Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 8

Jan, 27, 2021

NOT REQUIRED fo 422. Map of reinforcement learning algorithms.

 Boxes with thick lines denote different categories, others denote specific algorithms

Lecture Overview

Finish Q-learning

- Algorithm Summary
- Example
- Exploration vs. Exploitation

$Q[S, A]$

Clarification on the $\alpha_{\kappa_{s_{2}}}=\frac{1}{K_{s z}}$
$k[5, a]$ \qquad

\qquad
controller Q-learning(S, A) inputs:
S is a set of states
A is a set of actions
γ the discount
α is the step size
internal state:
real array $Q[S, A]$
previous state s
previous action a

begin

initialize $Q[S, A]$ arbitrarily
observe current state s
repeat forever:
select and carry out an action a observe reward r and state s^{\prime}
$Q[s, a] \leftarrow Q[s, a]+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]-Q[s, a]\right)$ $s \leftarrow s^{\prime} ;$
end-repeat
end
$>$ Six possible states $\left\langle\mathrm{s}_{0}, . ., \mathrm{s}_{5}\right\rangle$

Example

> 4 actions:

- UpCareful: moves one tile up unless there is wall, in which case stays in same tile. Always generates a penalty of -1
- Left: moves one tile left unless there is wall, in which case
\checkmark stays in same tile if in s_{0} or s_{2} \checkmark Is sent to s_{0} if in s_{4}
- Right: moves one tile right unless there is wall, in which case stays in same tile
- Up: 0.8 goes up unless there is a wall, 0.1 like Left, 0.1 like Right

Reward Model:

Example

$>$ The agent knows about the 6 states and 4 actions
> Can perform an action, fully observe its state and the reward it gets
> Does not know how the states are configured, nor what the actions do

- no transition model, nor reward model

Example (variable α_{k})

> Suppose that in the simple world described earlier, the agent has the following sequence of experiences
$<s_{0}$, right, $0, s_{1}$, upCareful, $-1, s_{3}$, upCareful, $-1, s_{5}$, left, $0, s_{4}$, left, $10, s_{0}>$
$>$ And repeats it k times (not a good behavior for a Q-learning agent, but good for didactic purposes)
> Table shows the first 3 iterations of Q-learning when

- $Q[s, a]$ is initialized to 0 for every a and s
- $\alpha_{k}=1 / k, \gamma=0.9$

Iteration	$Q\left[s_{0}\right.$, right $]$	$Q\left[s_{1}\right.$, upCare $]$	$Q\left[s_{3}\right.$, upCare $]$	$Q\left[s_{5}\right.$, left $]$	$Q\left[s_{4}\right.$, left $]$
1	0	-1	-1	0	10
2	0	-1	-1	4.5	10
3	0	-1	0.35	6.0	10

$\left\langle\mathrm{s}_{0}\right.$, right, $0{ }_{1} s_{1}$, upCareful, $-1,\left.\right|_{3}{ }_{3}$ upCareful, $-1, s_{5}$ left, $0, \$_{4}$, left, $\left.10, s_{0}\right\rangle$

$$
Q[s, a] \leftarrow Q[s, a]+\alpha\left(\left(r+\gamma \max Q\left[s^{\prime}, a^{\prime}\right]\right)-Q[s, a]\right)
$$

$\mathrm{k}=1$

$\mathbf{Q}[\mathbf{s}, \mathbf{a}]$	$\boldsymbol{s}_{\boldsymbol{0}}$	$\boldsymbol{s}_{\boldsymbol{I}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{s}_{\mathbf{5}}$
upCareful	0	0	0	0	0	0
Left	0	0	0	0	0	0
Right	0	0	0	0	0	0
$\boldsymbol{U} \boldsymbol{p}$	0	0	0	0	0	0

