Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 18

Feb, 26, 2021

Slide Sources Raymond J. Mooney University of Texas at Austin

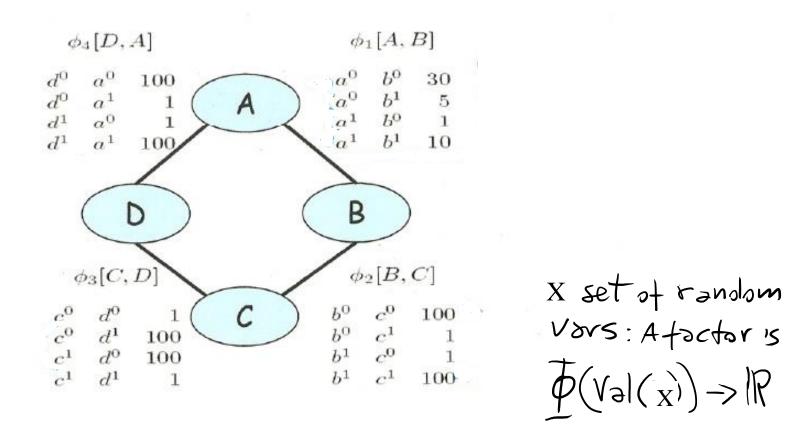
D. Koller, Stanford CS - Probabilistic Graphical Models

Lecture Overview

Probabilistic Graphical models

- Recap Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

Parameterization of Markov Networks



Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models?

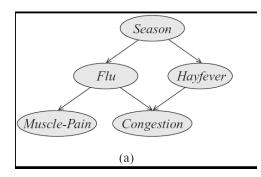
As in BNets by multiplying them!

 $\tilde{P}(A, B, C, D) = \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(A, D)$ $P(A, B, C, D) = \frac{1}{Z} \tilde{P}(A, B, C, D)$

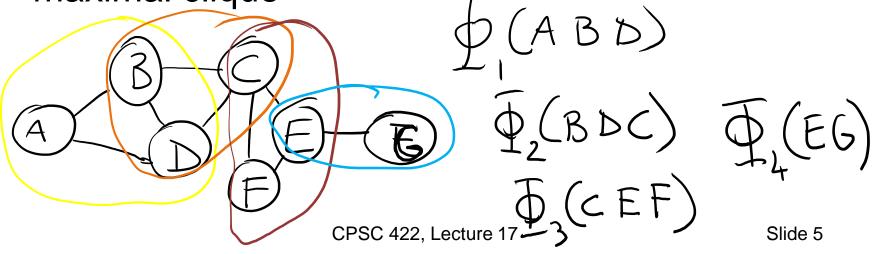
Assignment		nt	Unnormalized Normalized			
0 90	c ⁰	d^0	300000	.04		
0 60	c^0	d^1	300000	.04	$\phi_4[D,A] \qquad \qquad \phi_1[A,I]$	
b^0	c^1	d^0	300000	.04 1 d	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 60	c^1	d^1	30		$l^0_{a_1}a_1^1$ (A) $a_1^0 b_1^1_{a_1}a_2^0$	
b^1	c^0	d^0	500	·	$a^1 a^0 1 \qquad a^1 b^0$	
b^1	c^0	d^1	500	•	$a^{1} a^{1} 100$ $a^{1} b^{1}$	
b^1	c^1	d^0	5000000	.69	$ \land \ \rangle$	
0 b^{1}	c^1	d^1	500		(D) (B)	
1 b^{0}	c^0	d^0	100		$\langle \cdot \rangle$	
1 b^{0}	c^0	d^1	1000000	•	$\phi_3[C,D]$ $\phi_2[B,$	
¹ b ⁰	c^1	d^0	100	'		
1 b^{0}	c^1	d^1	100	•	$c^{0}_{0} d^{0}_{1} = 1 (C)_{0} b^{0}_{0} c^{0}_{1}$	
1 b^{1}	c^0	d^0	10		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 b^{1}	c^0	d^1	100000		c^1 d^1 1 b^1 c^1	
$1 b^1$	c^1	d^0	100000	•		
1 b1	c^1	d^1	100000	1 1		

Step Back.... From structure to factors/potentials

In a Bnet the joint is factorized....



