(finish Planning)

Propositional Logic Intro, Syntax

Computer Science cpsc322, Lecture 19

(Textbook Chpt 5.1-5.1.1 - 5.2)

June, 6, 2017

Lecture Overview

Recap Planning

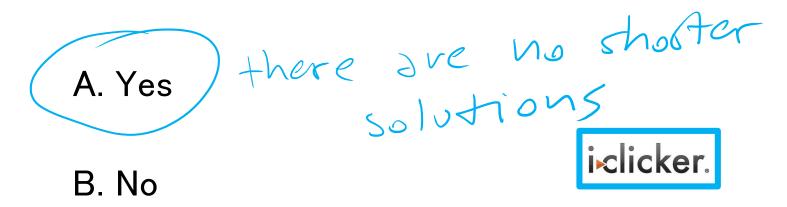
Logic Intro

Propositional Definite Clause Logic:
 Syntax

Recap Planning

Represent possible actions with ...

Plan can be found by...


Or can be found by mapping planning problem into

$$\left(\leq 5P \right)$$

Solve planning as CSP: pseudo code

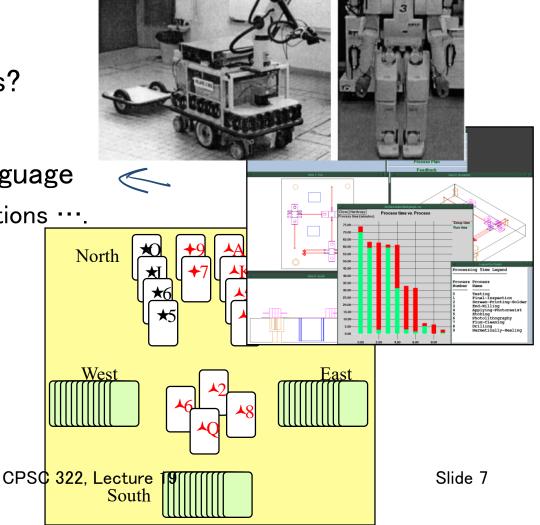
Planning as CSP

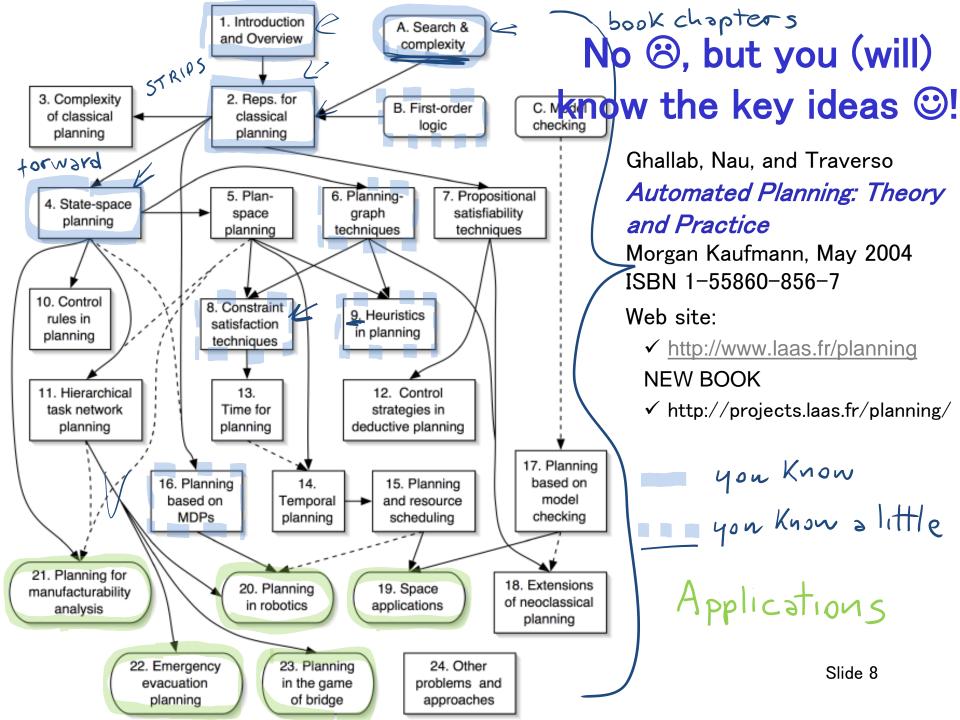
If the algorithm for planning as CSP stops and returns a solution plan of length k, does it mean that there are no shorter solutions?

