# Stochastic Local Search Variants

#### Computer Science cpsc322, Lecture 16

(Textbook Chpt 4.8)

June, 1, 2017

 $\Lambda$ 

CPSC 322, Lecture 16

#### **Lecture Overview**

Recap SLS

• SLS variants

#### Announcements

- Assignmet-2 has been posted on Connect due June 8
- Midterm on June 8 first block of class
  - Search
  - CSP
  - SLS
  - Planning
  - Possibly simple/minimal intro to logics

### **Stochastic Local Search**

**Key Idea:** combine greedily improving moves with randomization

- As well as improving steps, we can allow a "small probability" of:

   2.6
  - <u>Random steps</u>: move to a random neighbor.
  - Random restart: reassign random values to all variables.
- Always keep best solution found so far
- Stop when

• Run out of time (return best solution so far)

### **Lecture Overview**

- Recap SLS
- · SLS variants
  - Tabu lists
  - Simulated Annealing
  - Beam search
  - Genetic Algorithms

### Tabu lists

- To avoid search to
  - Immediately going back to previously visited candidate
  - To prevent cycling
- Maintain a tabu list of the klast nodes visited.
  - Don't visit a poss. world that is already on the **tabu list**.

- Cost of this method depends on\_\_\_K

### **Simulated Annealing**

- Key idea: Change the degree of randomness..
- Annealing: a metallurgical process where metals are hardened by being slowly cooled.
  - Analogy: start with a high ``temperature'': a high tendency to take random steps
  - Over time, cool down: more likely to follow the scoring function
- Temperature reduces over time, according to an annealing schedule

### Simulated Annealing: algorithm

### Here's how it works (for maximizing):

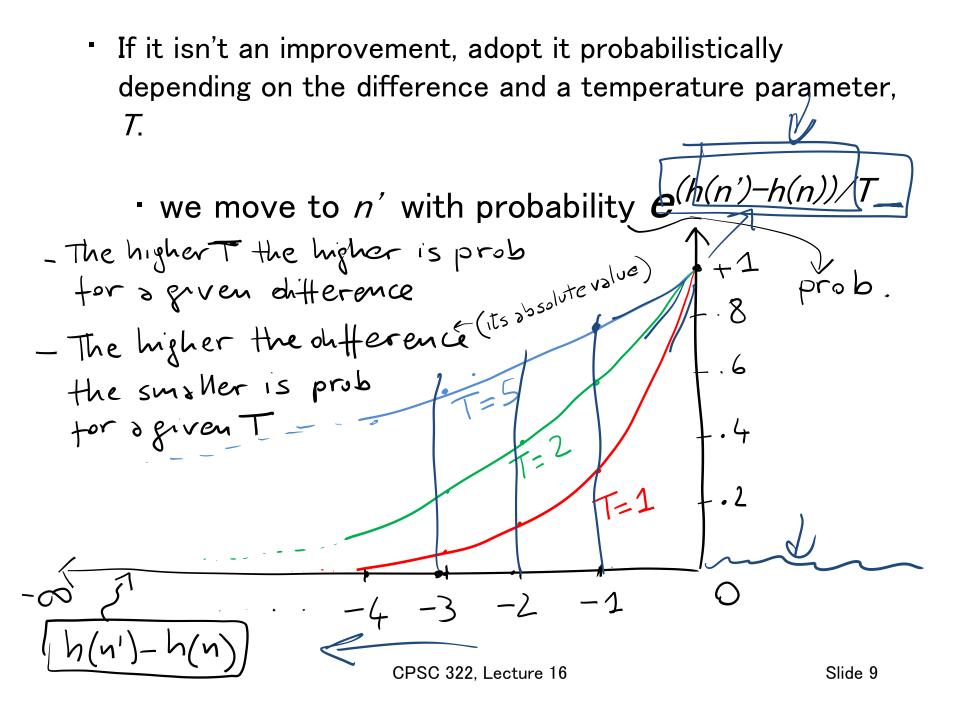
- You are in node n. Pick a variable at random and a new value at random. You generate *n*'
- If it is an improvement i.e.,  $h(u') \ge h(u)$ , adopt it.