In a Markov Network you have one factor for each maximal clique $-\tau$



General definitions

Two nodes in a Markov network are **independent** if and only if every path between them is cut off by evidence $\sqrt{2}$

eg for A C

So the markov blanket of a node is ...?

eg for C

Lecture Overview

Probabilistic Graphical models

- Recap Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

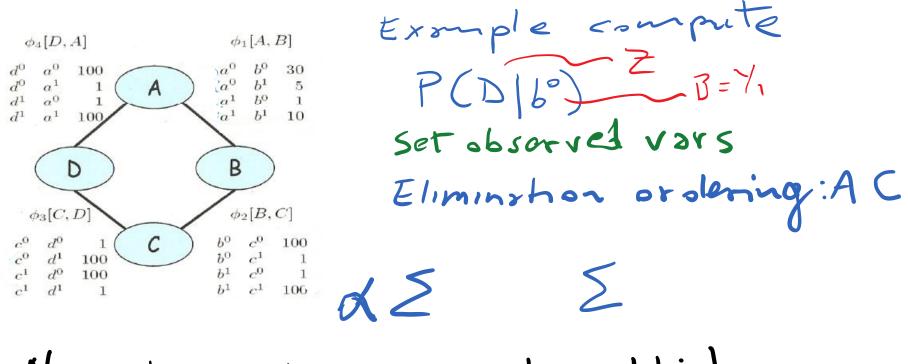
Variable elimination algorithm for Bnets Given a network for $P(Z, Y_1, ..., Y_j Z_1, ..., Z_i)$, :

To compute $P(Z|Y_1 = v_1, ..., Y_j = v_j)$:

- 1. Construct a factor for each conditional probability.
- 2. Set the observed variables to their observed values.
- 3. Given an elimination ordering, simplify/decompose sum of products
- 4. Perform products and sum out Z_i
- 5. Multiply the remaining factors Z
- 6. Normalize: divide the resulting factor f(Z) by $\sum_{Z} f(Z)$.

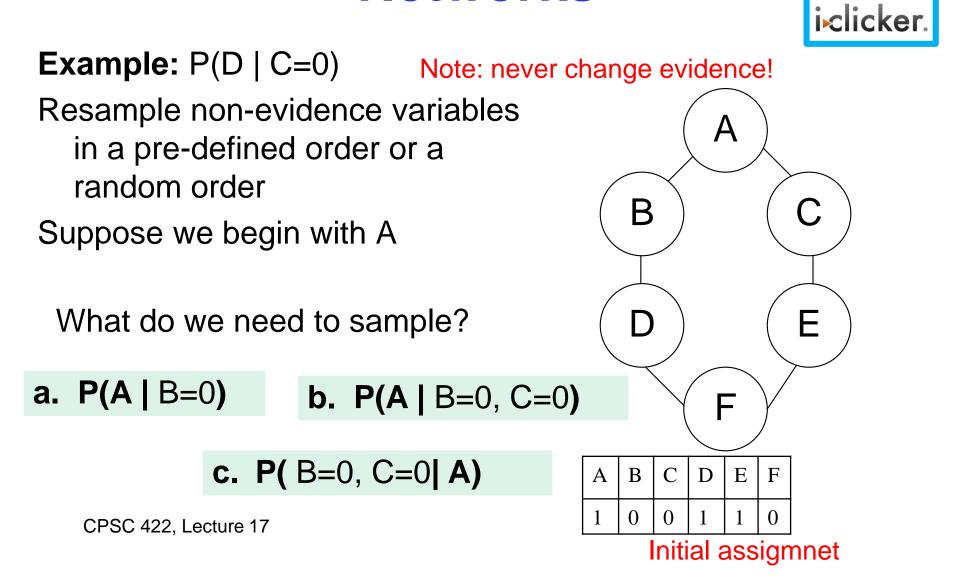
Variable elimination algorithm for Markov Networks.....