C. It depends ...

STRIPS to CSP applet

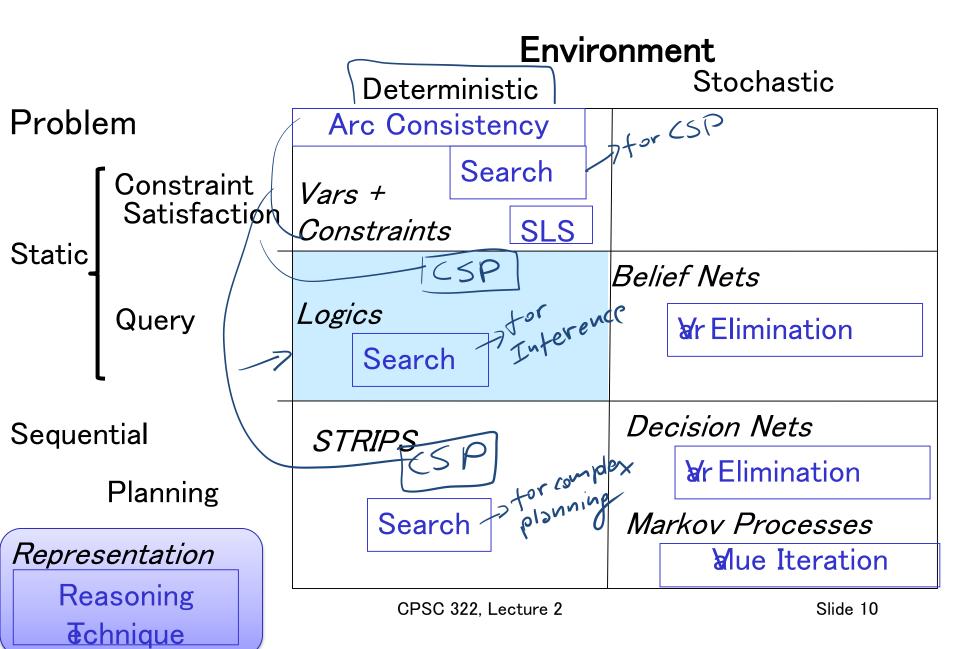
Allows you:


- to specify a planning problem in STRIPS
- to map it into a CSP for a given horizon abla
- the CSP translation is automatically loaded into the CSP applet where it can be solved


Practice exercise using STRIPS to CSP is available on Alspace

Now, do you know how to implement a planner for....

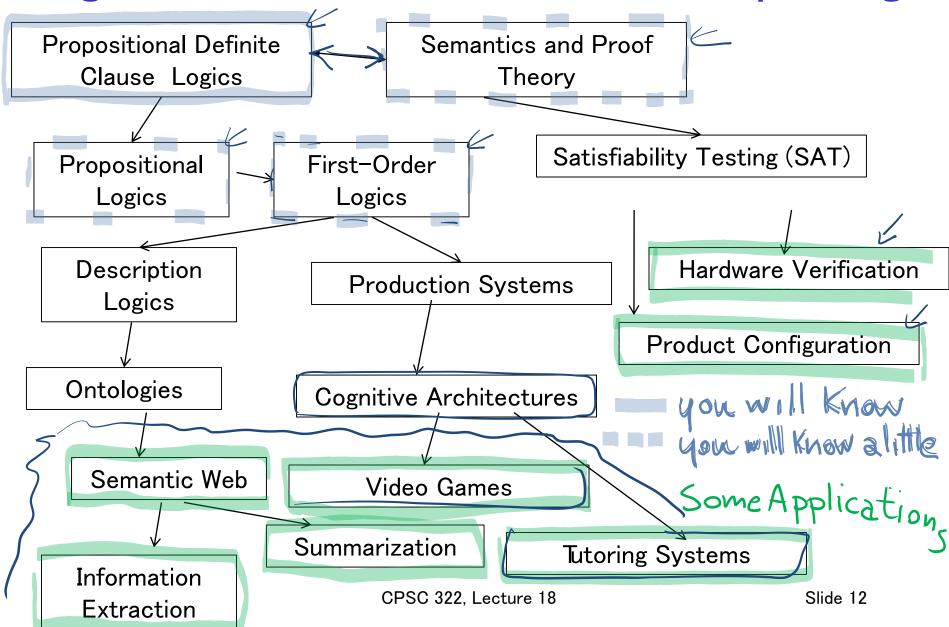
- Emergency Evacuation?
- Robotics?
- Space Exploration?
- Manufacturing Analysis?
- Games (e.g., Bridge)?
- Generating Natural language
 - Product Recommendations ….


