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Linguistic View: Textual Data is Tree-Structured

Within a document: Discourse-trees
Reveal structure underlying coherent documents
Groupings/Relations between clauses/sentences/paragraphs
Structure postulated by discourse theory:

Rhetorical Structure Theory (RST)[MT88]
PDTB [PDL+08]

1

Figure: Complete, hierarchical RST-style discourse trees

1https://ntunlpsg.github.io/project/parser/parser/
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Questions on RST and Discourse Parsing
1. What are “silver-standard” and “gold-standard” treebanks?
2. What is nuclearity and why is it important in RST discourse parsing?
3. The paper states that a nuclearity attribute encodes the importance of the node in its local context. What does the “importance 

of a node in its local context” mean? How is this determined?
4. How are EDU’s segmented? How are those boundaries decided? It seems like the choice of boundaries would 

influence the subsequent calculations of sentiment polarity.
5. What do the different nuclearity classes mean? Why can we have N-S, S-N, and N-N but not S-S?
6. Why is training data for discourse parsing scarce? 
7. I'm still a bit confused on how human-annotated discourse corpora are created? Is it something that a human has to 

do completely by hand?
8. It is mentioned that the solution could be extended to predict discourse relations beside structure and nuclearity – which 

relationships are worth the additional analysis? What are some examples of discourse relations?
9. Are there other proposed or existing solutions in addition to the one proposed in this paper to address the scarcity of human 

annotated discourse treebanks as training data?
10. Why did you decide to use trees (binary trees it seems by the images) instead of cyclic algorithms? 
11. What algorithms did previous top-performing discourse parsers employ?



What can Discourse be used for?

Sentiment analysis [BJE15, NCN17]
Summarization [GMC+14]
Text classification [JS17]

Figure: Adapted from [VT07]
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The Problem with Annotated Data

Lack of annotated datasets (expensive and time consuming)

Corpora small and genre specific (News, Instructions...)

) Limited applicability of deep learning methodologies
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Questions on Datasets / Treebanks
1. Why are the document numbers in Table 2 so varying between the treebanks?
2. Would the efficacy of this method change depending on the type of data it was looking at? Ie. this was trained on yelp data, 

would it have better results if the subject matter was more specific like a medical database? 
3. What was the reasoning for choosing to test against the human-annotated treebanks with a 90-10 training to testing split?
4. Is there a way to crowdsource discourse annotations to increase the amount of training data and help advance the 

research?
5. Why was the Yelp 2013 corpus used for creating MEGA-DT? What are the effects of using other corpuses, and was this 

explored at all?
6. To what extent would increasing the size of the treebank improve the performance of the parser, even if the quality of converting 

from sentiment to discourse of the corpus is not very high?



The Sub-Tasks of Discourse Parsing
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From Plain EDUs to Discourse Structures (1/2)

Figure: Multiple Instance Learning (MIL) as presented in [AL18], used in [HC19]
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From Plain EDUs to Discourse Structures (2/2)

Figure: CKY as presented at EMNLP 2019 [HC19]
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Questions on the General Algorithm
1. In each cell of the matrix of EDUs, what information do the subtrees contain?
2. Why are attention values used to capture nodes’ relative importance in the tree, and how are they measured?
3. How does adding an additional subtree at every merge in the CKY procedure represent N-N nuclearity? How do we use polarity 

scores to classify N-N?
4. How do we get the attention values of the leaf notes? A table that has the attention value for each word (terminal 

terms)?
5. For predicting short discourses, are there more efficient strategies?
6. Can we use a machine learning approach to determine how many subtrees to preserve in each cell (B)? (maybe by running a 

very large number of experiments with different B values)
7. How is the CKY algorithm from class different from what is used in the paper?
8. The best performing approach for aggregating its two child nodes to find sentiment polarity p using the attention score a. A 

nodes attention score can be calculated independent of the same node’s sentiment polarity. How is the sentiment polarity p 
related to the attention score a?