Variable Elimination on MN: Example



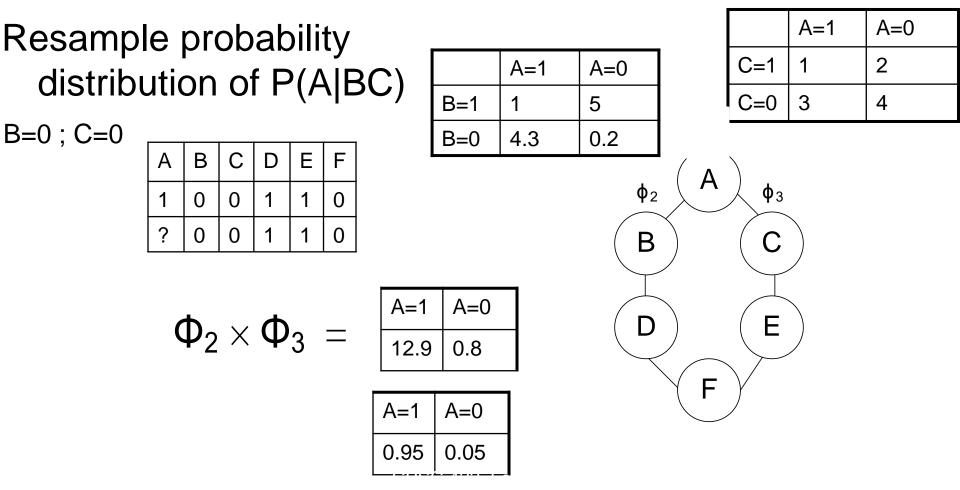
Now it is just a matter of multiplying factors and summe out vars Normalize at the end!

Gibbs sampling for Markov Networks

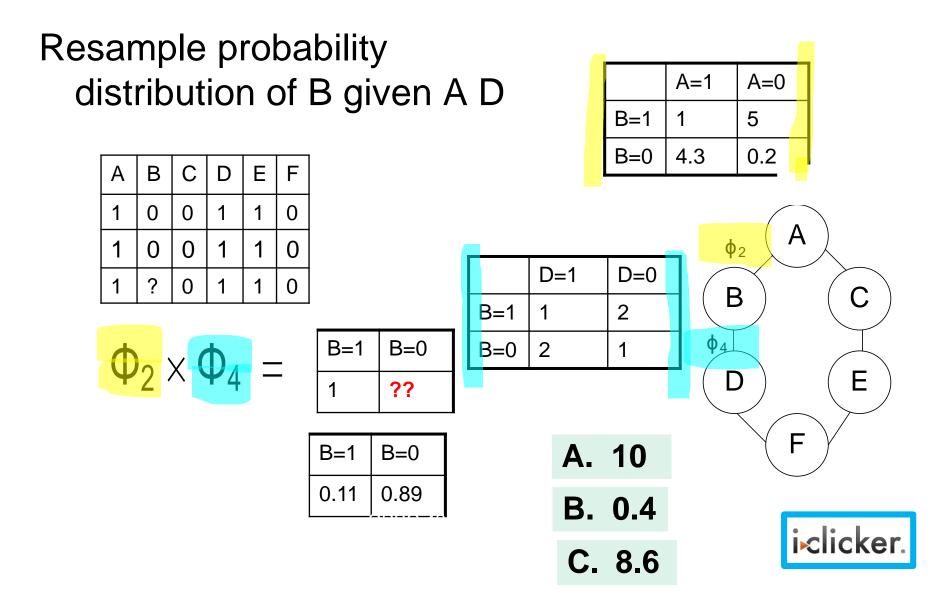


Gibbs sampling MN: what to sample

For Bnets $P(x'_i|mb(X_i)) = qP(x'_i|parents(X_i))\prod_{Z_j \in Children(X_i)}P(z_j|parents(Z_j))$ For Markov Networks just the product of the factors involving X (normalized)



