Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 20

Mar, 3, 2021

Slide credit: some slides adapted from Stuart Russell (Berkeley), some from Padhraic Smyth (UCIrvine)

			StarAI (statistical relational AI)		
422	hia nicture	Hybrid: Det +Sto			
	big picture		Prob	CFG	;
			Prob	Rel	ational Models
	Deterministic	Stochastic	Mark	ov L	ogics
		Belief Nets			
Query	Logics	Approx. : Gibbs			
	First Order Logics	Markov Chains and HMMs			
	Ontologies	Forward, Viterbi			
		Approx. : Particle Filtering			
	Full ResolutionSAT	Undirected Graphical Models Markov Networks Conditional Random Fields			
Planning		Markov Decision Processes and Partially Observable MDP			
		Value	teration		
		Approx	x. Inference		
г		Reinforcement Learning			Representation
	Applicatio	ns of A	1]	Reasoning Technique

Logics in AI (322): Similar slide to the one for planning Bυ Semantics and Proof **Propositional Definite Clause Logics** Theory complete Datalog 422 Satisfiability Testing (SAT) **First-Order** Propositional Logics Logics Hardware Verification Description **Production Systems** Logics **Product Configuration Ontologies** you will know a little **Cognitive Architectures** Semantic Web Some Application. Video Games Summarization **Tutoring Systems** Information CPSC 322, Lecture 20 Extraction

Relationships between different LOGICS (better with colors) First Order Logic Datalog $p(X) \leftarrow q(X) \land r(X,Y)$ $\forall X \exists Yp(X,Y) \Leftrightarrow \neg q(Y)$ $r(X,Y) \leftarrow S(Y)$ $P(\partial_1, \partial_2)$ $S(\partial_1), Q(\partial_2)$ $-q(\partial_5)$ PDCL Propositional Logic pt snf $7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{f}$ rESAGAP CPSC 322, Lecture 20

Lecture Overview

- Basics Recap: Interpretation / Model /...
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation *I* assigns a truth value to each atom.

Definition (truth values of statements cont'**)**: A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

PDC Semantics: Knowledge Base (KB)

• A knowledge base KB is true in I if and only if every clause in KB is true in I.

	р	q	r	S	
I ₁	true	true	false	false	i⊧clicker.

Which of the three KB below is *true* in I_1 ?

PDC Semantics: Knowledge Base (KB)

• A knowledge base KB is true in I if and only if every clause in KB is true in I.

Which of the three KB above is True in I_1 ? **KB**₃

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation *I* assigns a truth value to each atom.

Definition (truth values of statements cont'**):** A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Definition (model)

A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Example: Models									
				$\int p \leftarrow q.$					
$KB = \begin{cases} q. \end{cases}$									
	р	q	r	s $r \leftarrow s$.					
$\overline{\mathcal{A}}_{1}$	true	true	true	true M	Which interpretations are				
I ₂	false	false	false	false $ imes$	models?				
I_3	true	true	false	false M					
I_4	true	true	true	false M					
I_5	true	true	false	true 🔀					

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation *I* assigns a truth value to each atom.

Definition (truth values of statements cont'**)**: A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Definition (model)

A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Definition (logical consequence)

If *KB* is a set of clauses and *G* is a conjunction of atoms, *G* is a logical consequence of *KB*, written $KB \models G$, if *G* is *true* in every model of *KB*.

Example: Logical Consequences q S р r $\begin{cases} Models \\ KB = \begin{cases} p \leftarrow q. \ \text{if } \\ \frac{q.}{r \leftarrow s. \ \text{if }} \end{cases}$ \mathbf{I}_1 true true true true false true I_2 true true false false **|**3 true true false trúe true true 2⁴ = 16 interpretations in total, only 3 are models false true true true false false true true 6 faise false false true false false true true remaining 8 connot be models become 9 become 9 is tolse F 1 Which of the following is true? • $(KB \models q, KB \models p, KB \models s, KB \models r$ CPSC 322, Lecture 20

Is it true that if

M(KB) is the set of all models of KB $M(\alpha)$ is the set of all models of α $= \alpha$ if and only if $M(KB) \subseteq M(\alpha)$ Then KBof KB MCa yes R. nO C. It depends All interpretations

Basic definitions from 322 (Proof Theory)

Definition (soundness)

A proof procedure is sound if $KB \vdash G$ implies $KB \models G$.

Definition (completeness)

A proof procedure is complete if $KB \models G$ implies $KB \vdash G$.

