Reasoning under Uncertainty: Marginalization, Conditional Prob., and Bayes

Computer Science cpsc322, Lecture 25

(Textbook Chpt 6.1.3.1-2)

June, 13, 2017

Lecture Overview

- Recap Semantics of Probability
- Marginalization <</p>
- −Conditional Probability <</p>
- -Chain Rule
 -Bayes' Rule

Recap: Possible World Semantics for Probabilities

Probability is a formal measure of subjective uncertainty.

Random variable and probability distribution

Model Environment with a set of random vars

$$\times Y \neq \frac{1}{2} = \frac{1}{2}$$

$$= \frac{1}{2} = \frac{1}{2}$$
• Probability of a proposition $f = \frac{1}{2} = \frac{1}{2}$

 $P(t) = \sum_{w \neq t} \mu(w)$

Joint Distribution and Marginalization

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	→ T	.144
F	F	⇒F	.576

	toothache/		¬ too	thache
	catch ¬ catch		catch	¬ catch
	_			
cavity	.108	.012	.072	.008

ベルシー

 $\overline{P(cavity, toothache, catch)}$

Given a joint distribution, e.g. P(X, Y, Z) we can compute distributions over any smaller sets of variables

$$P(X,Y) = \sum_{z \in dom(Z)} P(X,Y,Z=z)$$

P(conty, toothadhe)

cavity	toothache	P(cavity , toothache)
Т	T	.12
Т	F	.08
F	Т	.08
F	F	.72

Joint Distribution and Marginalization

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	Т	.144
F	F	F	.576

P(cavity, toothache, catch)

Given a joint distribution, e.g. P(X, Y, Z) we can compute distributions over any smaller sets of variables

$$P(X,Z) = \sum_{y \in dom(Y)} P(X,Z,Y = y)$$

B.

iclicker.

cavity	catch	P(cavity , catch)	P(cavity , catch)	P(cavity , catch)
Т	T	.12	.18	.18
Т	F	.08	.02	.72
F	Т		••••	••••
F	F			

Joint Distribution and Marginalization

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	Т	.144
F	F	F	.576

P(cavity, toothache, catch)

Given a joint distribution, e.g. P(X, Y, Z) we can compute distributions over any smaller sets of variables

$$P(X,Z) = \sum_{y \in dom(Y)} P(X,Y = y,Z)$$

i&licker.

C.

cavity	catch	P(cavity , catch)	P(cavity , catch)	P(cavity , catch)
Т	T	.12	.18	.18
Т	F	.08	.02	.72
F	Т	• • •		
F	F			

Why is it called Marginalization?

cavity	toothache	P(cavity , toothache)
Т	T 🔨	.12
Т	F ψ	.08
F	T \uparrow	.08
F	F ^Δ	.72

$$P(X) = \sum_{y \in dom(Y)} P(X, Y = y)$$

P(conty)

	Toothache = T	Toothache = F
Cavity = T	.12	.08
Cavity = F	.08 🗸	.72 🗸

• 8

. 2

P(tothoche)

Lecture Overview

- Recap Semantics of Probability
- Marginalization
- Conditional Probability
- -Chain Rule
- -Bayes' Rule
- Independence

Conditioning (Conditional Probability)

- We model our environment with a set of random variables.
- Assume have the joint, we can compute the probability of...
- Are we done with reasoning under uncertainty?
- What can happen?
- Think of a patient showing up at the dentist office.
 Does she have a cavity?

Conditioning (Conditional Probability)

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model (for now the joint) taking all background information into account. This gives the prior probability.
- · All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability P(h|e) of h given e is the posterior probability of h.