$Q\left[s_{0}, r i g h t\right] \leftarrow Q\left[s_{0}, r i g h t\right]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{1}, a^{\prime}\right]\right)-Q\left[s_{0}, r i g h t\right]\right) ;$
$Q\left[s_{0}, r i g h t\right] \leftarrow$
$Q\left[s_{1}\right.$, upCareful $] \leftarrow Q\left[s_{1}\right.$, upCareful $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{x}} Q\left[s_{3}, a^{\prime}\right]\right)-Q\left[s_{1}\right.\right.$, upCareful $] ;$
$Q\left[s_{1}\right.$, upCareful $] \leftarrow$
$Q\left[s_{3}\right.$, upCareful $] \leftarrow Q\left[s_{3}, u p\right.$ Careful $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{5}, a^{\prime}\right]\right)-Q\left[s_{3}\right.\right.$, upCareful $] ;$
$Q\left[s_{3}\right.$, upCareful $] \leftarrow$
$Q\left[s_{5}\right.$, Left $] \leftarrow Q\left[s_{5}\right.$, Left $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{4}, a^{\prime}\right]\right)-Q\left[s_{5}\right.\right.$, Left $] ;$
$Q\left[s_{5}\right.$, Left $] \leftarrow 0+1(0+0.9 * 0-0)=0$
$Q\left[s_{4}\right.$, Left $] \leftarrow Q\left[s_{4}\right.$, Left $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{0}, a^{\prime}\right]\right)-Q\left[s_{4}\right.\right.$, Left $] ;$
$Q\left[s_{4}\right.$, Left $] \leftarrow 0+1(10+0.9 * 0-0)=10$
CPSC 422, Lecture 8
are included in the update in this first pass

$$
Q[s, a] \leftarrow Q[s, a]+\alpha\left(\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)-Q[s, a]\right)
$$

$\mathrm{k}=2$

$\mathbf{Q}[\mathbf{s}, \mathbf{a}]$	$\boldsymbol{s}_{\mathbf{0}}$	$\boldsymbol{s}_{\boldsymbol{I}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{s}_{\mathbf{5}}$
upCareful	$\mathbf{0}$	$\mathbf{- 1}$	0	$-\mathbf{1}$	0	0
Left	0	0	0	0	$\mathbf{1 0}$	$\mathbf{0}$
Right	0	0	0	0	0	0
$\boldsymbol{U} \boldsymbol{p}$	0	0	0	0	0	0

$Q\left[s_{0}, r i g h t\right] \leftarrow Q\left[s_{0}, r i g h t\right]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{1}, a^{\prime}\right]\right)-Q\left[s_{0}, r i g h t\right]\right) ;$
$Q\left[s_{0}, r i g h t\right] \leftarrow 0+1 / 2(0+0.9 * 0-0)=0$
$Q\left[s_{1}\right.$, upCareful $] \leftarrow Q\left[s_{1}\right.$, upCareful $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{3}, a^{\prime}\right]\right)-Q\left[s_{1}\right.\right.$, upCareful $]=$ $Q\left[s_{1}\right.$, upCareful $] \leftarrow-1+1 / 2(-1+0.9 * 0+1)=-1$
$Q\left[s_{3}\right.$, upCareful $] \leftarrow Q\left[s_{3}\right.$, upCareful $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{5}, a^{\prime}\right]\right)-Q\left[s_{3}\right.\right.$, upCareful $]=$
$Q\left[s_{3}\right.$, upCareful $] \leftarrow-1+1 / 2(-1+0.9 * 0+1)=-1$
$Q\left[s_{5}\right.$, Left $] \leftarrow Q\left[s_{5}\right.$, Left $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{4}, a^{\prime}\right]\right)-Q\left[s_{5}\right.\right.$, Left $]=$
$Q\left[s_{5}\right.$, Left $] \leftarrow$
$Q\left[s_{4}\right.$, Left $] \leftarrow Q\left[s_{4}\right.$, Left $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{0}, a^{\prime}\right]\right)-Q\left[s_{4}\right.\right.$, Left $]=$
$Q\left[s_{4}\right.$, Left $] \leftarrow 10+1(10+0.9 * 0-10)=10$
CPSC 422, Lecture 8

1 step backup from previous positive reward in s 4

$$
Q[s, a] \leftarrow Q[s, a]+\alpha\left(\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)-Q[s, a]\right)
$$

