Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 2

Jan, 13, 2021

CPSC 422, Lecture 2

Slide 1

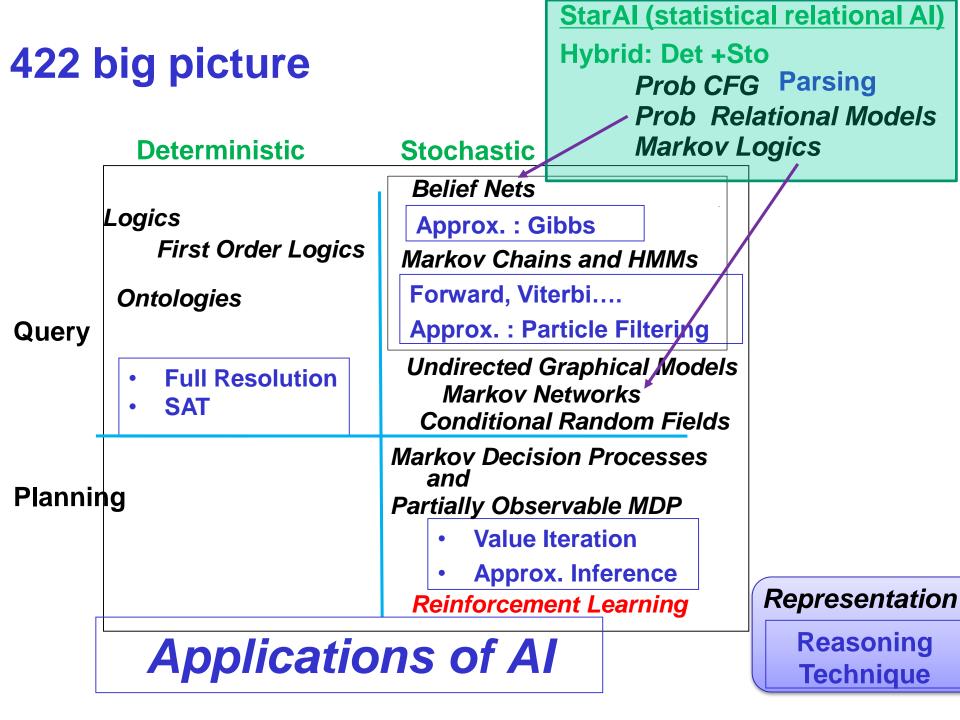
Lecture Overview

Value of Information and Value of Control

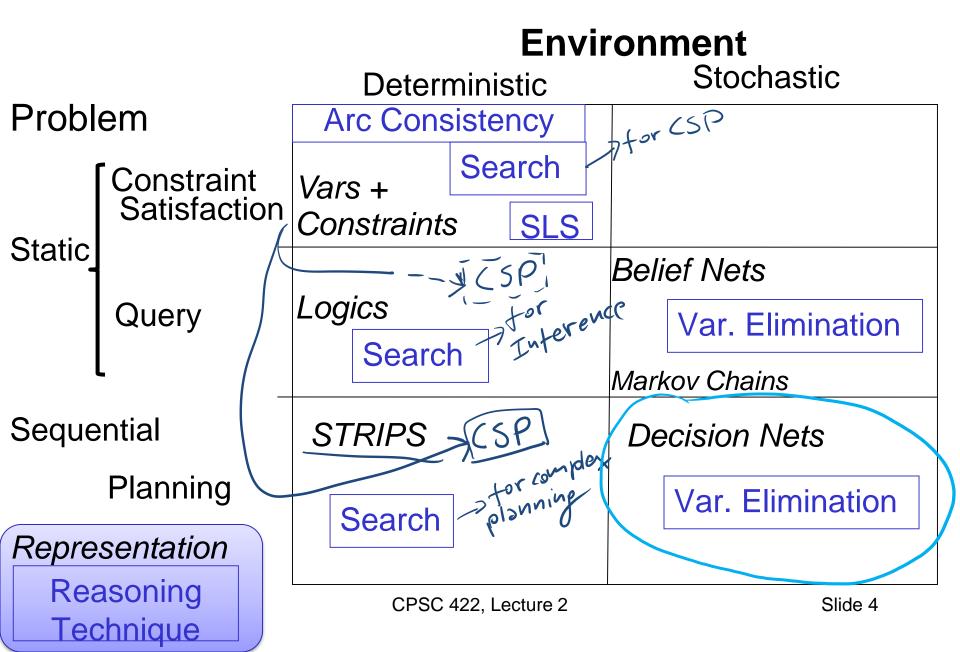
Recap Markov Chain

Markov Decision Processes (MDPs)