Lecture Overview

- Basics Recap: Interpretation / Model /
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Relationships between different LOGICS (better with colors) First Order Logic Datalog $p(X) \leftarrow q(X) \land r(X,Y)$ $\forall X \exists Yp(X,Y) \Leftrightarrow \neg q(Y)$ $r(X,Y) \leftarrow S(Y)$ $P(\partial_1, \partial_2)$ $S(\partial_1), Q(\partial_2)$ $-q(\partial_5)$ PDCL Propositional Logic pt snf $7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{f}$ rESAGAP CPSC 322, Lecture 20

Propositional logic: Syntax

Atomic sentences = single proposition symbols

- E.g., P, Q, R
- Special cases: True = always true, False = always false

Complex sentences:

- If S is a sentence, ¬S is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Logical equivalence

Two sentences are logically equivalent iff true in same interpretations they have the same models $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$ $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg\alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

$$\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Rightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$$

Can be used to rewrite formulas....

 $(p \Rightarrow 7(q \Lambda r))$ $\Rightarrow 7 p \vee 7(q \Lambda r)$

CPSC 322, Lecture 20

Mr. N BL. Ndle

$$\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \wedge (\rho \Rightarrow 7 (\rho \wedge \gamma)) \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \quad \neg \rho \vee \neg (\rho \wedge \gamma) \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$$

Can be used to rewrite formulas.... $(P \Rightarrow \neg (\circ \land r))$

(g/r)=>7P

 $\gamma(q\Lambda\sigma)V\gamma P$ 947779

Validity and satisfiability

A sentence is valid if it is true in all interpretations e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$ Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid There is no I where $KB is f \Rightarrow b$ $M \land is frue$ A sentence is satisfiable if it is true in some interpretation e.g., $A \lor B$, C

A sentence is unsatisfiable if it is true in **no** interpretations e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable i.e., prove α by *reductio ad absurdum*

Validity and satisfiability

A sentence is satisfiable if it is true in some interpretations e.g., $A \lor B$, C

A sentence is unsatisfiable if it is true in **no** interpretations e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following: $\begin{array}{c} KB \models \alpha \\ \text{if and only if } (KB \land \neg \alpha) \text{ is unsatisfiable} \\ \text{i.e., prove } \alpha \text{ by } reductio \ ad \ absurdum \end{array}$

Validity and Satisfiability

Validity and Satisfiability true in all models - iclicker. (X is valid iff id unsatisfiable) t The statements shove are: A: All talse B: Some true Some false (· All true

Lecture Overview

- Basics Recap: Interpretation / Model /
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Proof by resolution

Conjunctive Normal Form (CNF)

Rewrite $KB \land \neg \alpha$ into conjunction of disjunctions

• Any KB can be converted into CNF !

Example: Conversion to CNF

- $\mathsf{A} \iff (\mathsf{B} \lor \mathsf{C})$
- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. (A \Rightarrow (B \lor C)) \land ((B \lor C) \Rightarrow A)
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. ($\neg A \lor B \lor C$) $\land (\neg (B \lor C) \lor A$)
- 3. Using de Morgan's rule replace $\neg(\alpha \lor \beta)$ with $(\neg \alpha \land \neg \beta)$: $(\neg A \lor B \lor C) \land ((\neg B \land \neg C) \lor A)$
- 4. Apply distributive law (\lor over \land) and flatten: ($\neg A \lor B \lor C$) \land ($\neg B \lor A$) \land ($\neg C \lor A$)

Example: Conversion to CNF

- $\mathsf{A} \ \Leftrightarrow (\mathsf{B} \lor \mathsf{C})$
- 5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:

$$(\neg A \lor B \lor C)$$

 $(\neg B \lor A)$
 $(\neg C \lor A)$

. . .

Learning Goals for today's class

You can:

- Describe relationships between different logics
- Apply the definitions of Interpretation, model, logical entailment, soundness and completeness
- Define and apply satisfiability and validity
- Convert any formula to CNF
- Justify and apply the resolution step

Next Class Fri

- Finish Resolution
- Another proof method for Prop. Logic Model checking - Searching through truth assignments. Walksat.

Start First Order Logics

Midterm, Mon, March 8 Will be a Canvas Quiz We will start at 4pm sharp 55 minutes

How to prepare...

- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture – complete list has been posted)
- Revise all the clicker questions and practice exercises
- Practice material has been posted
- Check questions and answers on Piazza