Example: Gibbs sampling



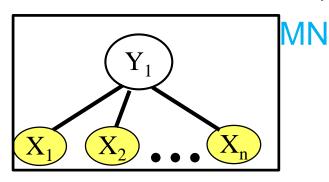
Lecture Overview

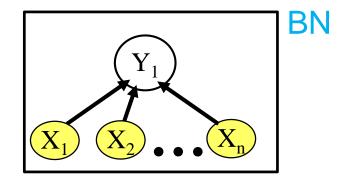
Probabilistic Graphical models

- Recap Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

We want to model $P(Y_1 | X_1 ... X_n)$

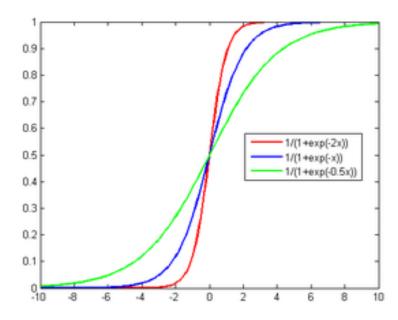
... where all the X_i are always observed





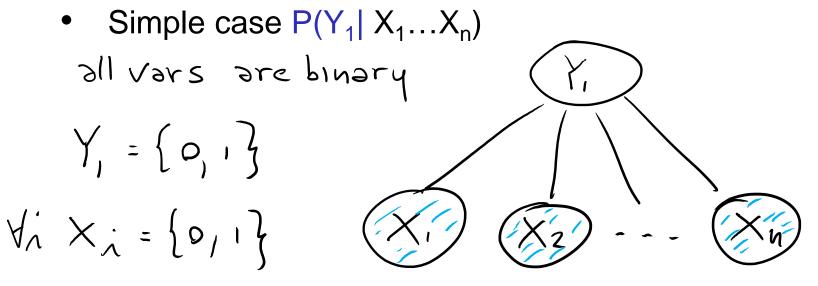
• Which model is simpler, MN or BN?

 Naturally aggregates the influence of different parents



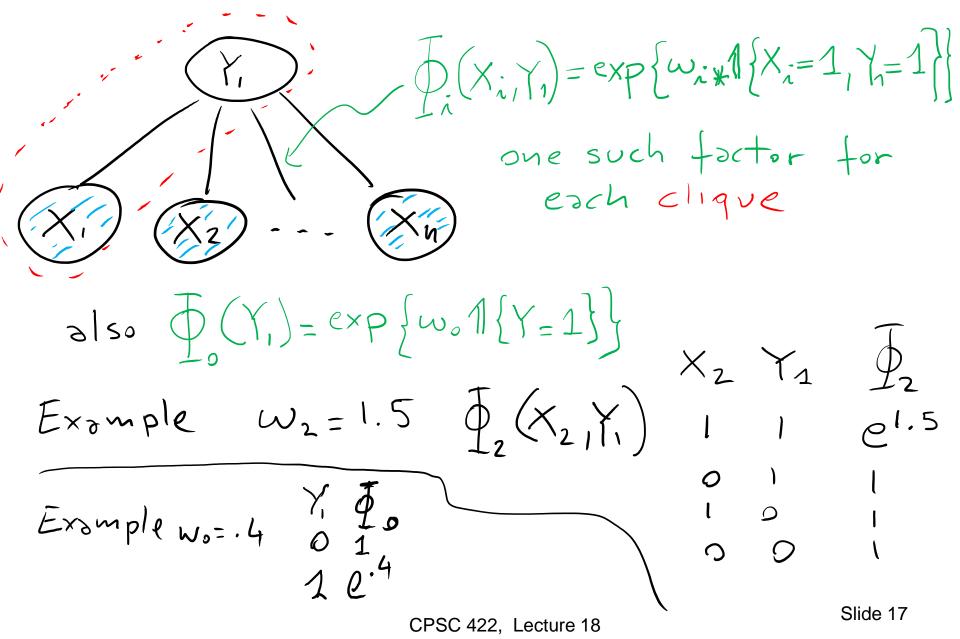
Conditional Random Fields (CRFs)