Formal Specification and example

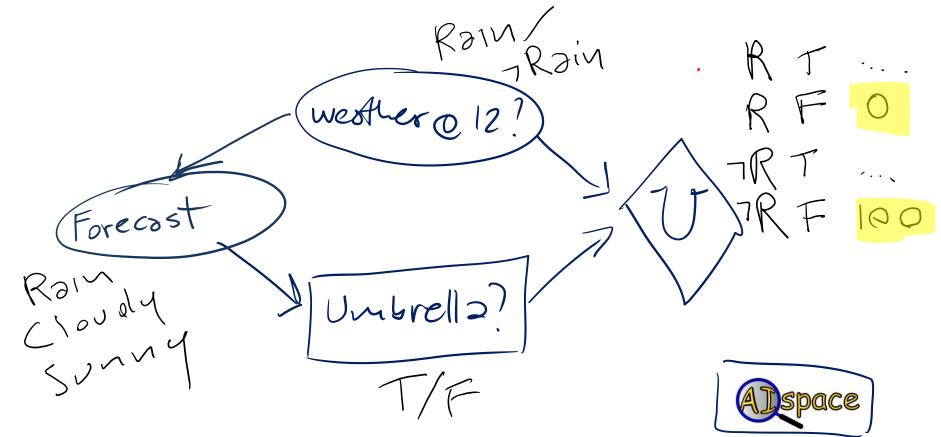


Cpsc 322 Big Picture



Simple Decision Net

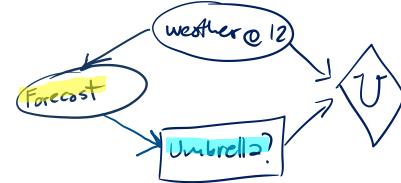
- Early in the morning. Shall I take my **umbrella** today? (I'll have to go for a long walk at noon)
- Relevant Random Variables... with reasonable values...

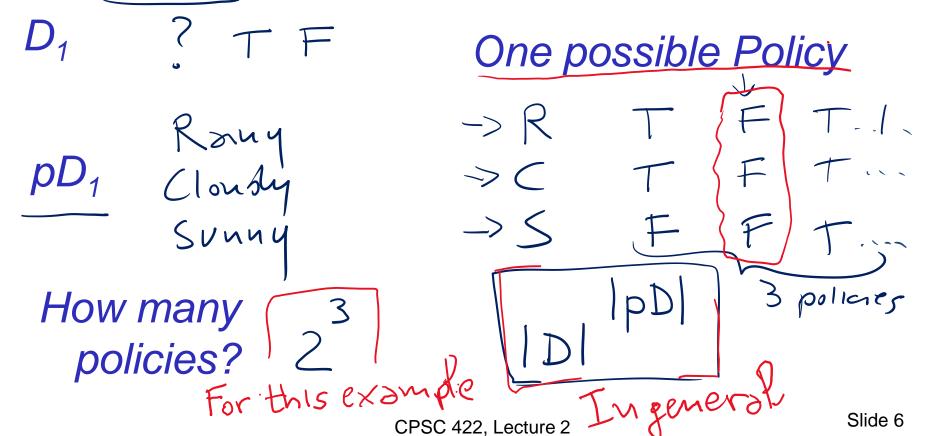


Polices for Umbrella Problem

 A policy specifies what an agent should do under each circumstance (for each decision, consider the parents of the decision node)

In the Umbrella case:





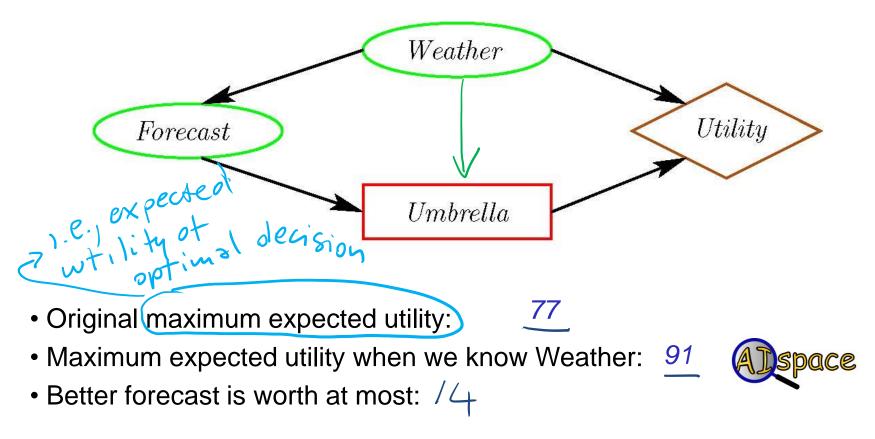


- Early in the morning. I listen to the weather forecast, shall I take my umbrella today? (I'll have to go for a long walk at noon)
- What would help the agent make a better *Umbrella* decision?

