Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 14

Feb, 10, 2021

Slide credit: some slides adapted from Stuart Russell (Berkeley)

422 big picture

Lecture Overview (Temporal Inference)

- Filtering (posterior distribution over the current state given evidence to date)
- From intuitive explanation to formal derivation
- Example
- Prediction (posterior distribution over a future state given evidence to date)
- (start) Smoothing (posterior distribution over a past state given all evidence to date)

Markov Models

Hidden Markov Model

- A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation/evidence about the state at each time step:

- \mid domain $(\mathrm{X}) \mid=k$
- |domai n(E)| = h
- $P\left(X_{0}\right)$ specifies initial conditions
$\times P\left(X_{t+1} \mid X_{t}\right)$ specifies the dynamics

${ }^{\circ} P\left(E_{t} \mid S_{t}\right)$ specifies the sensor model

Simple Example

(We'll use this as a running example)
$>$ Guard stuck in a high-security bunker
> Would like to know if it is raining outside
>Can only tell by looking at whether his boss comes into the bunker

Useful inference in HMMs

- In general (Filtering): compute the posterior distribution over the current state given all evidence to date

$$
P\left(X_{t} \mid e_{0: t}\right)
$$

Intuitive Explanation for filtering recursive formula

sequence of eviolences $e_{0}: e_{t}$

Filtering

> Idea: recursive approach

- Compute filtering up to time $t-1$, and then include the evidence for time t (recursive estimation)
$>\boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{e}_{0 . t}\right)=\boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{e}_{0:-\mathrm{t}-1}, \boldsymbol{e}_{t}\right) \quad$ dividing up the evidence irclicker. $=\alpha \boldsymbol{P}\left(\boldsymbol{e}_{t} \mid \boldsymbol{X}_{t}, \boldsymbol{e}_{0: t-1}\right) \boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{e}_{0: t-1}\right)$ WHY?
A. Bayes Rule
$=\alpha \boldsymbol{P}\left(\boldsymbol{e}_{t} \mid \boldsymbol{X}_{t}\right) \boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{e}_{\mathrm{e}+1}\right) \mathrm{WHY} ?$
B. Cong. Independence
C. Product Rule
$>$ So we only need to compute $\boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{e}_{0 . t-1}\right)$

$$
\begin{aligned}
& P(X, Y, Z)=P(X \mid Y, Z) P(Y, Z) \\
& P(X, Y, Z)=P(Y \mid X, Z) P(X, Z) \\
& P(Y \mid X, Z)=\frac{P(X \mid Y, Z) P(Y, Z)}{P(X, Z)}=P(Y \mid Z) P(Z) \\
& \sum_{Y} P(X Y \mid Z) P(Z) \\
&=\frac{P(X \mid Y, Z) P(Y \mid Z)}{P(X \mid Z)} \\
& \sum_{Y} P(X \mid Y Z) P(Y \mid Z)=\alpha P(X \mid Y, Z) P(Y \mid Z)
\end{aligned}
$$

\Rightarrow Compute $\boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{e}_{0 . t-1}\right)$
Prove it?

$$
\boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{e}_{0: t-1}\right)=\sum_{\boldsymbol{x}_{t-1}} \boldsymbol{P}\left(\boldsymbol{X}_{t}, \boldsymbol{x}_{t-1} / \mathbf{e}_{0: t-1}\right) \stackrel{v}{=} \sum_{x_{t-1}} \boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{x}_{t-1}, \boldsymbol{e}_{0: t-1}\right) P\left(\boldsymbol{x}_{t-1} \mid \mathbf{e}_{0: t-1}\right)=
$$

$$
=\sum_{\boldsymbol{x}_{t-1}} \boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{x}_{t-1}\right) P\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{e}_{0 . t-1}\right) \text { because of.. }
$$

Transition model!
Filtering at time $t-1$
> Putting it all together, we have the desired recursive formulation