- Model $P(Y_1 ... Y_k | X_1 ... X_n)$
- Special case of Markov Networks where all the X_i are always observed

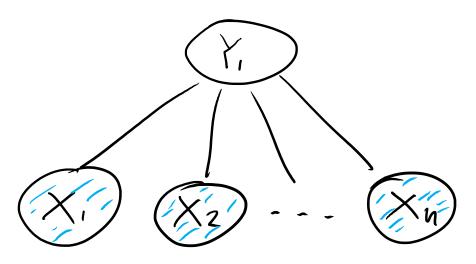


Some notation: exp and indicator function exp and indicator function exp (Predicate(X))____ 123454

What are the Parameters?



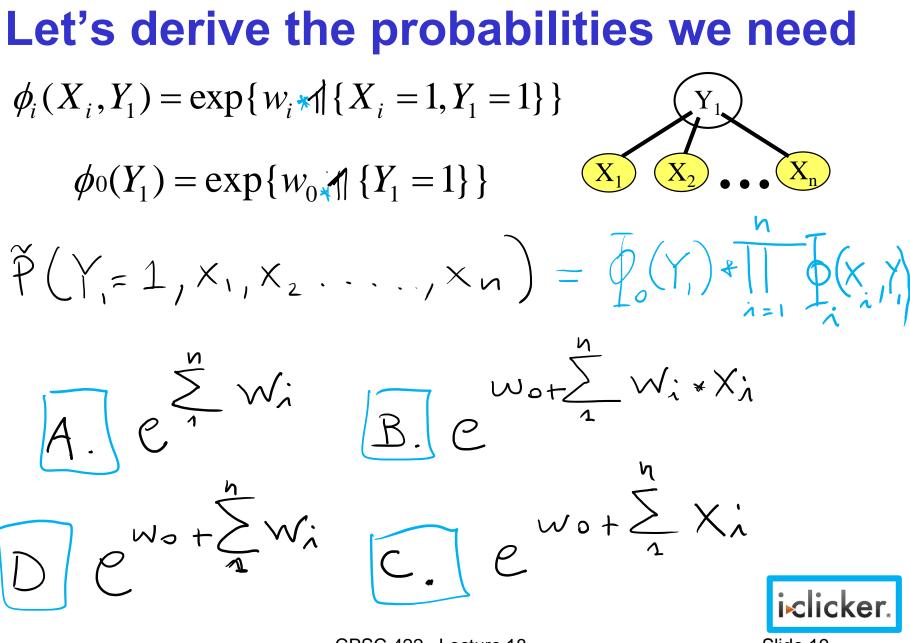
Let's derive the probabilities we need



To compute $P(Y_1 | X_1...X_n) = P(Y_1, X_1...X_n) / P(X_1...X_n)$ We compute $P(Y_1 = 1 | X_1...X_n) = P(Y_1 = 1, X_1...X_n) / P(X_1...X_n)$