- The value of information of a random variable X for decision D is: EU (Knowing X) EU(not knowing)
 the utility of the network with an arc from X to D
 minus the utility of the network without the arc.
- Intuitively:
 - The value of information is always $> \bigcirc$
 - It is positive only if the agent changes its policy

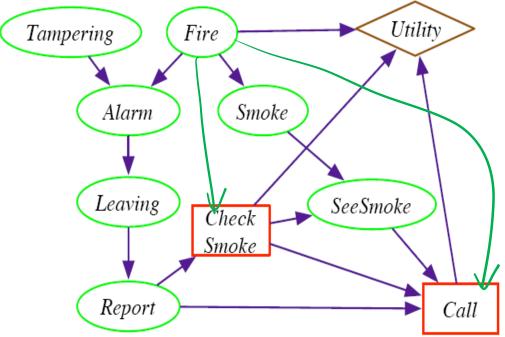
Value of Information (cont.)

• The value of information provides a bound on how much you should be prepared to pay for a sensor. How much is a **perfect** weather forecast worth?



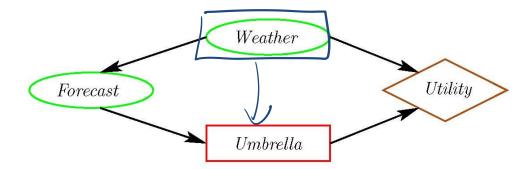
Value of Information

• The value of information provides a bound on how much you should be prepared to pay for a sensor. How much is a **perfect** fire sensor worth?



- Original maximum expected utility: -22.6
- Maximum expected utility when we know Fire:
- Perfect fire sensor is worth: 20.6

-2



• What would help the agent to make an even better *Umbrella* decision? To maximize its utility.

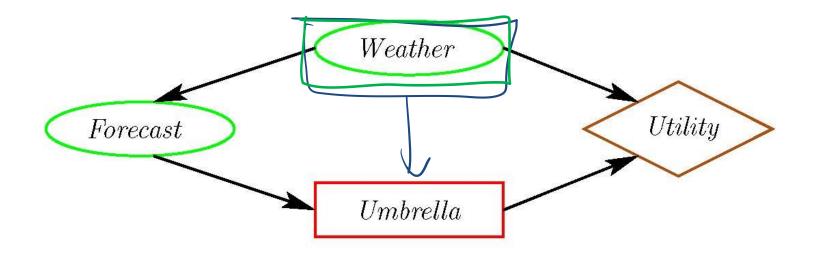
	Weather	Umbrella	Value
	Rain	true	70
	Rain	false	0
	noRain	true	20
X	noRain	false	100

• The value of control of a variable X is :

the utility of the network when you make X a decision variable **minus** the utility of the network when X is a random variable.

Value of Control

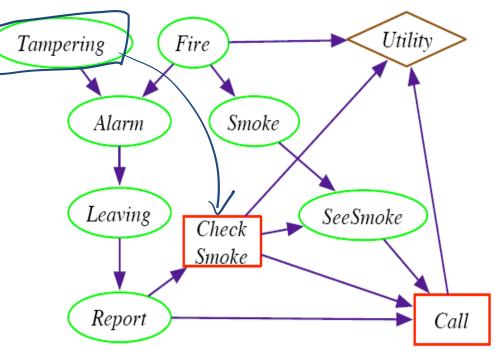
• What if we could control the weather?



- Original maximum expected utility: 77
- Maximum expected utility when we control the weather: 100
- Value of control of the weather: 23

Value of Control

• What if we control Tampering?



• Original maximum expected utility:

• Maximum expected utility when we control the Tampering: -20.7

- Value of control of Tampering: 1. 9
- Let's take a look at the optimal policy
- Conclusion: do not tamper with fire alarms!