$\mathrm{k}=3$

Q[s,a]	s_{0}	s_{I}	s_{2}	$\begin{gathered} s_{3} \\ 0.35 \end{gathered}$	s_{4}	s_{5} 0
upCareful	0	-1	0		0	
Left	0	0	0	0	10	6
Right	0	0	0	0	0	0
$\boldsymbol{U p}$	0	0	0	0	0	0

$Q\left[s_{0}, r i g h t\right] \leftarrow Q\left[s_{0}, r i g h t\right]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{1}, a^{\prime}\right]\right)-Q\left[s_{0}, r i g h t\right]\right) ;$
$Q\left[s_{0}, r i g h t\right] \leftarrow 0+1 / 3(0+0.9 * 0-0)=0$
$Q\left[s_{1}\right.$, upCareful $] \leftarrow Q\left[s_{1}\right.$, upCareful $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{3}, a^{\prime}\right]\right)-Q\left[s_{1}\right.\right.$, upCareful $]=$ $Q\left[s_{1}\right.$, upCareful $] \leftarrow-1+1 / 3(-1+0.9 * 0+1)=-1$
$Q\left[s_{3}\right.$, upCareful $] \leftarrow Q\left[s_{3}\right.$, upCareful $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{5}, a^{\prime}\right]\right)-Q\left[s_{3}\right.\right.$, upCareful $]=$

The effect of the positive reward in s 4 is felt two steps earlier at the $3^{\text {rd }}$ iteration
$Q\left[s_{3}\right.$, upCareful $] \leftarrow-1+1 / 3(-1+0.9 * 4.5+1)=0.35$

$$
\text {]) }-Q\left[s_{5}, \text { Left }\right]=
$$

$$
Q\left[s_{5}, \text { Left }\right] \leftarrow 4.5+1 / 3(0+0.9 * 10-4.5)=6
$$

$$
Q\left[s_{4}, \text { Left }\right] \leftarrow Q\left[s_{4}, \text { Left }\right]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{0}, a^{\prime}\right]\right)-Q\left[s_{4}, \text { Left }\right]=\right.
$$

$$
Q\left[s_{4}, \text { Left }\right] \leftarrow 10+1 / 3(10+0.9 * 0-10)=10
$$

Example (variable α_{k})

$>$ As the number of iterations increases, the effect of the positive reward achieved by moving left in s_{4} trickles further back in the sequence of steps
$>\mathrm{Q}\left[\mathrm{s}_{4}\right.$, left $]$ starts changing only after the effect of the reward has reached s_{0} (i.e. after iteration 10 in the table)

Example (Fixed $\alpha=1$)

> First iteration same as before, let's look at the second

$Q[s, a] \leftarrow Q[s, a]+\alpha\left(\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)-Q[s, a]\right)$
$\mathrm{k}=2$
$Q[s, a] \leftarrow Q[s, a]+\alpha\left(\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)-\right.$

$\mathbf{Q}[\mathbf{s}, \mathbf{a}]$	$\boldsymbol{s}_{\mathbf{0}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{s}_{\mathbf{5}}$
upCareful	$\mathbf{0}$	$\mathbf{- 1}$	0	$\mathbf{- 1}$	0	0
Left	0	0	0	0	$\mathbf{1 0}$	$\mathbf{0}$
Right	0	0	0	0	0	0
$\boldsymbol{U} \boldsymbol{p}$	0	0	0	0	0	0

$Q\left[s_{0}\right.$, right $] \leftarrow 0+1(0+0.9 * 0-0)=0$
$Q\left[s_{1}\right.$, upCareful $] \leftarrow-1+1(-1+0.9 * 0+1)=-1$
$Q\left[s_{3}\right.$, upCareful $] \leftarrow-1+1(-1+0.9 * 0+1)=-1$
$Q\left[s_{5}\right.$, Left $] \leftarrow Q\left[s_{5}\right.$, Left $]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{4}, a^{\prime}\right]\right)-Q\left[s_{5}\right.\right.$, Left $]=$

New evidence is given much more weight than original estimate
$Q\left[s_{5}\right.$, Left $] \leftarrow 0+1(0+0.9 * 10-0)=9$
$Q\left[s_{4}\right.$, Left $] \leftarrow 10+1(10+0.9 * 0-10)=10$

$$
Q[s, a] \leftarrow Q[s, a]+\alpha\left(\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)-Q[s, a]\right)
$$