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{X}_{t} / \boldsymbol{e}_{0: t}\right)=\alpha \boldsymbol{P}\left(\boldsymbol{e}_{t} \mid \boldsymbol{X}_{t}\right) P\left(\boldsymbol{X}_{t} \mid \boldsymbol{e}_{0 . t-1}\right) \text { (previous slide) } \\
& \boldsymbol{P}\left(\boldsymbol{X}_{t} / \boldsymbol{e}_{0: t}\right)=\alpha \boldsymbol{P}\left(\boldsymbol{e}_{t} \mid \boldsymbol{X}_{t}\right) \sum_{x_{t-1}} \boldsymbol{P}\left(\boldsymbol{X}_{t} \mid \boldsymbol{x}_{t-1}\right) P\left(\boldsymbol{x}_{t-1} / \boldsymbol{e}_{0 . t-1}\right)
\end{aligned}
$$

Inclusion of new evidence (sensor model)

$>\boldsymbol{P}\left(\boldsymbol{X}_{t-1} \mid \boldsymbol{e}_{0: t-1}\right)$ can be seen as a message $f_{0: t-1}$ that is propagated forward along the sequence, modified by each transition and updated by each observation
"moving" the conditioning

$$
\begin{aligned}
& P(A B \mid C)=\frac{P(A B C)}{P(C)} * \frac{P(B C)}{P(B C)}= \\
& =\frac{P(A B C)}{P(B C)} * \frac{P(B C)}{P(C)}= \\
& =P(A \mid B C) * P(B \mid C)
\end{aligned}
$$

Filtering

$>$ Thus, the recursive definition of filtering at time t in terms of filtering at time $t-1$ can be expressed as a FORWARD procedure

- $\boldsymbol{f}_{0: t}=\alpha$ FORWARD $\left(\boldsymbol{f}_{0: t-1}, \boldsymbol{e}_{t}\right)$
$>$ which implements the update described in

Analysis of Filtering

$>$ Because of the recursive definition in terms for the forward message, when all variables are discrete the time for each update is constant (i.e. independent of t)
> The constant depends of course on the size of the state

Rain Example

$>$ Suppose our security guard came with a prior belief of 0.5 that it rained on day 0 , just before the observation sequence started.
$>$ Without loss of generality, this can be modelled with a fictitious state R_{0} with no associated observation and $\mathrm{P}\left(R_{0}\right)=<0.5,0.5>$
> Day 1: umbrella appears $\left(u_{t}\right)$ Thus no $^{\text {no previous }}$

$$
\begin{aligned}
& \boldsymbol{P}\left(R_{l} \mid \boldsymbol{e}_{0: t-l}\right)=\boldsymbol{P}\left(R_{l}\right)=\sum_{r_{0}} \boldsymbol{P}\left(R_{l} \mid r_{0}\right) P\left(r_{0}\right) \\
& =\left\langle\frac{T}{T}, \underset{F}{0.3\rangle} * \frac{0.5}{T}+\left\langle\frac{0.3,0.7\rangle}{F} * \underset{F}{0.5}=\langle 0.5,0.5\rangle\right.\right.
\end{aligned}
$$

0.5

TRUE 0.5
FALSE 0.5

Rain Example

$>$ Updating this with evidence from for $t=1$ (umbrella appeared) gives

$$
\begin{aligned}
& \boldsymbol{P}\left(R_{l} \mid u_{l}\right)=\alpha \boldsymbol{P}\left(u_{l} \mid R_{l}\right) \boldsymbol{P}\left(R_{l}\right)= \\
& \alpha<0.9,0.2><0.5,0.5>=\alpha<0.45,0.1>\sim<0.818,0.182>
\end{aligned}
$$