CPSC 422, Lecture 2

-22.6

Lecture Overview

Value of Information and Value of Control

Recap Markov Chain

Markov Decision Processes (MDPs)

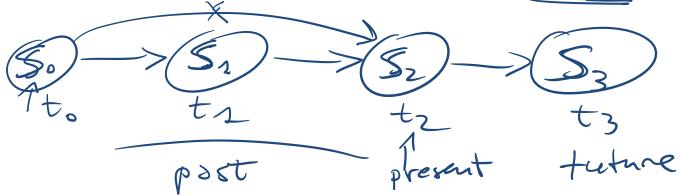
• Formal Specification and example

Lecture Overview (from my 322)

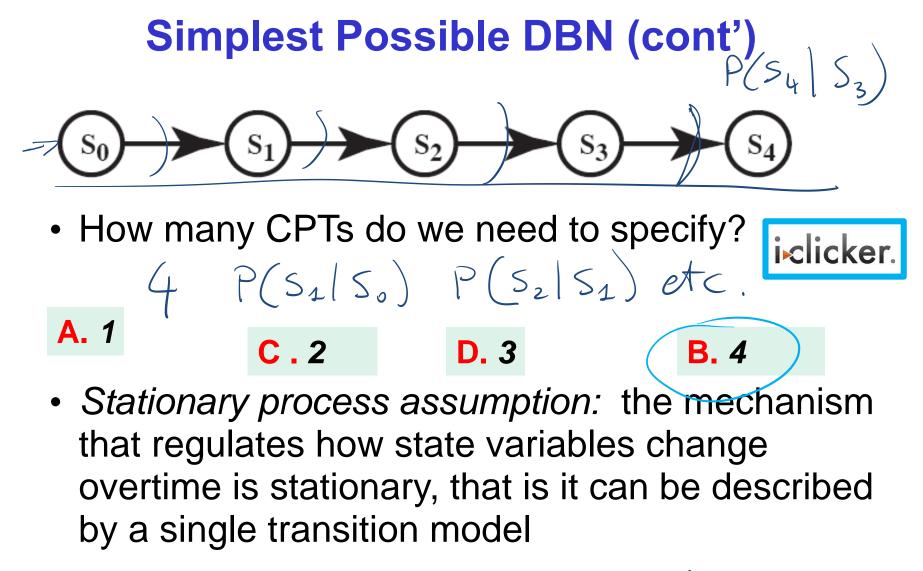
- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Simplest Possible DBN

• One random variable for each time slice: let's assume S_t represents the state at time *t*. with domain $\{v_1 \dots v_n\}$



- Each random variable depends only on the previous one
- Thus $(S_{t+1}|S_{\circ}\cdots S_t) = P(S_{t+1}|S_t)$
- Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."



• P(St | St-1) is the same for all t

Stationary Markov Chain (SMC) $(s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4)$

A stationary Markov Chain : for all t >0

- $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$ and Markov assumption
- $P(S_{t+1}|S_t)$ is the same stationary

So we only need to specify?

C. $P(S_{t+1}|S_t)$

A. $P(S_{t+1}|S_t)$ and $P(S_0)$ **B.** $P(S_0)$

D. $P(S_t | S_{t+1})$

i**⊳**clicker.

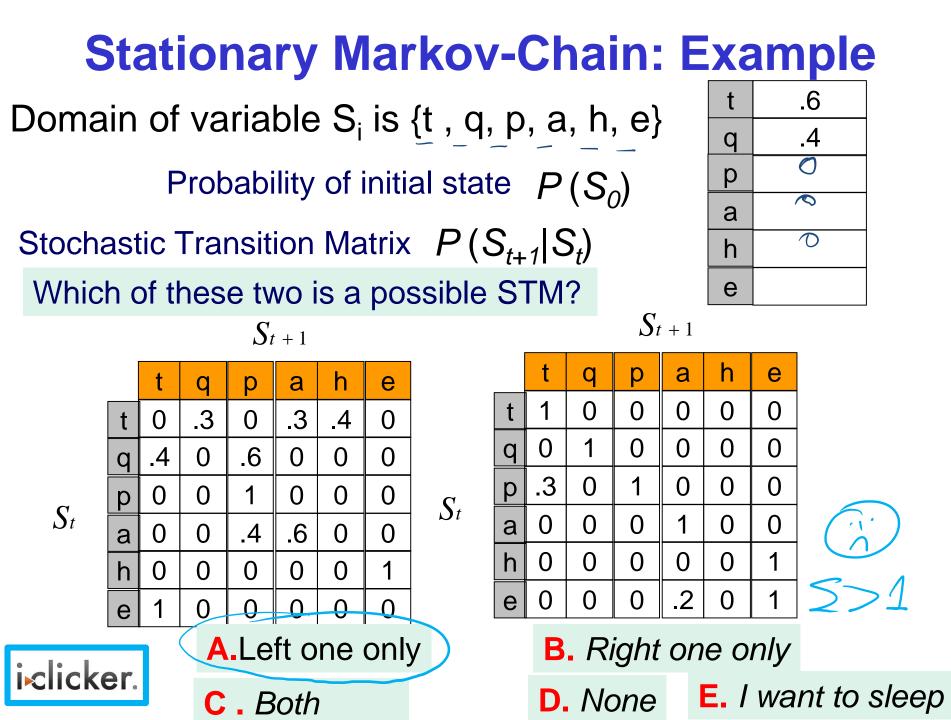
Stationary Markov Chain (SMC)