If it isn't an improvement, adopt it probabilistically depending on the difference and a temperature parameter, T. L = L(u') < h(u), h(u) - h(u) < 0

• we move to n' with probability  $e^{(h(n')-h(n))}$ 

see next shide

CPSC 322, Lecture 16



Properties of simulated annealing search One can prove: If <u>T decreases slowly enough</u>, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.

Finding the ideal cooling schedule is unique to each class of problems

#### **Lecture Overview**

- · Recap SLS
- · SLS variants
  - Simulated Annealing
  - Population Based
    - ✓ Beam search
    - ✓ Genetic Algorithms

### **Population Based SLS**

Often we have more memory than the one required for current node (+ best so far + tabu list)

Key Idea: maintain a population of k individuals

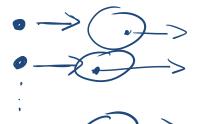
- At every stage, update your population.
- · Whenever one individual is a solution, report it.

#### Simplest strategy: Parallel Search

- · All searches are independent
- No information shared
  but more memory 1
  no reasons to use it!

CPSC 322, Lecture 16

reighbors U





Slide 12

### **Population Based SLS: Beam Search** Non Stochastic

- Like parallel search, with k individuals, but you choose the k best out of all of the neighbors.
- Useful information is passed among the k parallel search thread
  Kidvals

Troublesome case: If one individual generates several good neighbors and the other k-1 all generate bad successors... the next generation will comprise Very similar individuals j

CPSC 322, Lecture 16

# Population Based SLS: Stochastic Beam Search

- Non Stochastic Beam Search may suffer from lack of diversity among the k individual (just a more expensive hill climbing)
- **Stochastic** version alleviates this problem:
  - Selects the k individuals at random
  - But probability of selection proportional to their value (according to scoring function)

h: scoring function 
$$\sum_i n_i$$

Prob of selecting 
$$n_j ?= h(n_i)^{B}$$

$$\sum_i h(n_i)$$

 $n_i$ 

i⊧clicker.

 $\sum_{i=1}^{n} \frac{\sum_{i} h(n_i)}{h(n_i)}$ 

### **Stochastic Beam Search: Advantages**

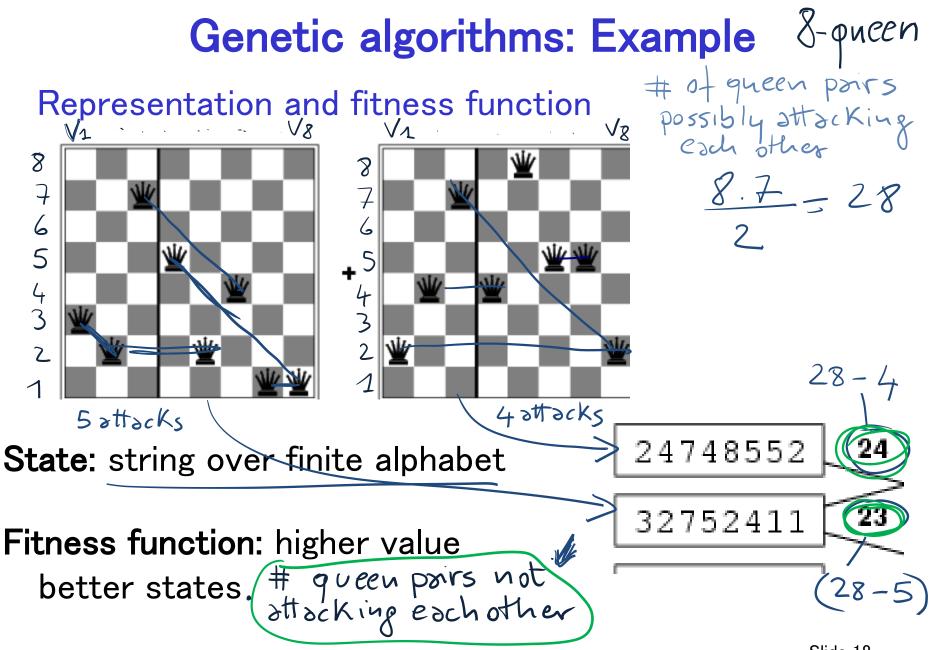
- It maintains diversity in the population.
- **Biological metaphor** (asexual reproduction):
  - each individual generates "mutated" copies of itself (its neighbors)
  - $\checkmark$  The scoring function value reflects the fitness of the individual
  - ✓ the higher the fitness the more likely the individual will survive (i.e., the neighbor will be in the next generation)