9. How complex it is to implement the proposed strategy compared to the CKY algorithm? not sure if there is a trade-off between 
CKY algorithm and the proposed strategy



Is the Standard CKY Approach Su�cient?

Advantages:

Time complexity O(n3)

Global Optimum

Drawbacks:

Space complexity Cn = 1

n+1

�
2n
n

�

8 Sub-trees ! Gold-labels

Full CKY approach !  20 EDUs2

Generated treebank only ⇡100,000 (out of 250,000) documents

No additional attributes (e.g., Nuclearity, Relations)

2Using our modern servers
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Questions on Time/Space Complexity
1. Elaborate on the time complexity of the original solution to this problem and how using beam search reduces it?
2. How does the time complexity of this model compare with that of other top-performing models?
3. Why is there no analysis of the computational complexity of the new algorithm vs. the old one? Is computational 

complexity not as important in this context as spatial complexity?
4. What is the time complexity for this algorithm? How long did the experimental datasets and training take?
5. If the space complexity using beam search is so low, would it be feasible to consider another algorithm which focuses on time 

complexity or do we not care about time complexity as much as we care about space complexity?



Our new Approach (1/3)

Beam-search as e↵ective heuristic approach for tree-structured problems:

Syntactic parsing [VKK+15, FSK17, DKBS16]

Discourse parsing [MRCV19]

) Apply beam-search to CKY, limiting #sub-trees per cell to B

Beam 20 EDUs 30 EDUs 100 EDUs

1 1.6KB 3.7KB 40KB
10 24KB 48KB 440KB
100 920KB 1.5MB 7.9MB
1 3.6GB 1.9PB 400SB

Table: KB = 103, MB = 106, GB = 109, PB = 1015, SB = 1054
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Questions on the Heuristics/Beam-Search
1. Are there any non-heuristic approaches that tackle the same issue? If so, how successful are these approaches?
2. Do you see this being expanded with other search strategies other than beam search as well? / Is there any other heuristic 

rules that could perform similar or better than the one used in this paper?
3. If we have “infinite resources” i.e. “infinite memory” and “infinite time” would it be possible to come up with another method that 

performs better than the one in the paper?
4. Other than beam size, what other heuristics were considered - why not use one based on depth or a certain 

approximating formula?
5. Assuming that the distance between gold-label sentiment and model prediction decreases as B increases, why was 

B=10 chosen over 15 or 20?
6. Why didn’t you try other heuristics to test how well the proposed heuristic works?
7. How does changing the rule of picking B subtrees influence the result?
8. Does this method have a maximum limitation? (for space or time consumption)? What if a longer documents need to be 

processed?
9. Beam search is not necessarily optimal (that is, there is no guarantee that it will find the best solution). In general, beam search 

returns the first solution found. Could this have led to incorrect subtrees being generated by MEGA-DT?



Our new Approach (2/3)

Stochastic Component:
Why? – Strict enforcement of gold-level sentiment not preferable on
low sub-trees
How? – Softmax selection using Boltzmann–Gibbs distribution &
Depth-dependent stochastic trade-o↵ ⌧

Patrick Huber and Giuseppe Carenini (UBC) MEGA RST Discourse Treebanks 10 / 32



Questions on the Stochastic Approach/Explore-Exploit
1. Can the algorithm be improved via tweaking some of the parameters of the exploitation-exploration tradeoff calculations?
2. What technique or improvement could be made in order to promote high degrees of exploration on the low levels of the 

subtrees, whilst simultaneously heavily enforcing that the sentiment of the subtrees align with the overall document sentiment, 
and how would this improve the performance?