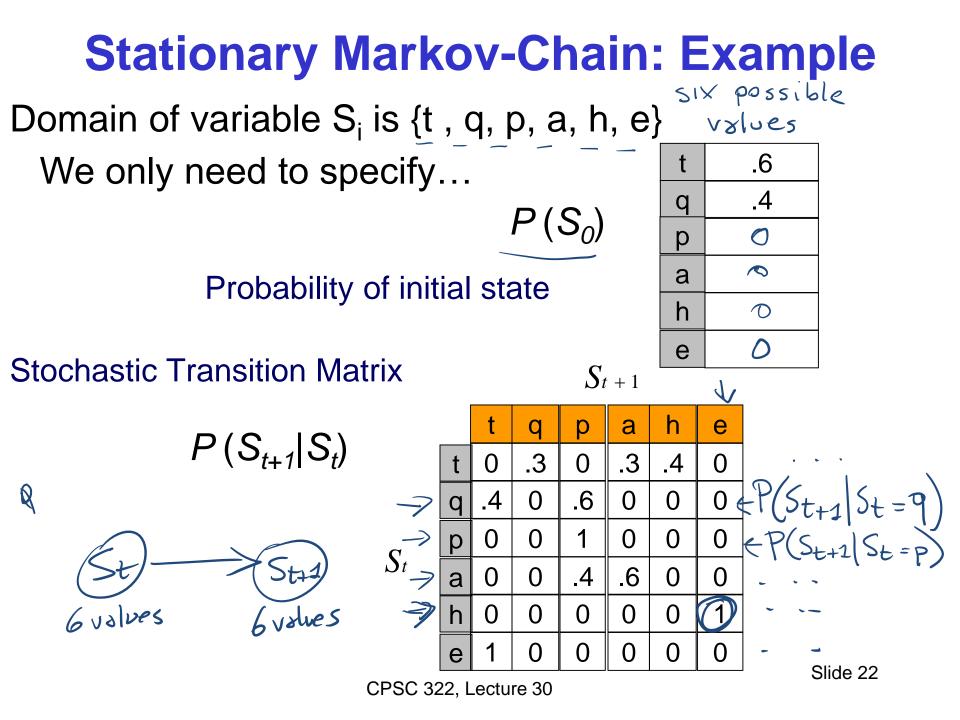
A stationary Markov Chain : for all t >0

- $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$ and Markov assumption
- $P(S_{t+1}|S_t)$ is the same stationary

We only need to specify $P(s_{\bullet})$ and $P(S_{t+1}|s_t)$

- Simple Model, easy to specify
- Often the natural model
- The network can extend indefinitely •

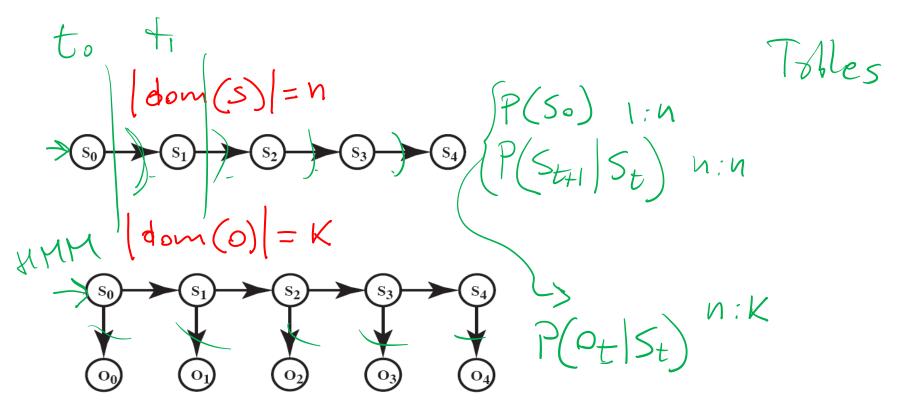




Markov-Chain: Inference Probability of a sequence of states $S_0 \dots S_T$ $P(S_0,...,S_T) = \mathbb{P}(S_0) \mathbb{P}(S_1 | S_0) \mathbb{P}(S_2 | S_1) -$ 71 $P(S_{t+1}|S_t)$ S_2 a a e $\overline{P}(S_0)$.3 0 .3 P(M,e) 0 .4 0 .6 t q .4 0 .6 0 0 $\mathbf{0}$ Example: 0 0 1 $\mathbf{0}$ $\mathbf{0}$ 0 0 D 0 .4 .6 0 0 0 <u>a</u> h a 0 P(t, a, b) =0 0 0 $\mathbf{0}$ \cap () е $\mathbf{0}$ \mathbf{O} $\mathbf{0}$ e N P/9 t) * P - .108 R