$>$ Day 2: umbella appears $\left(u_{2}\right)$. Thus

$$
\begin{aligned}
& \boldsymbol{P}\left(R_{2} \mid \boldsymbol{e}_{0: t-1}\right)=\boldsymbol{P}\left(R_{2} \mid u_{1}\right)=\sum_{r_{1}} \boldsymbol{P}\left(R_{2} \mid r_{1}\right) P\left(r_{1} \mid u_{1}\right)= \\
& =\langle 0.7,0.3\rangle * 0.818+\langle 0.3,0.7\rangle * 0.182 \sim\langle 0.627,0.373\rangle
\end{aligned}
$$

TRUE 0.5
FALSE 0.5

Rain Example

$>$ Updating this with evidence from for $t=2$ (umbrella appeared) gives

$$
\begin{aligned}
& \boldsymbol{P}\left(R_{2} \mid u_{1}, u_{2}\right)=\alpha \boldsymbol{P}\left(u_{2} \mid R_{2}\right) \boldsymbol{P}\left(R_{2} \mid u_{1}\right)= \\
& \alpha<0.9,0.2><0.627,0.373>=\alpha<0.565,0.075>\sim<0.883,0.117>
\end{aligned}
$$

> Intuitively, the probability of rain increases, because the umbrella appears twice in a row

Practice exercise (home)

Compute filtering at t_{3} if the $3^{\text {rd }}$ observation/evidence is no umbrella (will put solution on inked slides)

$$
\begin{aligned}
& \langle 0.7,0.3\rangle * 0.883+\langle 0.3,0.7\rangle * 0.117 \\
& \langle 0.618,0.264\rangle+\langle 0.035,0.081\rangle=\langle 0.653,0.345\rangle) \\
& \alpha\langle 0.653,0.345\rangle *\langle 0.1,0.8\rangle \\
& \text { sensor model } \\
& \alpha\langle 0.065,0.276\rangle \\
& \text { normalize (divide by the sum. }
\end{aligned}
$$

$$
0.19 \quad 0.81
$$

Lecture Overview

- Filtering (posterior distribution over the current state given evidence to date)
- From intuitive explanation to formal derivation
- Example
- Prediction (posterior distribution over a future state given evidence to date)
- (start) Smoothing (posterior distribution over a past state given all evidence to date)

Prediction $P\left(\boldsymbol{X}_{t+k+1} \mid \boldsymbol{e}_{0: t}\right)$

> Can be seen as filtering without addition of new evidence

- We need to show how to recursively predict the state at time $t+k+1$ from a prediction for state $t+k$

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{X}_{t+k+l} \mid \boldsymbol{e}_{0: t}\right)=\sum_{x_{t+k}} \boldsymbol{P}\left(\boldsymbol{X}_{t+k+l}, \boldsymbol{x}_{t+k} \mid \boldsymbol{e}_{0: t}\right)=\sum_{x_{t+k}} \boldsymbol{P}\left(\boldsymbol{X}_{t+k+1} \mid \boldsymbol{x}_{t+k}, \boldsymbol{e}_{0: t}\right) P\left(\boldsymbol{x}_{t+k} \mid \boldsymbol{e}_{0: t}\right)= \\
& =\sum_{x_{t+k}} \boldsymbol{P}\left(\boldsymbol{X}_{t+k+1} \mid \boldsymbol{x}_{t+k}\right) P\left(\boldsymbol{x}_{t+k} \mid \boldsymbol{e}_{0: t}\right) \quad \square \text { Prediction for state } t+k \\
& \quad \begin{array}{c}
\text { Transition model }
\end{array} \\
& \quad \begin{array}{l}
\text { Pren }
\end{array}
\end{aligned}
$$

- Let's continue with the rain example and compute the probability of Rain on day four after having seen the umbrella in day one and two: $\boldsymbol{P}\left(R_{4} \mid u_{1}, u_{2}\right)$

