Reasoning under Uncertainty:
 Marginalization, Conditional Prob., and Bayes

Computer Science cpsc322, Lecture 25
(Textbook Chpt 6.1.3.1-2)

June, 13, 2017

Lecture Overview

-Recap Semantics of Probability K

- Marginalization \leftarrow
- Conditional Probability \leftarrow
- Chain Rule
-Bayes' Rule

Recap: Possible World Semantics for Probabilities

Probability is a formal measure of subjective uncertainty.

- Random variable and probability distribution

- Model Environment with a set of random vars

$$
X Y Z
$$

binary

$$
\begin{gathered}
x_{2} \\
\gamma_{2} \\
x_{3} \\
\text { s set } \\
8
\end{gathered}
$$

$\sum_{\omega \in w} \mu(w)=1_{\text {formula }}$

- Probability of a proposition $f \quad X=T \wedge Z=F$

$$
P(t)=\sum_{\omega \in f} \mu(\omega)
$$

Joint Distribution and Marginalization

cavity	toothache		catch	$\mu(W)$	$P($ cavity,toothache, catch $)$		
T		T	T	. 108	Given a joint distribution, e.g.		
T		T	F	. 012	$P(X, Y, Z)$ we can compute		
T		F	T	. 072	distributions over any smaller sets of variables		
T		F	F	. 008			
F		T	T	. 016			
F		T	F	. 064	$P(X, Y)=\sum P(X, Y, \underline{Z}=z)$		
F		F	\rightarrow T	. 144	$P($ conty, toothache $)$		
F		F	$\rightarrow F$. 576			
	toothache ${ }^{\text {² }}$		\checkmark toothache		cavity	toothache	P (cavity, toothache)
	catch	\neg catch	catch	\neg catch			
cavity	. 108	. 012	. 072	. 008	T	T	. 12
a cavity	. 016	. 064	. 144	. 576	T	F	. 08
				. 576	F	T	. 08
					F	F	. 72

Joint Distribution and Marginalization

cavity	toothache	catch	$\mu(W)$
T	T	T	.108
T	T	F	.012
T	F	T	.072
T	F	F	.008
F	T	T	.016
F	T	F	.064
F	F	T	.144
F	F	F	.576

$$
P(X, Z)=\sum_{y \in \operatorname{dom}(Y)} P(X, Z, Y=y)
$$

ioclicker.

cavity	catch	P (cavity, catch)	P (cavity, catch)	P (cavity, catch)
T	T	.12	.18	.18
T	F	.08	.02	.72
F	T	\ldots	\ldots	\ldots
F	F	\ldots	\ldots.	\ldots

Joint Distribution and Marginalization

cavity	toothache	catch	$\mu(w)$	P (cavity, too	he,catch)
T	T	T	. 108	Given a joint distribution, e.g	
T	T	F	. 012	$P(X, Y, Z)$ we can compute	
T	F	T	. 072	distributions over any smaller sets of variables	
T	F	F	. 008		
F	T	T	. 016		
F	T	F	. 064	$P(X, Z)=\sum_{y \in \operatorname{dom}(Y)} P(X, Y=y, Z)$	
F	F	T	. 144		
F	F	F	. 576	C. irclicker.	
A.					
cavity	catch	P (cavity, catch)		P (cavity, catch)	$P($ cavity , catch)
T	T		. 12	(.18)	. 18
T	F		. 08	(. 02	72
F	T		..		
F	F				

Why is it called Marginalization?

Lecture Overview

- Recap Semantics of Probability - Marginalization
-Conditional Probability
-Chain Rule
-Bayes' Rule
- Independence

Conditioning (Conditional Probability)

- We model our environment with a set of random variables.
- Assume have the joint, we can compute the probability of.......y formula
- Are we done with reasoning under uncertainty?
- What can happen?
- Think of a patient showing up at the dentist office. Does she have a cavity?

Conditioning (Conditional Probability)

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model (for now the joint) taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability $P(h / e)$ of h given e is the posterior probability of h.

$$
P(\text { cavity }=T \mid \text { toothache }=T) \text { ? }
$$

Conditioning Example

- Prior probability of having a cavity
$P($ cavity $=T)$
- Should be revised if you know that there is toothache $P($ cavity $=T \mid$ toothache $=T)$
- It should be revised again if you were informed that the probe did not catch anything
$P($ cavity $=T$ | toothache $=T$, catch $=F)$
- What about?
$P($ cavity $=T /$ sunny $=T)$