CPSC 322, Lecture 30

Recap: Markov Models



Lecture Overview

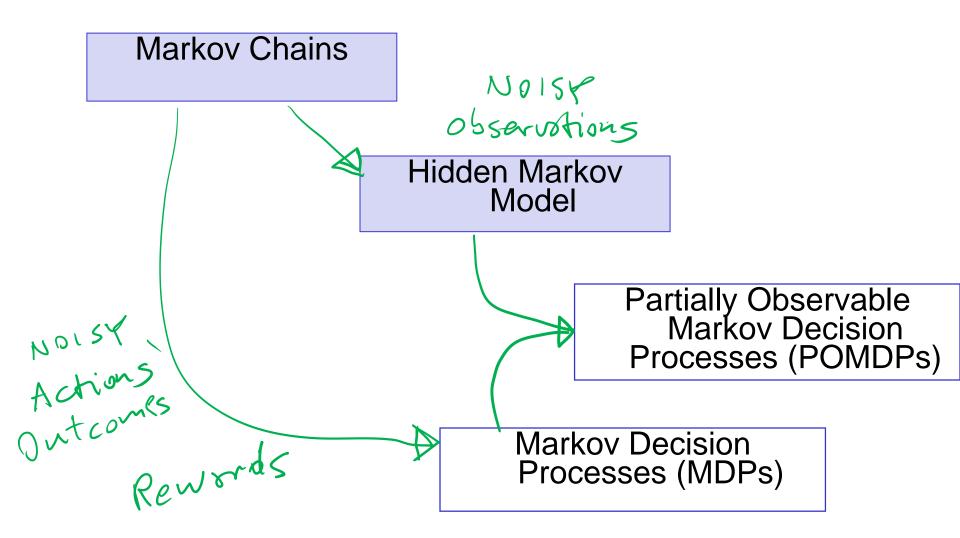
Value of Information and Value of Control

Recap Markov Chain

Markov Decision Processes (MDPs)

• Formal Specification and example

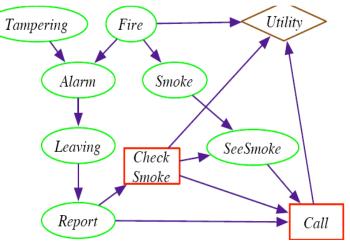
Markov Models



Combining ideas for Stochastic planning

• What is a key limitation of decision networks?

Represent (and optimize) only a fixed number of decisions



What is an advantage of Markov models?
 The network can extend indefinitely
 Goal: represent (and optimize) an indefinite sequence of decisions

Decision Processes

Often an agent needs to go beyond a fixed set of decisions – Examples?

• Would like to have an **ongoing decision process**

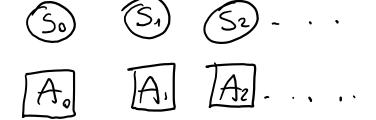
Infinite horizon problems: process does not stop Robot surviving on planet, Monitoring Nuc. Plant, Indefinite horizon problem: the agent does not know when the process may stop resching location Finite horizon: the process must end at a give time N IN Steps

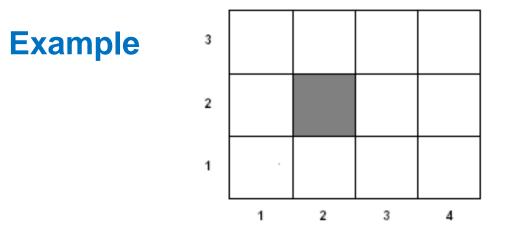
How can we deal with indefinite/infinite Decision processes?

Like in a Markov Chain one random variable S_t for each time

slice represents the state at time t.

And A_t be the action/decision at time t





Agent moves in the above grid :

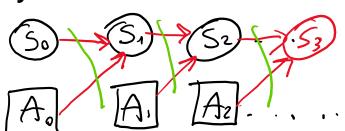
- States are the cells of the grid
- Actions Up, Down, Left, Right

How can we deal with indefinite/infinite Decision processes?

