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Lecture Overview

Probabilistic Graphical models

• Recap Markov Networks

• Inference in Markov Networks  (Exact and Approx.)

• Conditional Random Fields



Parameterization of Markov Networks
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Factors define the local interactions (like CPTs in Bnets)

What about the global model? What do you do with Bnets? 

X

X



How do we combine local models?

As in BNets by multiplying them!
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Step Back…. From structure to 

factors/potentials
In a Bnet the joint is factorized….
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In a Markov Network you have one factor for each 

maximal clique



General definitions

Two nodes in a Markov network are independent

if and only if every path between them is cut off 

by evidence

So the markov blanket of a node is…?

eg for C

eg for A C
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Lecture Overview

Probabilistic Graphical models

• Recap Markov Networks

• Inference in Markov Networks  (Exact and Approx.)

• Conditional Random Fields
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Variable elimination algorithm for Bnets

To compute P(Z| Y1=v1 ,… ,Yj=vj ) :

1. Construct a factor for each conditional probability.

2. Set the observed variables to their observed values.

3. Given an elimination ordering, simplify/decompose sum of 
products

4. Perform products and sum out Zi

5. Multiply the remaining factors  Z

6. Normalize: divide the resulting factor f(Z) by Z f(Z) .

Variable elimination algorithm for Markov 

Networks…..

Given a network for P(Z, Y1,… ,Yj Z1,… ,Zi), :



Variable Elimination on MN: Example
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Gibbs sampling for Markov 

Networks

Example: P(D | C=0)

Resample non-evidence variables 

in a pre-defined order or a 

random order

Suppose we begin with A

A

B C

D E

F

A B C D E F

1 0 0 1 1 0

Initial assigmnet

What do we need to sample?

a.  P(A | B=0) b.  P(A | B=0, C=0) 

c. P( B=0, C=0| A) 
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Note: never change evidence!



Gibbs sampling MN: what to sample

Resample probability 

distribution of P(A|BC)

A

B C

D E

F

ϕ1

ϕ2 ϕ3

A=1 A=0

C=1 1 2

C=0 3 4

A=1 A=0

B=1 1 5

B=0 4.3 0.2
A B C D E F

1 0 0 1 1 0

? 0 0 1 1 0

Φ1 × Φ2 × Φ3  = 
A=1 A=0

12.9 0.8

Normalized result = 
A=1 A=0

0.95 0.05
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B=0 ; C=0

For Bnets

For Markov Networks just the product of the factors involving X 

(normalized) 



Example: Gibbs sampling

Resample probability 

distribution of B given A D

A

B C

D E

F

ϕ1

ϕ2

ϕ4

D=1 D=0

B=1 1 2

B=0 2 1

A=1 A=0

B=1 1 5

B=0 4.3 0.2
A B C D E F

1 0 0 1 1 0

1 0 0 1 1 0

1 ? 0 1 1 0

Φ1 × Φ2 × Φ4  = 
B=1 B=0

1 ??

Normalized result = 
B=1 B=0

0.11 0.89
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A.  10

B.  0.4

C. 8.6
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Lecture Overview

Probabilistic Graphical models

• Recap Markov Networks

• Inference in Markov Networks  (Exact and Approx.)

• Conditional Random Fields



We want to model P(Y1| X1.. Xn)

• Which model is simpler, MN or BN?

CPSC 422,  Lecture 18 Slide 14

Y1

X1 X2 … Xn

Y1

X1 X2 … Xn

• Naturally aggregates the 

influence of different parents

… where all the Xi are always observed

MN BN



Conditional Random Fields (CRFs)

• Model P(Y1 .. Yk | X1.. Xn)

• Special case of Markov Networks where all the Xi

are always observed

• Simple case P(Y1| X1…Xn) 
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Some notation: exp and indicator function

exp and indicator function
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What are the Parameters?
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Let’s derive the probabilities we need

To compute 

P(Y1| X1…Xn) = P(Y1 ,X1…Xn) / P(X1…Xn)

We compute

P(Y1 =1| X1…Xn) = P (Y1 =1, X1…Xn) / P(X1…Xn)



Let’s derive the probabilities we need
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}}1,1{exp{),( 11 === YXwYX iiii

}}1{exp{)( 1010 == YwY

Y1

X1 X2 … Xn



Let’s derive the probabilities we need
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}}1,1{exp{),( 11 === YXwYX iiii

}}1{exp{)( 1010 == YwY

Y1

X1 X2 … Xn

0



Let’s derive the probabilities we need
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Sigmoid Function used in Logistic Regression

• Great practical interest

• Number of param wi is linear 

instead of exponential in the 

number of parents

• Natural model for many real-

world applications

• Naturally aggregates the 

influence of different parents
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Y1

X1 X2 … Xn

Y1

X1 X2 … Xn



Logistic Regression as a Markov Net 

(CRF)
Logistic regression is a simple Markov Net (a 

CRF) aka naïve markov model 

Y

X1 X2
… Xn

• But only models the conditional distribution, 
P(Y | X ) and not the full joint P(X,Y )
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Learning Goals for today’s class

You can:

• Perform Exact and Approx. Inference in Markov 

Networks

• Describe a natural parameterization for a Naïve 

Markov model (which is a simple CRF)

• Derive how P(Y|X) can be computed for a Naïve 

Markov model

• Explain the discriminative vs. generative distinction 

and its implications



CPSC 422,  Lecture 18 Slide 25

Next class Mon

Revise generative temporal models (HMM)To Do 

Linear-chain CRFs

• Go to Office Hours 

• Learning Goals (look at the end of the slides for each 
lecture – complete list will be posted)

• Revise all the clicker questions, practice exercises, 
assignments

• More practice material will be posted

• Check questions and answers on Piazza

Midterm, Mon, March 8, 

How to prepare….

Assignment 2 – due on Mon