$\mathrm{k}=3$

$\mathbf{Q}[\mathbf{s}, \mathbf{a}]$	$\boldsymbol{s}_{\mathbf{0}}$	$\boldsymbol{s}_{\boldsymbol{I}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{s}_{\mathbf{5}}$
upCareful	$\mathbf{0}$	$\mathbf{- 1}$	0	$-\mathbf{1}$	0	0
Left	0	0	0	0	$\mathbf{1 0}$	$\mathbf{9}$
Right	0	0	0	0	0	0
$\boldsymbol{U} \boldsymbol{p}$	0	0	0	0	0	0

$Q\left[s_{0}\right.$, right $] \leftarrow 0+1(0+0.9 * 0-0)=0$
$Q\left[s_{1}\right.$, upCareful $] \leftarrow-1+1(-1+0.9 * 0+1)=-1$

Same here

$$
Q\left[s_{3}, \text { upCareful }\right] \leftarrow Q\left[s_{3}, \text { upCareful }\right]+\alpha_{k}\left(\left(r+0.9 \max _{a^{\prime}} Q\left[s_{5}, a^{\prime}\right]\right)-Q\left[s_{3}, \text { upCareful }\right]=\right.
$$

\qquad

$$
Q\left[s_{3}, \text { upCareful }\right] \leftarrow-1+1(-1+0.9 * 9+1)=7.1
$$

$$
Q\left[s_{5}, \text { Left }\right] \leftarrow 9+1(0+0.9 * 10-9)=9
$$

$$
Q\left[s_{4}, \text { Left }\right] \leftarrow 10+1(10+0.9 * 0-10)=10
$$

conn oaring fixed d and .

Iteration	$Q\left[s_{0}\right.$, right $]$	$Q\left[s_{1}\right.$, upCare $]$	$Q\left[s_{3}\right.$, upCare $]$	$Q\left[s_{5}\right.$, left $]$	$Q\left[s_{4}\right.$, left $]$
1	0	-1	-1	0	10
2	0	-1	-1	9	10
3	0	-1	7.1	9	10
4	0	5.39	7.1	9	10
5	4.85	5.39	7.1	9	14.37
6	4.85	5.39	7.1	12.93	14.37
10	7.72	8.57	10.64	15.25	16.94
20	10.41	12.22	14.69	17.43	19.37
30	11.55	12.83	15.37	18.35	20.39
40	11.74	13.09	15.66	18.51	20.57
∞	11.85	13.16	15.74	18.6	20.66

variable a

Iteration	$Q\left[s_{0}\right.$, right $]$	$Q\left[s_{1}\right.$, upCare $]$	$Q\left[s_{3}\right.$, upCare $]$	$Q\left[s_{5}\right.$, left $]$	$Q\left[s_{4}\right.$, left $]$
1	0	-1	-1	0	10
2	0	-1	-1	4.5	10
3	0	-1	0.35	6.0	10
4	0	-0.92	1.36	6.75	10
10	0.03	.51	4	8.1	10
100	2.54	4.12	6.82	9.5	11.34
1000	4.63	5.93	8.46	11.3	13.4
10000	6.08	7.39	9.97	12.83	14.9
100000	7.27	8.58	11.16	14.02	16.08
1000000	8.21	9.52	12.1	14.96	17.02
10000000	8.96	10.27	12.85	15.71	17.77
∞	11.85	13.16	15.74	18.6	20.66

Fixed α generates faster update: all states see some effect of the positive reward from <s4, left> by the $5^{\text {th }}$ iteration

Each update is much larger
Gets very close to final numbers by iteration 40 , while with variable α still not there by iteration 10^{7}

However:

Q-learning with fixed α is not guaranteed to converge

On the approximation...