Rain Example

$>$ Prediction from day 2 to day 3

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{X}_{3} \mid \boldsymbol{e}_{1: 2}\right)=\sum_{x_{2}} \boldsymbol{P}\left(\boldsymbol{X}_{3} \mid \boldsymbol{x}_{2}\right) P\left(\boldsymbol{x}_{2} \mid \boldsymbol{e}_{1: 2}\right)=\sum_{r_{2}} \boldsymbol{P}\left(R_{3} \mid r_{2}\right) P\left(r_{2} \mid u_{1} u_{2}\right)= \\
& =\langle 0.7,0.3\rangle * 0.883+\langle 0.3,0.7\rangle * 0.117=\langle 0.618,0.265\rangle+\langle 0.035,0.082\rangle \\
& =\langle 0.653,0.347\rangle
\end{aligned}
$$

$>$ Prediction from day 3 to day 4

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{X}_{4} \mid \boldsymbol{e}_{1: 2}\right)=\sum_{x_{3}} \boldsymbol{P}\left(\boldsymbol{X}_{4} \mid \boldsymbol{x}_{3}\right) P\left(\boldsymbol{x}_{3} \mid \boldsymbol{e}_{1: 2}\right)=\sum_{r_{3}} \boldsymbol{P}\left(R_{4} \mid r_{3}\right) P\left(r_{3} \mid u_{1} u_{2}\right)= \\
& =\langle 0.7,0.3\rangle * 0.653+\langle 0.3,0.7\rangle * 0.347=\langle 0.457,0.196\rangle+\langle 0.104,0.243\rangle \\
& =\langle 0.561,0.439\rangle
\end{aligned}
$$

Lecture Overview

- Filtering (posterior distribution over the current state given evidence to date)
- From intuitive explanation to formal derivation
- Example
- Prediction (posterior distribution over a future state given evidence to date)
- (start) Smoothing (posterior distribution over a past state given all evidence to date)

Smoothing

>Smoothing: Compute the posterior distribution over a past state given all evidence to date

- $\boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: t}\right)$ for $1 \leq \mathrm{k}<\mathrm{t}$

Smoothing

$>\boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: t}\right)=\boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: k}, \boldsymbol{e}_{k+1: t}\right) \quad$ dividing up the evidence

$$
=\alpha \boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: k}\right) \boldsymbol{P}\left(\boldsymbol{e}_{k+1: t} \mid \boldsymbol{X}_{k}, \boldsymbol{e}_{0: k}\right) \text { using... }
$$

$$
=\alpha \boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: k}\right) \boldsymbol{P}\left(\boldsymbol{e}_{k+1: t} \mid \boldsymbol{X}_{k}\right) \text { using } \ldots
$$

forward message from filtering up to state k , $f_{0: k}$

$$
\begin{aligned}
& \text { backward message, } \\
& \qquad \boldsymbol{b}_{k+1: t} \\
& \text { computed by a } \\
& \text { recursive process } \\
& \text { that runs } \\
& \text { backwards from } t
\end{aligned}
$$

Smoothing

$>\boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: t}\right)=\boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: k} \boldsymbol{e}_{k+1: t}\right) \quad$ dividing up the evidence

$$
=\alpha \boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: k}\right) \boldsymbol{P}\left(\boldsymbol{e}_{k+1: t} \mid \boldsymbol{X}_{k}, \boldsymbol{e}_{0: k}\right) \text { using Bayes Rule }
$$

$$
=\alpha \boldsymbol{P}\left(\boldsymbol{X}_{k} \mid \boldsymbol{e}_{0: k}\right) \boldsymbol{P}\left(\boldsymbol{e}_{k+1: t} \mid \boldsymbol{X}_{k}\right) \text { By Markov assumption on evidence }
$$

forward message from filtering up to state k , $f_{0: k}$
backward message, $\boldsymbol{b}_{k+1: t}$
computed by a recursive process that runs backwards from t

Learning Goals for today's class

$>$ You can:

- Describe Filtering and derive it by manipulating probabilities
- Describe Prediction and derive it by manipulating probabilities
- Describe Smoothing and derive it by manipulating probabilities

TODO for Fri

Revised today's slides carefully
Keep Reading Textbook Chp 8.5
Keep working on assignment-2 (due on Mon, Mar 1)