Lecture Overview

Recap Planning

Logic Intro

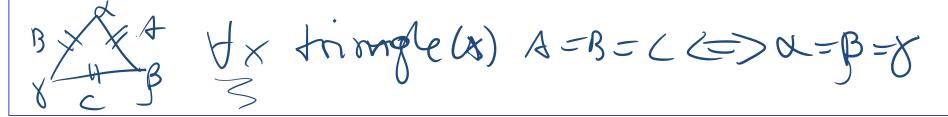
Propositional Definite Clause Logic:
 Syntax


What is coming next?

Logics

- Mostly only propositional…. This is the starting point for more complex ones ….
- Natural to express knowledge about the world
 - What is true (boolean variables)
 - How it works (logical formulas)
- Well understood formal properties
- Boolean nature can be exploited for efficiency
-

Logics in AI: Similar slide to the one for planning



What you already know about logic...

From programming: Some logical operators

You know what they mean in a "procedural" way

Logic is the language of Mathematics. To define formal structures (e.g., sets, graphs) and to proof statements about those

We are going to look at Logic as a Representation and Reasoning System that can be used to formalize a domain (e.g., an electrical system, an organization) and to reason about it

Logic: A general framework for representation & reasoning

- Let's now think about how to represent an environment about which we have only partial (but certain) information
- What do we need to represent?

objects

events

Johons

Space

time

Why Logics?

 "Natural" to express knowledge about the world (more natural than a "flat" set of variables & constraints)

"Every 322 student will pass the midterm"

Course-of (m1, C1)

- It is easy to incrementally add knowledge
- It is easy to check and debug knowledge
- Provide language for asking complex queries
- Well understood formal properties

Complex Query

Propositional Logic

We will study the simplest form of Logic: Propositional

- The primitive elements are **propositions**: Boolean variables that can be {*true, false*}
- The goal is to illustrate the basic ideas
- This is a starting point for more complex logics (e.g., first-order logic)

Boolean nature can be exploited for efficiency.

Propositional logic: Complete Language

The **proposition** symbols $p_1, p_2 \cdots$ etc are sentences

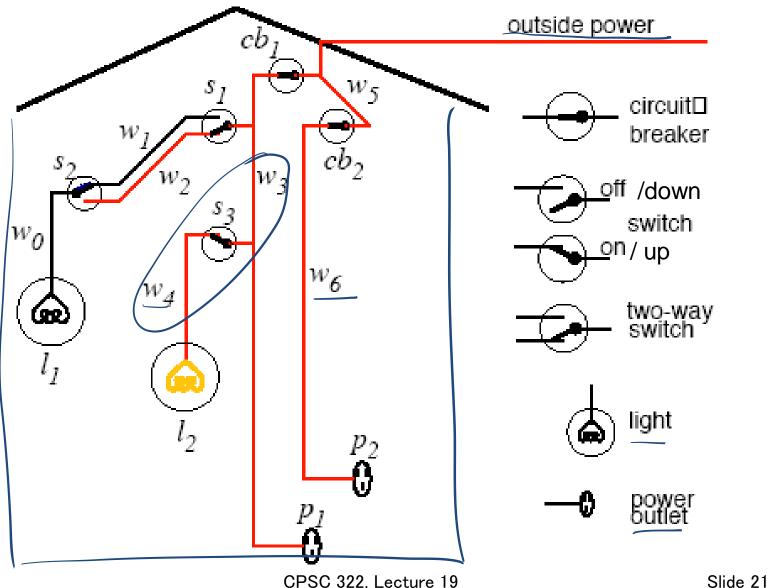
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \vee \underline{S_2}$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Sample Formula
$$((P_1 \vee P_2) \wedge P_3) \iff ((P_2 \Rightarrow 7P_4) \vee P_5)$$

Propositional Logics in practice

* Agent is told (perceives) some facts about the world

Agent is told (already knows / learns) how the world works
 logical formulas


 Agent can answer yes/no questions about whether other facts must be true

Using Logics to make inferences…

- 1) Begin with a task domain.
- Distinguish those things you want to talk about (the ontology).
 - SLIDE
- 3) Choose symbols in the computer to **denote** propositions $|we-w_6| \leq w_4-94$
- 4) Tell the system knowledge about the domain.

