Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 21

March, 5, 2019

Slide credit: some slides adapted from Stuart Russell (Berkeley), some from Prof. Carla P. Gomes (Cornell)

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Start Encoding Example

Proof by resolution

Models of KB

$$
\text { Models of } \alpha
$$

$$
\text { Models of } \rightarrow \alpha
$$

$K B \mid=\alpha$

equivalent to : $K B \wedge \neg \alpha$ unsatifiable

Key ideas

- Simple Representation for Conjunctive
- Simple Representation for $K B \wedge \neg \alpha$ Form
- Simple Rule of Derivation
Resolution

CPSC 322, Lecture 19

Full Propositional Logics: Summary

DEFs.

Literal: an atom or a negation of an atom $p \neg q r$
Complementary Literals: an atom and its negation r ir
Clause: is a disjunction of literals $p \vee \neg 8 \vee q$
Conjunctive Normal Form (CNF): a conjunction of clauses
INFERENCE:
$K B \stackrel{?}{=} \alpha \Delta \sim$ formula $(P) \wedge(q \vee \neg r) \wedge(\neg q \vee p)$

- Convert all formulas in KB and $\uparrow \alpha$ in CNF
- Apply Resolution Procedure

Conjunctive Normal Form (CNF)

Rewrite $K B \wedge \neg \alpha$ into conjunction of disjunctions

- Any KB can be converted into CNF!

Example: Conversion to CNF

$A \Leftrightarrow(B \vee C)$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$. $(A \Rightarrow(B \vee C)) \wedge((B \vee C) \Rightarrow A)$
2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$. $(\neg A \vee B \vee C) \wedge(\neg(B \vee C) \vee A)$
3. Using de Morgan's rule replace $\neg(\alpha \vee \beta)$ with $(\neg \alpha \wedge \neg \beta)$: $(\neg A \vee B \vee C) \wedge((\neg B \wedge \neg C) \vee A)$
4. Apply distributive law $(\vee$ over $\wedge)$ and flatten:
$(\neg A \vee B \vee C) \wedge(\neg B \vee A) \wedge(\neg C \vee A)$

Example: Conversion to CNF

$A \Leftrightarrow(B \vee C)$
5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:
$(\neg A \vee B \vee C)$
$(\neg B \vee A)$
$(\neg C \vee A)$

Full Propositional Logics: Summary

DEF.

Literal: an atom or a negation of an atom $p \neg q r$
Complementary Literals: an atom and its negation r $7 r$
Clause: is a disjunction of literals $p \vee \neg 8 \vee q$
Conjunctive Normal Form (CNF): a conjunction of clauses
INFERENCE: $\quad K B \stackrel{?}{=} \alpha \sim \sim$ formula $(P) \wedge C$

- Apply Resolution Procedure

$$
\begin{aligned}
p \vee q \quad r \vee \neg q & \rightarrow p \vee r \\
& K B K \alpha
\end{aligned}
$$

Resolution Deduction step

Resolution: inference rule for CNF: sound and complete! *
$(A \vee B \vee C)$
$(\neg A)$

$\therefore(B \vee C)$
$(A \vee B \vee C)$
$(\neg A \vee D \vee E)$
$\therefore(B \vee C \vee D \vee E)$
$(A \vee B)$
$(\neg A \vee B)$
$\therefore(B \vee B) \equiv B$
"If A or B or C is true, but not A , then B or C must be true."
"If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true."

Resolution Algorithm

- The resolution algorithm tries to prove: $K B \models \alpha$
- KB $\wedge \neg \alpha$ is converted in CNF
- Resolution is applied to each pair of clauses with complementary literals
- Resulting clauses are added to the set (if not already there)
- Process continues until one of two things can happen:

$$
\begin{aligned}
& \text { lings can happen: } \\
& \text { - assum ing Tesol : is sound }
\end{aligned}
$$

1. Two clauses resolve in the empty/clause. ie. query is entailed $P \neg P \rightarrow \varnothing>\left.K B\right|_{R} \alpha$

. I

Resolution example

$K B=(A \Leftrightarrow(B \vee C)) \wedge \neg A$

$$
\alpha=\neg B
$$

False in all worlds

Resolution algorithm

Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable
function PL-ReSolution $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query,
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$
new $-\{ \}$
loop do
for each C_{i}, C_{y} in clauses do
resolvents $\leftarrow \mathrm{PL}-\mathrm{RESOLVE}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true
new \leftarrow new \cup resolvents
if new \subseteq clauses then return folse jno new clauses were created clauses \leftarrow clauses \cup new

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Hardness of SAT
- Start Encoding Example

Satisfiability problems

Consider a CNF sentence, e.g.,

$$
\begin{aligned}
& (\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B \vee E) \\
& \wedge(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)
\end{aligned}
$$

Is there an interpretation in which this sentence is true (i.e., that is a model of this sentence)?

Many combinatorial problems can be reduced to checking the satisfiability of propositional sentences (example later)... and returning the model

How can we solve a SAT problem?