How can we compute $\mathrm{P}(\mathrm{h} \mid \mathrm{e})$

- What happens in term of possible worlds if we know the value of a random var (or a set of random vars)?
- Some worlds are ruled . The other become
more likely out

$$
e=(\text { cavity }=T)
$$

cavity	toothache	catch	$\mu(w)$	$\mu_{e}(w)$
T	T	T	.108	.54
T	T	F	.012	.06
T	F	T	.072	36
T	F	F	.008	04
F	T	T	.016	0
F	T	F	.064	\bigcirc
F	F	T	.144	\bigcirc
F	F	F	.576	\bigcirc

$$
\left\{\begin{array}{l}
\mu_{e}(w)=\frac{M(w)}{P(e)} \\
\text { If } w=e
\end{array}\right.
$$

$$
\left\{\mu_{e}(w)=0\right.
$$

$$
\text { it w } \not \neq e
$$

How can we compute $\mathrm{P}(\mathrm{h} \mid \mathrm{e})$

$$
P(h \mid e)=\sum_{w \equiv h} \mu_{e}(w)
$$

$P($ toothache $=F \mid$ cavity $=T)=\quad \sum \mu_{\text {cavity }=T}(w)$作 toothache $=F$

cavity	toothache	catch	$\mu(W)$	$\mu_{\text {cavity }=T}(W)$
T	T	T	.108	.54
T	T	F	.012	.06
T	F	T	.072	.36
T	F	F	.008	.04
F	T	T	.016	0
F	T	F	.064	0
F	F	T	.144	\bigcirc
F	F	F	.576	O

Semantics of Conditional Probability

$$
\mu_{\mathrm{e}}(\mathrm{w})=\left\{\begin{array}{lll}
\begin{cases}\frac{1}{P(e)} \times \mu(w) & \text { if }\end{cases} & w \vDash e \\
0 & \text { if } & w \notin e
\end{array}<\right.
$$

- The conditional probability of formula \boldsymbol{h} given evidence e is A

Semantics of Conditional Prob.: Example

Conditional Probability among Random Variables

$$
P(X \mid Y)=\underline{P(X, Y)} / P(Y)
$$

$$
P(X \mid Y)=P(\text { toothache } \mid \text { cavity })
$$

$$
=P(\text { toothache } \text { ^ cavity }) / P(\text { cavity })
$$

	Toothache $=T$	Toothache $=F$
Cavity $=T$	$.12 / .2$	$. .08 / .2$
Cavity $=F$	$.08 / .8$	$.72 / .8$
	.2	.8
	Toothache $=T$	Toothache $=F$
Cavity $=T$.6	.4
Cavity $=F$.1	.9

Product Rule

- Definition of conditional probability:
$-P\left(X_{1} \mid X_{2}\right)=P\left(X_{1}, X_{2}\right) / P\left(X_{2}\right)$
- Product rule gives an alternative, more intuitive formulation:

$$
-P\left(X_{1}, X_{2}\right)=P\left(X_{2}\right) P\left(X_{1} \mid X_{2}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right)
$$

- Product rule general form:

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1} \ldots X_{t}, X_{t+1}\right. \\
& =\mathbf{P}\left(X_{1}, \ldots, X_{t}\right) \mathbf{P}\left(X_{t+1} \ldots X_{n}, X_{1}, \ldots, X_{t}\right)
\end{aligned}
$$

Chain Rule

- Product rule general form:

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots, X_{n}\right)= \\
& \quad=\mathbf{P}\left(X_{1}, \ldots, X_{t}\right) \mathbf{P}\left(X_{t+1} \ldots . X_{n} \mid X_{1}, \ldots, X_{t}\right)
\end{aligned}
$$

- Chain rule is derived by successive application of product rule:
$t=n-1$

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots X_{n-1}, X_{n}\right)= \\
& =P\left(X_{1}, \ldots, X_{n-1} P P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)\right. \\
& =\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=\ldots \\
& =\underset{\sim}{\mathbf{P}}\left(X_{1}\right) \mathbf{P}\left(X_{\text {2 }} \mid X_{1}\right) \ldots \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, ., X_{n-1}\right) \\
& =\not \eta_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Chain Rule: Example
$\mathrm{P}($ cavity , toothache, catch $)=$

$$
\begin{aligned}
& P(\text { cavity }) * P(\text { toothache } \mid \text { cavity }) * \\
& * P(\text { catch | cavity, toothache })
\end{aligned}
$$

$\mathrm{P}($ toothache, catch, cavity $)=$

$$
P(\text { toothache }) * P(\text { catch } \mid \text { toothache }) * P\left(\text { contort }\binom{\text { torttoche }}{\text { catch }}\right.
$$