Conditioning Example

- Prior probability of having a cavity
 P(cavity = T)
- Should be revised if you know that there is toothache
 P(cavity = T | toothache = T)
- It should be revised again if you were informed that the probe did not catch anything

$$P(cavity = T \mid toothache = T, catch = F)$$

What about ?

$$P(cavity = T \mid sunny = T)$$

How can we compute P(h|e)

 What happens in term of possible worlds if we know the value of a random var (or a set of random vars)?

out

• Some worlds are ruled . The other become

1/2 = P(e) = · Z

cavity	toothache	catch	$\mu(w)$	$\mu_e(w)$
Т	Т	Т	.108	-> .54
Т	Т	F	.012	- 06
Т	F	Т	.072	. 36
Т	F	F	.008	. 04
F	Ŧ	T	.016	0
Ę.	Т	F	.064	0
F	F	Ţ	.144	6
F	F	F	.576	D

$$e = (cavity = T)$$

$$\int M_e(w) = \frac{M(w)}{P(e)}$$
If $w \models e^{P(e)}$

$$\begin{cases} m_e(w) = 0 \\ 1 + w \neq e \end{cases}$$

How can we compute P(h|e)

$$P(h \mid e) = \sum_{w \models h} \mu_e(w)$$

$$P(toothache = F \mid cavity = T) = \sum_{w \models toothache = F} \mu_{cavity=T}(w)$$

cavity	toothache	catch	$\mu(w)$	$\mu_{cavity=T}(w)$
T	T	T	.108	.54
Т	Т	F	.012	- 06
Т	F	Т	.072	. 36
Т	F	F	.008	- 04
F		-	.016	0
Ę	Ţ	F	.064	0
F	F	Ţ	.144	P
F	F	F	.576	D

Semantics of Conditional Probability

$$\mu_{e}(\mathbf{w}) = \underbrace{\begin{cases} \frac{1}{P(e)} \times \mu(w) & \text{if } w \neq e \\ 0 & \text{if } w \neq e \end{cases}}$$

The conditional probability of formula *h* given evidence *e* is A

$$P(h|e) = \sum_{w \models h} \mu_{e}(w) = \sum_{w \models h \land e} \frac{1}{P(e)} \times \mu(w) = \frac{1}{P(e)} \sum_{w \models h \land e} \mu(w$$

Semantics of Conditional Prob.: Example

					• • • • • • • • • • • • • • • • • • • •	
cavity	toothache	catch ($\mu(w)$	$\mu_e(w)$	e = (cavity = T)	
T	Т	T	.108	.54	P(hne)	
T	T	F	.012	.06		
Т	T	T	.072	.36	/ r(e) s	
Т	F	F	.008	.04		
F	T	T	.016	0		
F	Т	F	.064	0	T.21	
F	F	Т	.144	0		
F	F	F	.576	0		
h e						
$P(h \mid e) = P(toothache = T \mid cavity = T) = $						

$$\bigotimes_{\omega \in h} Me(\omega) = .6$$

P(county) to other, **Conditional Probability among Random Variables**

$$P(X \mid Y) = P(X, Y) / P(Y)$$

$$P(X \mid Y) = P(toothache \mid cavity)$$

$$= P(toothache \land cavity) / P(cavity)$$

	Toothache = T	Toothache = F
Cavity = T_	<u> </u>	.08 /.2
Cavity = F	.08_ /.8	.72 /. 8
		9

	Toothache = T	Toothache = F
Cavity = T	. 6	. 4
Cavity = F		. 9

Product Rule

Definition of conditional probability:

$$-P(X_1 | X_2) = P(X_1, X_2) / P(X_2)$$

Product rule gives an alternative, more intuitive formulation:

$$-P(X_1, X_2) = P(X_2) P(X_1 | X_2) = P(X_1) P(X_2 | X_1)$$

Product rule general form:

$$P(X_{1},...,X_{n}) = P(X_{1},...,X_{t})$$

$$= P(X_{1},...,X_{t}) P(X_{t+1},...,X_{t})$$

Chain Rule

Product rule general form:

$$P(X_1, ..., X_n) =$$

= $P(X_1, ..., X_t) P(X_{t+1}, ..., X_n | X_1, ..., X_t)$

 Chain rule is derived by successive application of product rule:

$$P(X_{1}, ..., X_{n-1}) = P(X_{1}, ..., X_{n-1}) = P(X_{1}, ..., X_{n-2}) P(X_{n-1} | X_{1}, ..., X_{n-2}) P(X_{n} | X_{1}, ..., X_{n-2}) = ...$$

$$= P(X_{1}) P(X_{2} | X_{1}) ... P(X_{n-1} | X_{1}, ..., X_{n-2}) P(X_{n} | X_{1}, ..., X_{n-1})$$

$$= \prod_{i=1}^{n} P(X_{i} | X_{1}, ..., X_{i-1})$$

Chain Rule: Example

P(cavity, toothache, catch) =

P(toothache, catch, cavity) =

In how many other ways can this joint be decomposed using the chain rule?