Consider a CNF sentence, e.g.,
$(\neg D \vee \neg B \vee C) \wedge(A \vee C) \wedge(\neg C \vee \neg B \vee E) \wedge(E \vee \neg D$
$\vee B) \wedge(B \vee E \vee \neg C)$
Each clause can be seen as a constraint that reduces the number of interpretations that can be models
$E g(A \vee C)$ eliminates interpretations in which $A=F$ and $C=F$

So SAT is a Constraint Satisfaction Problem: Find a possible world that is satisfying all the constraints (here all the clauses)

WalkSAT algorithm

(Stochastic) Local Search Algorithms can be used for this task!
Evaluation Function: number of unsatisfied clauses
WalkSat: One of the simplest and most effective algorithms:
Start from a randomly generated interpretation

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)

1. Randomly
2. To minimize \# of unsatisfied clauses

Pseudocode for WalkSAT

function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move
max-flips, number of flips allowed before giving up
pw \leftarrow a random assignment of true/false to the symbols in clauses for $i=1$ to max-flips do
if pw satisfies clauses then return pw
clause \leftarrow a randomly selected clause from clauses that is false in pw
1 with probability p flip the value in pw of a randomly selected symbol from clause
2 else flip whichever symbol in clause maximizes the number of satisfied clauses return failure
pw = possible world / interpretation

The WalkSAT algorithm

If it returns failure after it tries max-flips times, what can we say?
A. The sentence is unsatisfiable B. Nothing
C. The sentence is satisfiable

Typically most useful when we expect a solution to exist

Hard satisfiability problems

Consider random 3-CNF sentences. e.g.,
$(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B \vee E) \wedge(E$ $\vee \neg D \vee B) \wedge(B \vee E \vee \neg C)$
$m=$ number of clauses (5)
$n=$ number of symbols (5)

- Under constrained problems:
\checkmark Relatively few clauses constraining the variables
\checkmark Tend to be easy
E.g. For the above problem16 of 32 possible assignments are solutions - (so 2 random guesses will work on average)

Hard satisfiability problems

What makes a problem hard?

- Increase the number of clauses while keeping the number of symbols fixed
- Problem is more constrained, fewer solutions
- You can investigate this experimentally....

P(satisfiable) for random 3-CNF sentences, $\mathbf{n}=50$ symbols

- Hard problems seem to cluster near $m / n=4.3$ (critical point)

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Start Encoding Example

Encoding the Latin Square Problem in Propositional Logic

In combinatorics and in experimental design, a Latin square is

- an $n \times n$ array
- filled with n different symbols,
- each occurring exactly once in each row and exactly once in each column.

Here is an example:

A	B	C
C	A	B
B	C	A

Here is another one:

Encoding Latin Square in Propositional Logic: Propositions

Variables must be binary! (They must be propositions)
Each variables represents a color assigned to a cell. Assume colors are encoded as integers

$$
x_{i j k} \in\{0,1\}
$$

Assuming colors are encoded as follows (black, 1) (red, 2) (blue, 3) (green, 4) (purple, 5)
$x_{233}={ }^{\circ}$ True orfalse, ie. 1 or 0 with respect to the interpretation represented by the picture?

How many vars/propositions overall?
n

Encoding Latin Square in Propositional Logic: Clauses

- Some color must be assigned to each cell (clause of length n); irclicker.

$$
\forall_{i j}\left(x_{i j 1} \vee x_{i j 2} \ldots x_{i j n}\right) \quad \forall_{i k}\left(x_{i 1 k} \vee x_{i 2 k} \cdots x_{i n k}\right)
$$

- No color is repeated in the same row (sets of negative binary clauses);

$$
\forall_{i k}\left(\neg x_{i 1 k} \vee \neg x_{i 2 k}\right) \wedge\left(\neg x_{i 1 k} \vee \neg x_{i 3 k}\right) \ldots\left(\operatorname{rix}_{i 1 k} \vee \neg x_{i n k}\right) \cdots\left(\neg x_{i n k} \vee \neg x_{i(n-1) k}\right)
$$

to the tigsiging all colors
cell of each row How many clauses?

Logics in AI: Similar slide to the one for

Relationships between different
Logics (better with colors)

Learning Goals for today's class

You can:

- Specify, Trace and Debug the resolution proof procedure for propositional logics
- Specify, Trace and Debug WalkSat
- Encode the Latin square problem in propositional logics (basic ideas)

Next class Wed (Midterm on Mon)

- Finish SAT example
- First Order Logic
- Extensions of FOL
- Assignment-3 will be posted on Fri!

Midterm, Mon, March 8, Will be a Canvas Quiz We will start at 4pm sharp 55 minutes

Add stuff from piazza: alternative offer etc.

Midterm, Mon, March 8, Will be a Canvas Quiz We will start at 4pm sharp 55 minutes

How to prepare...

- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture - complete list has been posted)
- Revise all the clicker questions and practice exercises
- Practice material has been posted
- Check questions and answers on Piazza

David Buchman and Professor David Poole are the recipients of the UAI 2017
Best Student Paper Award, "Why Rules are Complex: RealValued Probabilistic Logic Programs are not Fully Expressive". This paper proves some surprising results about what can and what cannot be represented by a popular method that combines logic and probability. Such models are important as they let us go beyond features in machine learning to reason about objects and relationships with uncertainty.