In how many other ways can this joint be decomposed using the chain rule?
irclicker.
A. 4
B. 1
C. 8
D. 0

Chain Rule: Example
$\mathrm{P}($ cavity , toothache, catch $)=$

$$
\begin{aligned}
& P(\text { cavity }) * P(\text { toothache } \mid \text { cavity }) * \\
& * P(\text { catch | cavity, toothache })
\end{aligned}
$$

$\mathrm{P}($ toothache, catch, cavity $)=$

$$
P(\text { toothache }) * P(\text { catch } \mid \text { toothache }) * P\left(\text { cont }\binom{\text { trottroche }}{\text { catch }}\right.
$$

these and the other four decompositions ore OK

Lecture Overview

-Recap Semantics of Probability -Marginalization

- Conditional Probability
- Chain Rule
-Bayes' Rule
- Independence

Using conditional probability

- Often you have causal knowledge (forward from cause to evidence):
- For example
\checkmark P(symptom | disease)
$\checkmark \mathrm{P}$ (light is off | status of switches and switch positions)
\checkmark P(alarm | fire)
- In general: P (evidence e | hypothesis h)
- ... and you want to do evidential reasoning (backwards from evidence to cause):
- For example
\checkmark P(disease | symptom)
$\checkmark \mathrm{P}$ (status of switches | light is off and switch positions)
\checkmark P(fire | alarm)
- In general: P (hypothesis $\mathrm{h} \mid$ evidence e)

Bayes Rule

- By definition, we know that :

$$
P(h \mid e)=\frac{P(h \wedge e)}{P(e)} \quad P(e \mid h)=\frac{P(e \wedge h)}{P(h)}
$$

- We can rearrange terms to write

$$
\begin{align*}
& P(h \wedge e)=P(h \mid e) \times P(e) \tag{1}\\
& P(e \wedge h)=P(e \mid h) \times P(h) \tag{2}
\end{align*}
$$

- But

$$
\begin{equation*}
P(h \wedge e)=P(e \wedge h) \tag{3}
\end{equation*}
$$

- From (1) (2) and (3) we can derive

Bayes Rule

$$
\begin{equation*}
P(h \mid e)=\frac{P(e \mid h) P(h)}{P(e)} \tag{3}
\end{equation*}
$$

Example for Bayes rule

- On average, the alarm rings once a year
- $P($ alarm $)=$?

- If there is a fire, the alarm will almost always ring
- On average, we have a fire every 10 years
- The fire alarm rings. What is the probability there is a fire?

Example for Bayes rule

- On average, the alarm rings once a year
- $P($ alarm $)=1 / 365$
- If there is a fire, the alarm will almost always ring
$-P($ alarm \mid fire $)=0.999$
- On average, we have a fire every 10 years
- $P($ fire $)=1 / 3650$
- The fire alarm rings. What is the probability there is a fire?
- Take a few minutes to do the math!

$$
P(h \mid e)=\frac{P(e \mid h) P(h)}{P(e)}
$$

A. 0.999

C. 0.0999
D. 0.1

Example for Bayes rule

- On average, the alarm rings once a year
- $P($ alarm $)=1 / 365$
- If there is a fire, the alarm will almost always ring
$-P($ alarm \mid fire $)=0.999$
- On average, we have a fire every 10 years
- $P($ fire $)=1 / 3650$
- The fire alarm rings. What is the probability there is a fire?
- $P($ fire \mid alarm $)=\frac{P(\text { alarm } \mid \text { fire }) \times P(\text { fire })}{P(\text { alarm })}=\frac{0.999 \times 1 / 3650}{1 / 365}=0.0999$
- Even though the alarm rings the chance for a fire is only about 10% !

Learning Goals for today's class

- You can:
- Given a joint, compute distributions over any subset of the variables
- Prove the formula to compute $P(h / e)$

Derive the Chain Rule and the Bayes Rule

Next Class

- Marginal Independence
- Conditional Independence

Assignments

- Assignment 3 has been posted : due jone 20th

Plan for this week

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every possible world
- Probabilistic queries can be answered by summing over possible worlds
- For nontrivial domains, we must find a way to reduce the joint distribution size
- Independence (rare) and conditional independence (frequent) provide the tools

Conditional probability (irrelevant evidence)

- New evidence may be irrelevant, allowing simplification, e.g.,
$-\mathrm{P}($ cavity \mid toothache, sunny $)=\mathrm{P}($ cavity \mid toothache $)$
- We say that Cavity is conditionally independent from Weather (more on this next class)
- This kind of inference, sanctioned by domain knowledge, is crucial in probabilistic inference