iclicker. A. 4 B. 1 C. 8

D. 0

Chain Rule: Example

P(cavity, toothache, catch) =

P(toothache, catch, cavity) =

Lecture Overview

- Recap Semantics of Probability
- Marginalization
- Conditional Probability
- -Chain Rule
- -Bayes' Rule
- Independence

Using conditional probability

- Often you have causal knowledge (forward from cause to evidence):
 - For example
 - √ P(symptom | disease)
 - ✓ P(light is off | status of switches and switch positions)
 - √ P(alarm | fire)
 - In general: P(evidence e | hypothesis h)
- ... and you want to do evidential reasoning (backwards from evidence to cause):
 - For example
 - √ P(disease | symptom)
 - ✓ P(status of switches | light is off and switch positions)
 - √ P(fire | alarm)
 - In general: P(hypothesis h | evidence e)

Bayes Rule

By definition, we know that :

$$P(h \mid e) = \frac{P(h \land e)}{P(e)} \qquad P(e \mid h) = \frac{P(e \land h)}{P(h)}$$

We can rearrange terms to write

$$P(h \land e) = P(h \mid e) \times P(e) \tag{1}$$

$$P(e \land h) = P(e \mid h) \times P(h) \tag{2}$$

But

$$P(h \land e) = P(e \land h) \tag{3}$$

- From (1) (2) and (3) we can derive
- Bayes Rule

$$P(h | e) = \frac{P(e | h)P(h)}{P(e)}$$
 (3)

Example for Bayes rule

- On average, the alarm rings once a year Probe of ringing 7

$$- P(alarm) = ?$$

If there is a fire, the alarm will almost always ring

On average, we have a fire every 10 years

The fire alarm rings. What is the probability there is a fire?

Example for Bayes rule

- On average, the alarm rings once a year
 - P(alarm) = 1/365
- If there is a fire, the alarm will almost always ring
 - P(alarm|fire) = 0.999
- On average, we have a fire every 10 years
 - P(fire) = 1/3650
- The fire alarm rings. What is the probability there is a fire?
 - Take a few minutes to do the math!

$$P(h \mid e) = \frac{P(e \mid h)P(h)}{P(e)}$$

A. 0.999

B. 0.9

C. 0.0999

D. 0.1

Example for Bayes rule

- On average, the alarm rings once a year
 - P(alarm) = 1/365
- If there is a fire, the alarm will almost always ring
 - P(alarm|fire) = 0.999
- On average, we have a fire every 10 years
 - P(fire) = 1/3650
- The fire alarm rings. What is the probability there is a fire?

•
$$P(fire|alarm) = \frac{P(alarm|fire) \times P(fire)}{P(alarm)} = \frac{0.999 \times 1/3650}{1/365} = 0.0999$$

Even though the alarm rings the chance for a fire is only about 10%!

Learning Goals for today's class

- You can:
- Given a joint, compute distributions over any subset of the variables

• Prove the formula to compute P(h|e)

Derive the Chain Rule and the Bayes Rule

Next Class

- Marginal Independence
- Conditional Independence

Assignments

Assignment 3 has been posted: due jone 20th

Plan for this week

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every possible world
- Probabilistic queries can be answered by summing over possible worlds
- For nontrivial domains, we must find a way to reduce the joint distribution size
- Independence (rare) and conditional independence (frequent) provide the tools

Conditional probability (irrelevant evidence)

- New evidence may be irrelevant, allowing simplification, e.g.,
 - P(cavity | toothache, sunny) = P(cavity | toothache)
 - We say that Cavity is conditionally independent from Weather (more on this next class)
- This kind of inference, sanctioned by domain knowledge, is crucial in probabilistic inference