$$
\begin{array}{cl}
Q(s, a)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right) & \begin{array}{l}
\text { True relation between } \\
\mathrm{Q}\left(\text { s.a) and } \mathrm{Q}\left(s^{\prime} a^{\prime}\right)\right.
\end{array} \\
Q[s, a] \leftarrow Q[s, a]+\alpha\left(\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)-Q[s, a]\right) \begin{array}{l}
\text { Q-learning } \\
\text { approximation based on } \\
\text { each individual } \\
\text { experience }<s, a, r, s^{\prime}>
\end{array}
\end{array}
$$

> For the approximation to work.....
A. There is positive reward in most states
B. Q-learning tries each action an unbounded number of times
C. The transition model is not sparse

Matrix sparseness

Number of zero elements of a matrix divided by the number of elements. For conditional probabilities the max sparseness is 2

Density is = (1 - sparseness)
The min density for conditional probabilities is

Note: the action is deterministic!

Why approximations work...

$$
\begin{gathered}
Q(s, a)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)<\underbrace{\begin{array}{l}
\text { True relation betwen }
\end{array}}_{\begin{array}{l}
\text { Q(s.a) and Q(s'a } \left.{ }^{\prime}\right)
\end{array}} \\
Q[s, a] \leftarrow Q[s, a]+\alpha\left(\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)\right. \\
Q[s, a])
\end{gathered} \begin{aligned}
& \begin{array}{l}
\text { Q-learning } \\
\text { approximation based o } \\
\text { each individual } \\
\text { experience }<s, a, s^{\prime}>
\end{array}
\end{aligned}
$$

$>$ Way to get around the missing transition model and reward model
$>$ Aren't we in danger of using data coming from unlikely transition to make incorrect adjustments?
> No, as long as Q-learning tries each action an unbounded number of times
$>$ Frequency of updates reflects transition model, $P\left(s^{\prime} \mid a, s\right)$

Lecture Overview

Finish Q-learning

- Algorithm
- Example
- Exploration vs. Exploitation

What Does Q-Learning learn

> Does Q-learning gives the agent an optimal policy?
Q values

	s_{0}	s_{1}	\cdots	s_{k}
a_{0}	$\mathrm{Q}\left[\mathrm{s}_{0}, \mathrm{a}_{0}\right]$	$\mathrm{Q}\left[s_{1}, \mathrm{a}_{0}\right]$	\cdots	$\mathrm{Q}\left[\mathrm{s}_{\mathbf{k}}, \mathrm{a}_{0}\right]$
a_{1}	$\mathrm{Q}\left[\mathrm{s}_{0}, \mathrm{a}_{1}\right]$	$\mathrm{Q}\left[\mathrm{s}_{1}, \mathrm{a}_{1}\right]$	\cdots	$\mathrm{Q}\left[\mathrm{s}_{\mathbf{k}}, \mathrm{a}_{1}\right]$
\cdots	\cdots	\cdots	\cdots	\cdots
a_{n}	$\mathrm{Q}\left[\mathrm{s}_{0}, \mathrm{a}_{\mathbf{n}}\right]$	$\mathrm{Q}\left[\mathrm{s}_{1}, \mathrm{a}_{\mathbf{n}}\right]$	\cdots	$\mathrm{Q}\left[\mathrm{s}_{\mathbf{k}}, \mathrm{a}_{\mathrm{n}}\right]$

what to do in S_{2}

Exploration vs. Exploitation

Q-learning does not explicitly tell the agent what to do

- just computes a Q-function Q[s,a] that allows the agent to see, for every state, which is the action with the highest expected reward
> Given a Q-function the agent can :
- Exploit the knowledge accumulated so far, and chose the action that maximizes $\mathrm{Q}[\mathrm{s}, \mathrm{a}]$ in a given state (greedy behavior)
- Explore new actions, hoping to improve its estimate of the optimal Q-function, i.e. *do not chose* the action suggested by the current $\mathrm{Q}[\mathrm{s}, \mathrm{a}]$

Exploration vs. Exploitation

> When to explore and when the exploit?

1. Never exploring may lead to being stuck in a suboptimal course of actions
2. Exploring too much is a waste of the knowledge accumulated via experience
A. Only (1) is true
B. Only (2) is true
C. Both are true
D. Both are false

Exploration vs. Exploitation

> When to explore and when the exploit?