5) Ask the system whether new statements about the domain are true or false.

Electrical Environment

Lecture Overview

Recap Planning

Logic Intro

Propositional <u>Definite Clause Logic:</u>
 Syntax

Propositional Definite Clauses

 Propositional Definite Clauses: our first logical representation and reasoning system.

(very simple!)

- Only two kinds of statements:
 - that a proposition is true
 - that a proposition is true if one or more other propositions are true $P_1 \leftarrow P_3 \land P_4$
- Why still useful?
 - Adequate in many domains (with some adjustments)
 - Reasoning steps easy to follow by humans
 - Inference linear in size of your set of statements
 - Similar formalisms used in cognitive architectures

Propositional Definite Clauses: Syntax

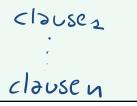
Definition (atom)

Ps

An atom is a symbol starting with a lower case letter

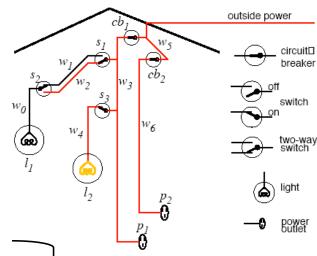
Definition (body)

P21.... 1 Pn


A **body** is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)

A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as ``h if b.")


Definition (KB)

A knowledge base is a set of definite clauses

light_l1.
light_l2.
ok_l1.
ok_l2.
ok_cb1.
ok_cb2.
live_outside.

atoms

definite clauses, KB live_l1 ←live_wo. live_wo ←live_w1 ∧up_52. live_wo ←live_w2 ∧down_52. live_w1 ←live_w3 ∧up_51. live_w2 ←live_w3 ∧down_51. live 12 ←live W4. live_w4 ←live_w3 ∧up_53. live_p1 ←live_w3. live_w3 ←live_w5 ∧ok_cb1. live_p2 ←live_w6. live_w6 \leftarrow live_w5 \wedge ok_cb2. live_w5 ←live_outside. $lit_1 \leftarrow light_1 \land live_1 \land ok_1$. $lit_12 \leftarrow light_12 \land live_12 \land ok_12.$

rules

PDC Syntax: more examples

Definition (definite clause)

A definite clause is

- an atom or
- a rule of the form $h \leftarrow b$ where h is an atom ('head') and b is a body. (Read this as 'h if b.')

i∞licker.

A. Legal B. Not Legal

- a) ai_is_fun
- b) ai_is_fun V ai_is_boring
- c) ai_is_fun ← learn_useful_techniques
- d) ai_is_fun ← learn_useful_techniques Λ notTooMuch_work
- e) ai_is_fun ← learn_useful_techniques Λ ¬ TooMuch_work
- f) ai_is_fun ← f(time_spent, material_learned)
- g) $srtsyj \leftarrow errt \land gffdgdgd$

PDC Syntax: more examples

Legal PDC clause

Not a legal PDC clause

- a) ai_is_fun
- 7
- b) ai_is_fun V ai_is_boring
- c) ai_is_fun ← learn_useful_techniques
- d) ai_is_fun ← learn_useful_techniques Λ notTooMuch_work
- e) ai_is_fun ← learn_useful_techniques Λ ¬ TooMuch_work
- f) ai_is_fun ← f(time_spent, material_learned)
- g) srtsyj \leftarrow errt \land gffdgdgd

Do any of these statements mean anything? Syntax doesn't answer this question!

Learning Goals for today's class

You can:

 Verify whether a logical statement belongs to the language of full propositional logics.

 Verify whether a logical statement belongs to the language of propositional definite clauses.

Study for midterm (Thurs June 8)

Midterm: 6 short questions (8pts each) + 2 problems (26pts each)

- Study: textbook and inked slides
- Work on all practice exercises and revise assignments!
- While you revise the learning goals, work on review questions I
 may even reuse some verbatim ☺
- Work on the couple of problems from previous offering (maybe slightly more difficult) ... but you have the solutions ©

Next class

 Definite clauses Semantics and Proofs (textbook 5.1.2, 5.2.2)