- Like in a Markov Chain one random variable S_t for each time slice represents the state at time *t*. And A_t be the action/decision at time *t* $A_t = \frac{1}{|A_t|} =$
- Make the same two assumptions we made for Markov Chains (a) The action outcome (the state S_{t+1} at time t+1) only depends on S_t and A_t

$$P(S_{t+1}|S_{t}|A_{t}|S_{t+1},A_{t+1}) = P(S_{t+1}|S_{t}|A_{t})$$

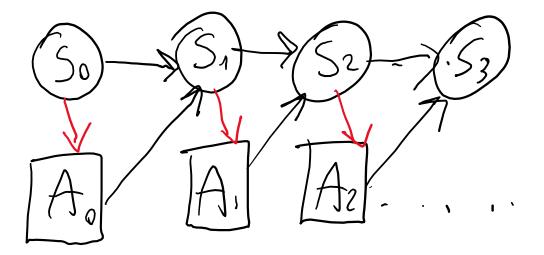
(b) The process is *stationary*...



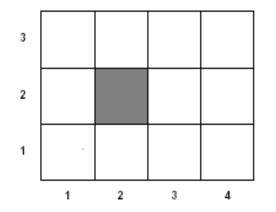
CPSC 422, Lecture 2

condition

Agent knows in which state it is at time t when it selects the action at time t

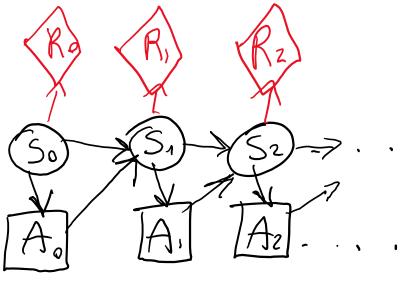


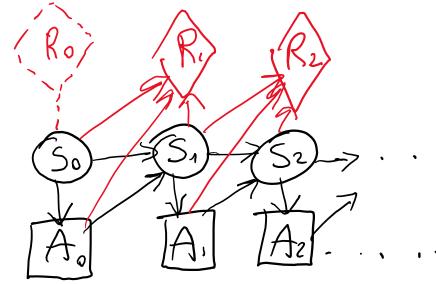
The robot always knows in Which cell it is...



CPSC 422, Lecture 2

How can we deal with indefinite/infinite Decision processes?



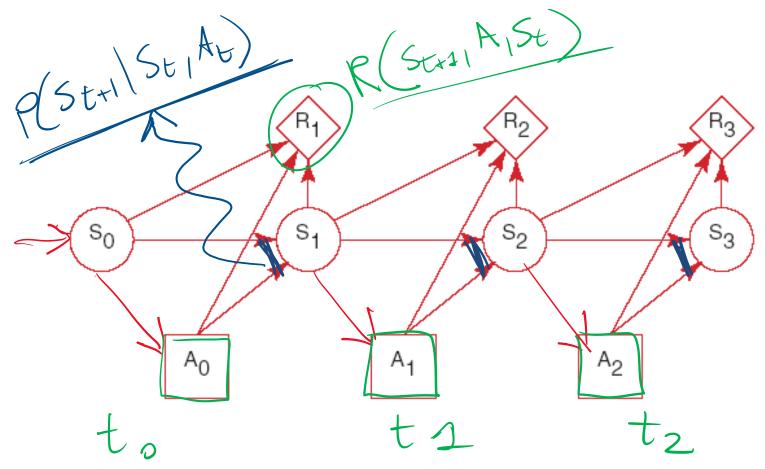


We also need a more flexible specification for the utility. How?

- Defined based on a reward/punishment that the agent receives in each time slice
- Typically summing them up