- Never exploring may lead to being stuck in a suboptimal course of actions
- Exploring too much is a waste of the knowledge accumulated via experience
> Must find the right compromise

Exploration Strategies

> Hard to come up with an optimal exploration policy (problem is widely studied in statistical decision theory)
> But intuitively, any such strategy should be greedy in the limit of infinite exploration (GLIE), i.e.

- Choose the predicted best action in the limit
- Try each action an unbounded number of times
- We will look at two exploration strategies
- ε-greedy
- soft-max

ع-greedy

> Choose a random action with probability ε and choose best action with probability 1- ε

$$
\begin{aligned}
& P(\text { random achon })=\varepsilon \\
& P(\text { best achon })=1-\varepsilon
\end{aligned}
$$

> First GLIE condition (try every action an unbounded number of times) is satisfied via the ε random selection
> What about second condition?

- Select predicted best action in the limit.
$>$ reduce ε overtime!

Soft-Max
Takes into account improvement in estimates of expected reward function $\mathrm{Q}[\mathrm{s}, \mathrm{a}]$

- Choose action \boldsymbol{a} in state \boldsymbol{s} with a probability proportional to current estimate of $\mathbf{Q}[\mathbf{s}, \mathbf{a}]$

$$
\frac{e^{Q[s, a]}}{\sum_{a} e^{Q[s, a]}}
$$

Assume only 3 actions

$$
Q\left[s_{i}, \partial\right]
$$

$\partial, \quad 2 \#$
$\partial_{2} 3 \$$
$\partial_{3} 1 \$$
prob of
selecting
acton a

$$
\begin{gathered}
p\left(a_{1}\right) \\
\frac{e^{2}=7.3}{e^{1}+e^{2}+e^{3}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{p\left(\partial_{2}\right)^{2 \theta}}{}{ }^{1} p\left(\partial_{3}^{2}\right) \\
& e^{1}+e^{2}+e^{3}
\end{aligned} \frac{e^{1,2,7}}{e^{1}+e_{31}^{2}+e^{3}}
$$

CPSC 422, Lecture 8

(τ controlled) Soft-Max

> Takes into account improvement in estimates of expected reward function $\mathrm{Q}[\mathrm{s}, \mathrm{a}]$

- Choose action \boldsymbol{a} in state \boldsymbol{s} with a probability proportional to current estimate of $\mathbf{Q}[\mathbf{s}, \mathbf{a}]$

$>\tau$ (tau) in the formula above influences how randomly âctions should be chosen
- if τ is high, the exponentials approach 1 , the fraction approaches $1 /$ (number of actions), and each_action has approximately the same probability of being chosen (exploration or exploitation?)
- as $\tau \rightarrow 0$, the exponential with the highest $\mathrm{Q}[\mathrm{s}, \mathrm{a}]$ dominates, and the current best action is always chosen (exploration or exploitation?)
> Takes into account improvement in estimates of expected reward function $\mathrm{Q}[\mathrm{s}, \mathrm{a}]$

Choose action \boldsymbol{a} in state \boldsymbol{s} with a probability proportional to current estimate of $\mathbf{Q}[\mathbf{s}, \mathbf{a}]$

$>\tau$ (tau) in the formula above influences how randomly âctions should be chosen
V • if τ is high, the exponentials approach 1 , the fraction approaches $1 /$ (number of actions), and each_action has approximately the same probability of being chosen (exploration or exploitation?)

- as $\tau \rightarrow 0$, the exponential with the highest $\mathrm{Q}[\mathrm{s}, \mathrm{a}]$ dominates, and the current best action is always chosen (exploration or exploitation?)
(τ controlled) Soft-Max example
Assume only 3 actions

Learning Goals for today's class

$>$ You can:

- Explain, trace and implement Q-learning
- Describe and compare techniques to combine exploration with exploitation

TODO for Fri

- Carefully read : A Markov decision process approach to multi-category patient scheduling in a diagnostic facility, Artificial Intelligence in Medicine Journal, 2011
- Follow instructions on course WebPage <Readings>
- Keep working on assignment-1 (due next Wed)

