Bottom Up: Soundness and Completeness

Computer Science cpsc322, Lecture 21

(Textbook Chpt 5.2)

June, 6, 2017

2

Lecture Overview

- Recap
- Soundness of Bottom-up Proofs
- Completeness of Bottom-up Proofs

(Propositional) Logic: Key ideas

Given a domain that can	be represented with n
propositions you have	interpretations (possible
worlds)	2 N

If you do not know anything you can be in any of those

It would be nice to know what else is true in all those...

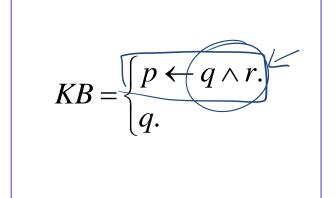
models what is Topically entailed

PDCL syntax / semantics / proofs

Domain can be represented by

three propositions: p, q, r

Models?


Interpretations?

r	q	p
Т	Т	Т
-	T	
-	F	T
Ŧ	F	F
F	Ŧ	_
F	Т	F
F	F	T
4	F	F

What is logically entailed?

$$G = (q \wedge p)$$

PDCL syntax / semantics / proofs

Models

What is logically entailed?

Interpretations

	•			
	r	q	p	
\rightarrow	Т	Т	Т	
	7	T	F	
	-	F	т	
	•	•	•	
	- T	F	F	
\uparrow	F	Т	Т	
\rightarrow	F	Т	F	
	F	F	T	
	4	F	F	
·			71	

Prove
$$G = (q \land p)$$

 $C = \{ 9 \}$

KB JBU G

Lecture Overview

- Recap
- Soundness of Bottom-up Proofs
- Completeness of Bottom-up Proofs

Soundness of bottom-up proof procedure

Generic Soundness of proof procedure:

If G can be proved by the procedure (KB + G) then G is logically entailed by the KB (KB ≠ G)

For Bottom-Up proof

if $G \subseteq G$ at the end of procedure then G is logically entailed by the KB

So BU is sound, if all the atoms in ______

one lograssly entailed by the KB

Soundness of bottom-up proof procedure

Suppose this is not the case.

- 1. Let h be the first atom added to C that is not entailed by KB (i.e., that's not true in every model of KB)
- 2. Suppose h isn't true in model M of KB.
- 3. Since h was added to C, there must be a clause in KB of form: $h \leftarrow b_1 h$. $h \leftarrow b_2 h$
- 4. Each bis true in M (because of 1.). h is false in M.

 Some is talse in M
- 5. Therefore M is not a model
- 6. Contradiction! thus no such h exists.

Lecture Overview

- Recap
- Soundness of Bottom-up Proofs
- Completeness of Bottom-up Proofs

Completeness of Bottom Up

Generic Completeness of proof procedure:

If G is logically entailed by the KB (KB + G) then G can be proved by the procedure (KB + G)

66**C**

Sketch of our proof:

- 1. Suppose $KB \models G$. Then G is true in all models of KB.
- 2. Thus G is true in any particular model of KB
- 3. We will define a model so that if G is true in that model, G is proved by the bottom up algorithm. $G \subseteq C$
- 4. Thus KB + G.

Let's work on step 3

3. We will define a model so that if G is true in that model, G is proved by the bottom up algorithm.

6CC

3.1 We will define an interpretation I so that if G is true in I, G is proved by the bottom up algorithm.

GEC

3.2 We will then show that 15 > mode

Let's work on step 3.1

3.1 Define interpretation I so that if G is true in I, Then $G \subseteq C$.

Let I be the interpretation in which every element of C is $\forall r \sim C$ and every other atom is $\forall r \sim C$.

Slide 12

Let's work on step 3.2

Claim: I is a model of KB (we'll call it the minimal model).

Proof: Assume that I is not a model of KB.

- Then there must exist some clause $h \leftarrow b_1 \land \cdots \land b_m$ in KB (having zero or more b_i 's) which is +3 sein I.
- The only way this can occur is if $b_1 \cdots b_m$ are I (i.e., are in C) and h is f is I (i.e., is not in C)
- But if each b_i belonged to C_i . Bottom Up would have added h to C as well.
- So, there can be no clause in the KB that is false in interpretation I (which implies the claim :-)

Completeness of Bottom Up (proof summary)

If $\overline{KB} \not\models \overline{G}$ then $\overline{KB} \not\models \overline{G}$

- Suppose $KB \models G$.
- · Then G is true in all the models
- · Thus G is true in the minimal model
- Thus 6 C
- Thus G is proved by G.
- i.e., KB 1 6

RELATION BU

RELATION BU

RELATION DIESS

RETUSON COMPLETENESS

KB to G

Completeness

Soundness

An exercise for you Buc={d,e,c,f}

Let's consider these two alternative proof procedures for PDCL

 $C_x = \{All clauses in KB with empty bodies\}$

 $C_{Y} = \{All atoms in the knowledge base\}$

KB $a \leftarrow e \land g$. $b \leftarrow f \land g$. $c \leftarrow e$. $f \leftarrow c$ e. •

d.

iclicker. A. Both X and Y are sound and complete

- B. Both X and Y are neither sound nor complete
- C. X is sound only and Y is complete only

D. X is complete only and Y is sound only

An exercise for you Buc={d,e,c,f}

Let's consider these two alternative proof procedures for PDCL

A. $C_A = \{All clauses in KB with empty bodies\}$

B. $C_B = \{All atoms in the knowledge base\}$

KB $a \leftarrow e \land g.$ $b \leftarrow f \land g.$ $c \leftarrow e.$ $f \leftarrow c$ e. d.

A is sound only and B is complete only

Learning Goals for today's class

You can:

Prove that BU proof procedure is sound

Prove that BU proof procedure is complete

Next class

Midterm, this Thur, June 8, First 50mins block we will start at 1pm sharp!

- Using PDC Logic to model the electrical domain
- Reasoning in the electrical domain
- Top-down proof procedure (as Search!)
- Datalog