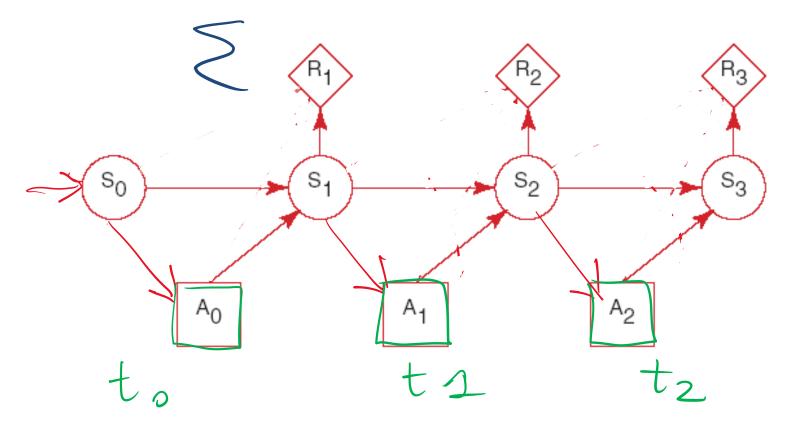
MDP graphical specification

Basically a MDP is a Markov Chain augmented with actions and rewards/values



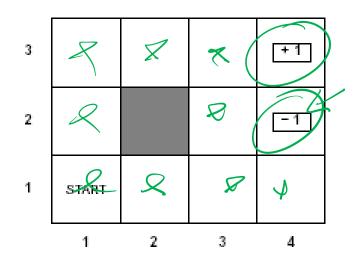
CPSC 422, Lecture 2

When Rewards only depend on the state



CPSC 422, Lecture 2

Example MDP: Rewards



 $R(s) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

MDP: formal specification

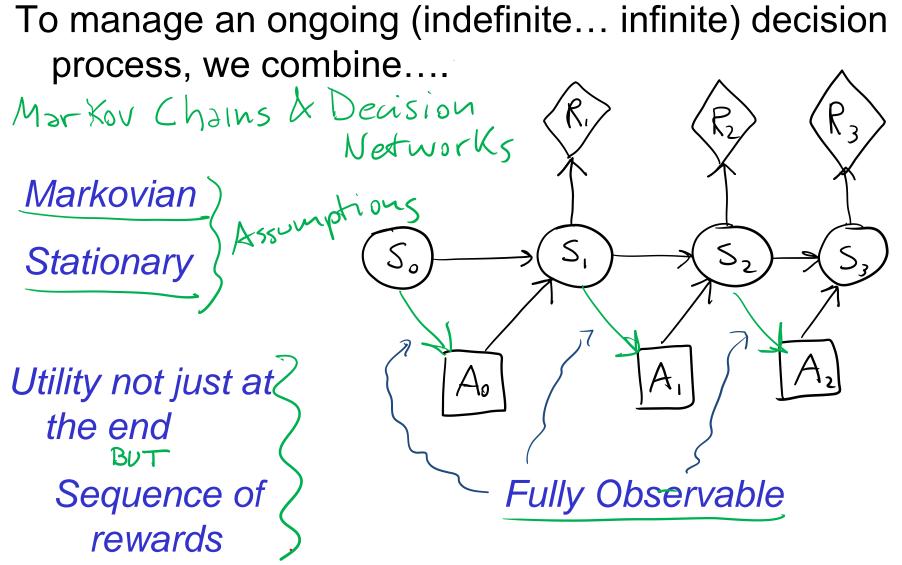
For an MDP you specify:

- set S of states and set A of actions
- the process' dynamics (or *transition model*) $P(S_{t+1}|S_t, A_t)$
- The **reward function**
 - R(s) is used when the reward depends only on the state s and not on how the agent got there
 - More complex R(s, a, s') describing the reward that the agent receives when it performs action a in state s and ends up in state s'
- Absorbing/stopping/terminal state S_{ab} for M action $P(S_{ab} | a, S_{ab}) = 1 R(S_{ab}, \partial, S_{ab}) = 0$

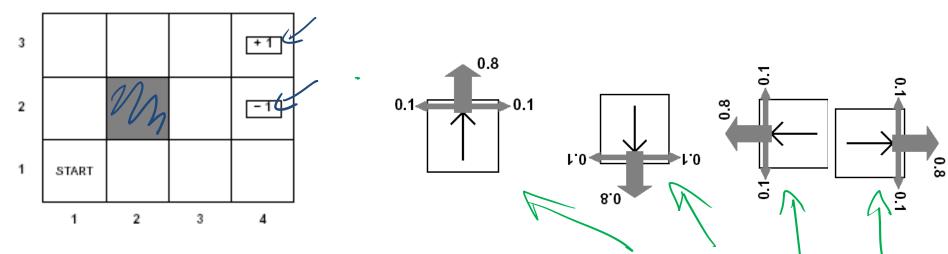
CPSC 422, Lecture 2

Slide 36

Summary Decision Processes: MDPs



Example MDP: Scenario and Actions



Agent moves in the above grid via actions Up, Down, Left, Right Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agents bumps into a wall, it stays there

How many states? 11 // /21

There are two terminal states (3,4) and (2,4)

CPSC 422, Lecture 2

Learning Goals for today's class

You can:

- Define and compute Value of Information and Value of Control in a decision network
- Effectively represent indefinite/infinite decision processes with a Markov Decision Process (MDP)
- Compute the probability distribution on states given
 a sequence of actions in an MDP
- Define a policy for an MDP

TODO for Fri

- Read textbook 9.4
- Read textbook 9.5
 - 9.5.1 Value of a Policy
 - 9.5.2 Value of an Optimal Policy
 - 9.5.3 Value Iteration

CPSC 322 Review "Exam"

https://forms.gle/SpQwrXfonTZrVf4P7

Based on CPSC 322 material

- Logic
- Uncertainty
- Decision Theory

Review material (e.g., 322 slides from 2017):

https://www.cs.ubc.ca/~carenini/TEACHING/CPSC322-17S/index.html