constructions.

Penn Treebank Penn TreeBank is a widely used treebank. Trees are in bracket notation ('' '')Most well (S-TPC-2 5-TPC-2 ? NP-SBJ (NP-SBJ-1 (PRP We)) known is the (VP (MD would) (VP (VB have) Wall Street PRP (S Journal section NP-SBJ-1 (NP-SBJ (-NONE - *-1))Ì₿Ŋ (VP (TO to) of the Penn (VP (VB wait) TreeBank. (SBAR-TMP (IN until) (S ■1 M words (NP-SBJ (PRP we)) (VP (VBP have) from the 1987-(VP (VBN collected) 1989 Wall Street (PP-CLR (IN on) Journal. (NP (DT those)(NNS assets)))))))))))))))) (,,) ('' '')(NP-SBJ (PRP he)) (VP (VBD said) (S (-NONE - *T* - 2)))26 CPSC 422, Lt (. .))

1. 2. 3. 4. 5.	CC CD DT EX FW	Coordinating conjunction Cardinal number Determiner Existential there Foreign word
<mark>6.</mark>	IN	Preposition or subordinating conjunction
7. 8. 9. 10. 11. 12.	JJ JJR JJS LS MD NN	Adjective Adjective, comparative Adjective, superlative List item marker Modal Noun, singular or mass
13.	NNS	Noun, plural
14.	NNP	Proper noun, singular
15.	NNPS	Proper noun, plural
10.	PDT	Predeterminer
1/.	PUS DOD	Possessive ending
10.		Personal pronoun
20	ГКГФ DD	Adverb
20.		Adverb comparative
22	DRS	Adverb superlative
23	RP	Particle
24.	SYM	Symbol
25.	TO	to
26.	UH	Interjection
27.	VB	Verb, base form
28.	VBD	Verb, past tense
29.	VBG	Verb, gerund or present participle
30.	VBN	Verb, past participle
31.	VBP	Verb, non-3rd person singular present
32.	VBZ	Verb, 3rd person singular present
33.	WDT	Wh-determiner
34.	WP	Wh-pronoun
35.	WP\$	Possessive wh-probably C 422, Lecture 26
36.	WRB	Wh-adverb

Treebank Grammars

- Such grammars tend to contain lots of rules....
- For example, the Penn Treebank has 4500 different rules for VPs! Among them...

Heads in Trees

- Finding heads in treebank trees is a task that arises frequently in many applications.
 - Particularly important in statistical parsing (e.g., with PCFG)
- We can visualize this task by annotating the nodes of a parse tree with the heads of each corresponding node.

Lexically Decorated Tree

Head Finding

- The standard way to do head finding is to use a simple set of tree traversal rules specific to each non-terminal in the grammar.
- Each rule in the PCFG specifies where the head of the expanded non-terminal should be found

Acquiring Grammars and Probabilities

Manually parsed text corpora (e.g., PennTreebank)

- Grammar: read it off the parse trees
 Ex: if an NP contains an ART, ADJ, and NOUN then we create the rule NP -> ART ADJ NOUN.
- Probabilities:

 $\frac{\operatorname{count}(A \to \mathcal{N})}{\operatorname{Secout}(A \to \mathcal{N})} = \frac{\operatorname{count}(A \to \mathcal{N})}{\operatorname{count}(A)}$ $P(A \rightarrow \alpha | A) =$

Ex: if the NP -> ART ADJ NOUN rule is used 50 times and all NP rules are used 5000 times, then the rule's probability is ... P

CPSC 422, Lecture 26

Example
if you look at all the parse trees in the
bank you find three rules for NP

$$O$$
 NP->ART ADJ NOUN
 O NP-> ART ADJ NOUN
 O NP-> PRONOUN
 O NP

Learning Goals for today's class

You can:

- Provide a formal definition of a PCFG
- Apply a PCFG to compute the probability of a parse tree of a sentence as well as the probability of a sentence
- Describe the content of a treebank
- Describe the process to identify a head of a syntactic constituent
- Compute the probability distribution of a PCFG from a treebank

Next class Mon (March 22)

- Parsing Probabilistic CFG: CKY parsing
- PCFG in practice: Modeling Structural and Lexical Dependencies

Keep working on Assignment-3 due Mar 30 (8-18 hours - working in pairs on programming parts is strongly advised)