3. How would we be able to calculate the trade off between exploration and exploitation for their proposed solution?
4. How was tau selected? Could there potentially be more efficient functions? Why a linear function?
5. What would happen if the lower levels of the binary trees have a high degree of exploitation instead of exploration and vice 

versa?
6. Given the stochasticity, is it guaranteed that Stochastic Beam Search will find a global optimum?
7. Why was soft-max selection using the Boltzmann-Gibbs distribution chosen over an epsilon greedy approach or other 

exploration-exploitation methods? 
8. Is there any way for the algorithm to make sure that it doesn't discard the best subset during exploration?
9. Are there alternatives to the technique used to simulate exploration-exploitation, which could more intelligently consider the 

sentiment of smaller portions of the document when choosing subtrees to keep?



Our new Approach (3/3)

Add nuclearity as additional feature:

Shown to be important for downstream tasks [Mar00, JS17, SQ19]

Moving towards complete discourse trees
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Questions on Nuclearity Improvements
1. What is causing the large amount of over-prediction of the N-N nuclearity class? How would we be able to improve on 

this?
2. Given the definition of nuclearity provided in the work, that is, a measure of “importance” how many methods are there of 

deriving it given some input?
3. What is the reason that only considering two out of three nuclearity classes(N-S and S-N) generates a poor 

performance on the nuclearity classification?
4. Is there a way to help us distinguish between nucleus and satellite sentences?
5. Taking the average of the attention values of a parent’s children may be too simple ? Is there another way to calculate 

the attention value of a parent? For example, choosing the weight the attention value of one child more than another 
child? 



Our new Approach Result
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Evaluation - Simple Baselines (1/2)

Four simple baselines for structure prediction:

Simple baseline for nuclearity prediction:
Majority class (from training dataset)
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Evaluation - Simple Baselines (2/2)

Approach
Structure Nuclearity

RST-DT Instr-DT RST-DT Instr-DT

Right Branching 54.64 62.72 ⇥ ⇥
Left Branching 53.73 52.16 ⇥ ⇥
Hier. Right Branching 74.37 75.34 ⇥ ⇥
Hier. Left Branching 70.58 63.75 ⇥ ⇥
Majority Class ⇥ ⇥ (N)61.33 (N) 76.48

Results of the micro-averaged precision measure on RST-parseval.
Best performance per sub-table is bold, ⇥ not feasible.
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Evaluation - Intra-Domain Systems (1/2)

Intra-domain (train/test on same domain/treebank) is standard evaluation
! Large variety of previous work, our baselines include:

DPLP[JE14], gCRF[FH14], CODRA[JCN15], Li[LLC16],
Two-Stage[WLW17], Yu[YZF18]

Patrick Huber and Giuseppe Carenini (UBC) MEGA RST Discourse Treebanks 15 / 32



Evaluation - Intra-Domain Systems (2/2)

Approach
Structure Nuclearity

RST-DT Instr-DT RST-DT Instr-DT

Right Branching 54.64 62.72 ⇥ ⇥
Left Branching 53.73 52.16 ⇥ ⇥
Hier. Right Branching 74.37 75.34 ⇥ ⇥
Hier. Left Branching 70.58 63.75 ⇥ ⇥
Majority Class ⇥ ⇥ (N)61.33 (N) 76.48

Intra-Domain Evaluation
DPLP[JE14]* 82.00 – 68.20 –
gCRF[FH14]* 84.30 – 69.40 –
CODRA[JCN15]* 82.60 82.88 68.30 64.13
Li[LLC16]* 82.20 – 66.50 –
Two-Stage[WLW17] 86.00 79.43 72.40 62.39
Yu[YZF18] 85.50 – 73.10 –

Results of the micro-averaged precision measure on RST-parseval.
Best performance per sub-table is bold, * results taken from [MMA17],
– not published, ⇥ not feasible.