CPSC 422, Lecture 18

 $P(Y_{n}=1, X_{n}-X_{n})+P(Y_{n}=0, X_{n}-X_{n})$



CPSC 422, Lecture 18

Slide 19

Let's derive the probabilities we need

$$\phi_{i}(X_{i}, Y_{1}) = \exp\{w_{i} \mid \{X_{i} = 1, Y_{1} = 1\}\}$$

$$\phi_{0}(Y_{1}) = \exp\{w_{0} \mid \{Y_{1} = 1\}\}$$

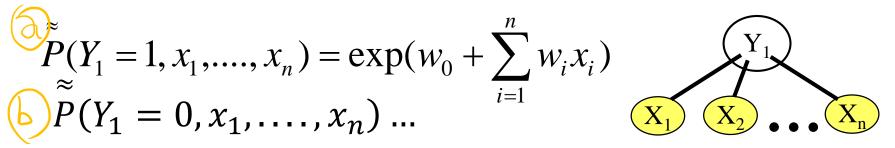
$$(Y_{1} = 0, X_{1}, X_{2}, \dots, X_{n}) = \overline{\phi}_{0}(Y_{1}) + \prod_{k=1}^{n} \overline{\phi}_{k}(X_{k})$$

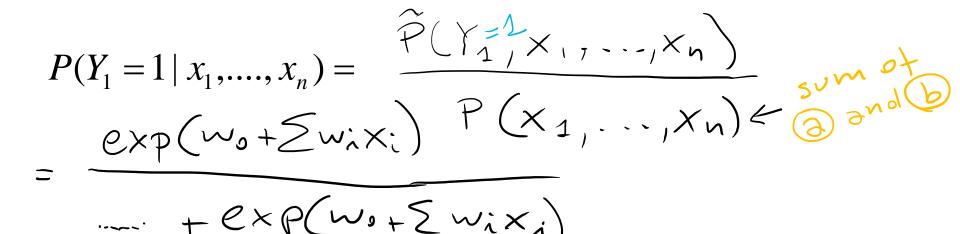
$$A \cdot 1 \quad B \cdot e^{w_{0}} \quad C \cdot 0$$

$$iclicker.$$

$$D \cdot e^{\sum_{k=1}^{n} \omega_{k}}$$

Let's derive the probabilities we need

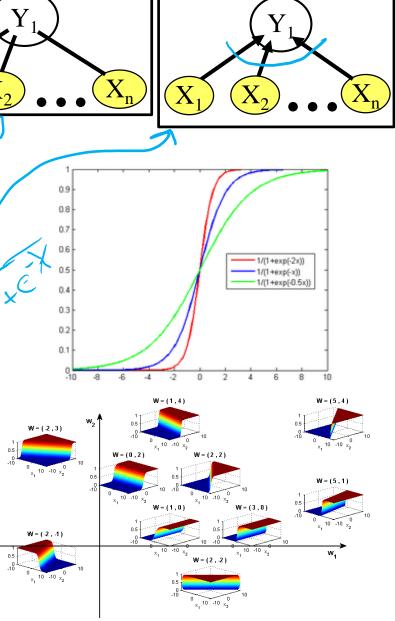




 e^{z} or $+e^{z}$

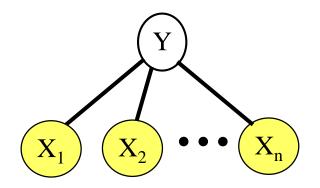
Sigmoid Function used in Logistic Regression

- Great practical interest
- Number of param w_i is linear instead of exponential in the number of parents
- Natural model for many realworld applications
- Naturally aggregates the influence of different parents



Logistic Regression as a Markov Net (CRF)

Logistic regression is a simple Markov Net (a CRF) aka naïve markov model



• But only models the **conditional distribution**, P(Y | X) and not the full joint P(X, Y)

Learning Goals for today's class

You can:

- Perform Exact and Approx. Inference in Markov Networks
- Describe a natural parameterization for a Naïve Markov model (which is a simple CRF)
- Derive how P(Y|X) can be computed for a Naïve Markov model
- Explain the discriminative vs. generative distinction and its implications

Assignment 2 – due on Mon

Next class Mon Linear-chain CRFs

To Do Revise generative temporal models (HMM)

Midterm, Mon, March 8,

How to prepare....

- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture complete list will be posted)
- Revise all the clicker questions, practice exercises, assignments
- More practice material will be posted
- Check questions and answers on Piazza