Patrick Huber and Giuseppe Carenini (UBC) MEGA RST Discourse Treebanks 16 / 32



Evaluation - Inter-Domain Systems (1/5)

Inter-domain (train/test on di↵erent domains) is new, more di�cult and
more insightful

Experiments using the Two-Stage parser [WLW17]
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Evaluation - Inter-Domain Systems (2/5)

Inter-domain (train/test on di↵erent domains) is new, more di�cult and
more insightful

Experiments using the Two-Stage parser [WLW17]
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Evaluation - Inter-Domain Systems (3/5)

Inter-domain (train/test on di↵erent domains) is new, more di�cult and
more insightful

Experiments using the Two-Stage parser [WLW17]

Patrick Huber and Giuseppe Carenini (UBC) MEGA RST Discourse Treebanks 19 / 32



Evaluation - Inter-Domain Systems (4/5)

Inter-domain (train/test on di↵erent domains) is new, more di�cult and
more insightful

Experiments using the Two-Stage parser [WLW17]
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Questions on Intra-/Inter-Domain
1. What is the difference between inter-domain and intra-domain? Why are there be statistically significant improvements on 

inter-domain discourse prediction?
2. Could you elaborate more about what it means for the model to do well with Intra-Domain evaluation vs Inter-Domain.
3. What contributes to the difference in performance of training and testing for inter vs intra domain discourse 

prediction?
4. Is the weaker intra-domain performance a consequence of the trade-offs made in terms of inter-domain performance?
5. How come the parser did the best on inter-domain experiments as opposed to intra-domain experiments?
6. Why is is that, if intra-domain tasks are easier, a parser trained on MEGA-DT does not match the performance of training and 

testing on the same treebank? If it performs well on inter-domain tasks, why does performance decline for intra-domain tasks?



Evaluation - Inter-Domain Systems (5/5)

Approach
Structure Nuclearity

RST-DT Instr-DT RST-DT Instr-DT

Right Branching 54.64 62.72 ⇥ ⇥
Left Branching 53.73 52.16 ⇥ ⇥
Hier. Right Branching 74.37 75.34 ⇥ ⇥
Hier. Left Branching 70.58 63.75 ⇥ ⇥
Majority Class ⇥ ⇥ (N)61.33 (N) 76.48

Intra-Domain Evaluation
DPLP[JE14]* 82.00 – 68.20 –
gCRF[FH14]* 84.30 – 69.40 –
CODRA[JCN15]* 82.60 82.88 68.30 64.13
Li[LLC16]* 82.20 – 66.50 –
Two-Stage[WLW17] 86.00 79.43 72.40 62.39
Yu[YZF18] 85.50 – 73.10 –

Inter-Domain Evaluation
Two-StageRST-DT ⇥ 73.57 ⇥ 49.78
Two-StageInstr-DT 74.32 ⇥ 44.68 ⇥
Two-StageYelp13-DT[HC19] 76.41 74.14 35.72 33.35
Two-StageMEGA-DT

†77.82 †75.18 44.88 †54.87

Human [MMA17] 88.30 – 77.30 –

Results of the micro-averaged precision measure on RST-parseval.
Best performance per sub-table is bold, * results taken from [MMA17],
† statistically significant (Bonferroni adjusted), – not published, ⇥ not feasible.
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Evaluation - Ablation / Dataset-Sizes

Approach
Structure Nuclearity

RST-DT Instr-DT RST-DT Instr-DT

Two-StageMEGA-DT-Base 75.92 73.87 36.46 34.48
Two-StageMEGA-DT +Stoch 77.58 73.76 37.43 35.89
Two-StageMEGA-DT +Nuc 76.76 74.35 44.22 54.10
Two-StageMEGA-DT 77.82 75.18 44.88 54.87

Table: Ablation study, measured as the micro-average precision on RST-parseval.
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Figure: Performance-trend over increasingly large subsets.
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Questions on Experiments
1. Table 4 is referred to as an 'ablation study'. What does that mean? Does that mean 'how do the results change as we 

remove the components of this algorithm'?
2. If we were to remove or weaken the strategy used for exploration and exploitation trade-off, will parsers trained on MEGA-DT 

still be better than other treebanks that are available?
3. Why did they choose to compare MEGA-DT to the other treebanks mentioned in the research paper and not a more 

exhaustive list of treebanks?
4. Even though Two-Stage was the best parser in intra-domain evaluation for the most part, why not also train the other parsers on 

Mega-DT and compare their inter-domain performances as well?
5. In the evaluation, why do they use a randomly selected subset containing 10,000 documents from the Yelp’s 13 

dataset?
6. Why do you think training a parser on MEGA-DT could not match the performance on the intra-domain?
7. Can similar techniques be used for other AI training data outside of discourse parsing? 



Conclusion (1/2)
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Conclusion (2/2)

! Enable augmentation of any sentiment-annotated dataset

! Allows generation of large-scale domain/genre-specific discourse
treebanks.

! MEGA-DT is our case study for the e↵ectiveness

! Published dataset & code! Check out:
https://www.cs.ubc.ca/cs-research/lci/research-groups/

natural-language-processing/
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Questions on Scalability
1. This method is quite scalable, how would a much larger treebank (e.g. 2,500,000 documents instead of 250,000) perform?

2. How much further could this method be scaled? I.e. could significantly larger corpora than MEGA-DT be generated?

3. MEGA-DT is based on Yelp ’13, isn’t there a possibility that a newer dataset would help improve the performance of this work?



Questions on Auxiliary Tasks
1. One of the extensions for the work mentions that a long term goal is to explore auxiliary tasks for distant supervision 

of discourse, like summarization, question answering and machine translation. How different would the approach to 
solving these problems be?

2. Could this work apply to other supervision methods other than overall sentiment? How widely applicable is this in regard to 
whether most real-life datasets already have sentiment-annotation or if this method only applies to a smaller subset of 
databases.



Evaluation on Downstream Tasks - Setup

Figure: Three phases of the approach. Left/Center: Detailed view into the
generation of weighted RST-style discourse trees. Right: Downstream
evaluation
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Questions on Downstream Tasks
1. How is nuclearity-attribution critical in informing downstream tasks, explicitly?
2. One of the potential uses of MEGA-DT is to use it for sentiment analysis for long documents. Will there be a performance 

overhead as the document size increases?



Questions on the Sentiment Analysis Task
1. Why are only sentiment-based datasets used and no other types for evaluation?
2. Why stop at 1 case study corpus, why not create a handful of MEGA-DT-like corpora in different genres to evaluate the 

approach?
3. If it is possible for the sentiment of a paragraph to be subjective, how are the resulting treebanks different for the 

different possible sentiment annotations?
4. Is it possible for it to work with ongoing texts such as the news or conversation that happened right now. Would the accuracy be 

affected a lot?
5. How would MEGA_DT respond in the training of a discourse parser for non-sentiment datasets, where document-level 

non-sentiment information is present?



Questions on Different Languages
1. Could this RST-style discourse parsing be applied to other spoken/written languages besides english?
2. Would MEGA-DT creation techniques need to be created for each language / context?



Questions on Applications
1. How does this sort of algorithm help us do things; I see that it's about breaking a statement into EDU's and figuring out their 

structure based on sentiment of the whole and the parts, but what are the applications?
2. Has the new MEGA-DT discourse treebank been used for anything yet?
3. Can MEGA-DT substitute RST-DT in real life? If not why? 
4. Will automatically generated discourse trees eventually produce better results than human-annotated ones?
5. Have other domain-specific treebanks been generated with this new approach and how did they compare to existing banks?
6. Could the parser be used in other industries besides restaurants as readily?
7. Being able to translate a model from one domain to a different domain is very important. Especially given that NLP techniques 

(and machine learning techniques in general) rely on data. Is that why you chose to evaluate MEGA-DT on inter-domains? I 
would imagine that it would make more sense to evaluate it only intra-domain since the data it’s learning on is similar to what it 
will be tested on. 
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Thank you

Questions?
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