#### **Lecture Overview**

- · Recap SLS
- · SLS variants
  - Simulated Annealing
  - Population Based
    - ✓ Beam search
    - ✓ Genetic Algorithms

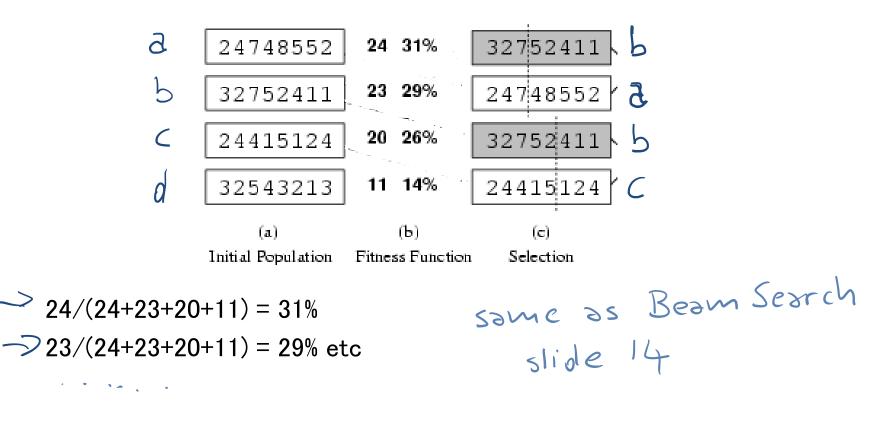
# **Population Based SLS: Genetic Algorithms**

- Start with k randomly generated individuals (population)
- An individual is represented as a string over a finite alphabet (often a string of 0s and 1s)
- A successor is generated by combining two parent individuals (loosely analogous to how DNA is spliced in sexual reproduction)
- Evaluation/Scoring function (fitness function). Higher values for better individuals.
- Produce the next generation of individuals by selection, crossover, and mutation



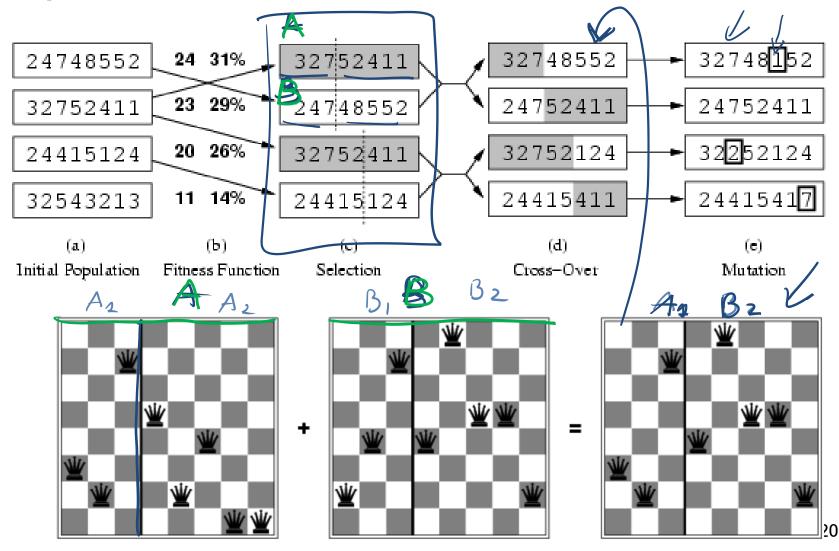
### **Genetic algorithms: Example**

Selection: common strategy, probability of being chosen for reproduction is directly proportional to fitness score



#### **Genetic algorithms: Example**

**Reproduction:** cross-over and mutation



### **Genetic Algorithms: Conclusions**

- Their performance is very sensitive to the choice of state representation and fitness function
- Extremely slow (not surprising as they are inspired by evolution!)

#### Sampling a discrete probability distribution

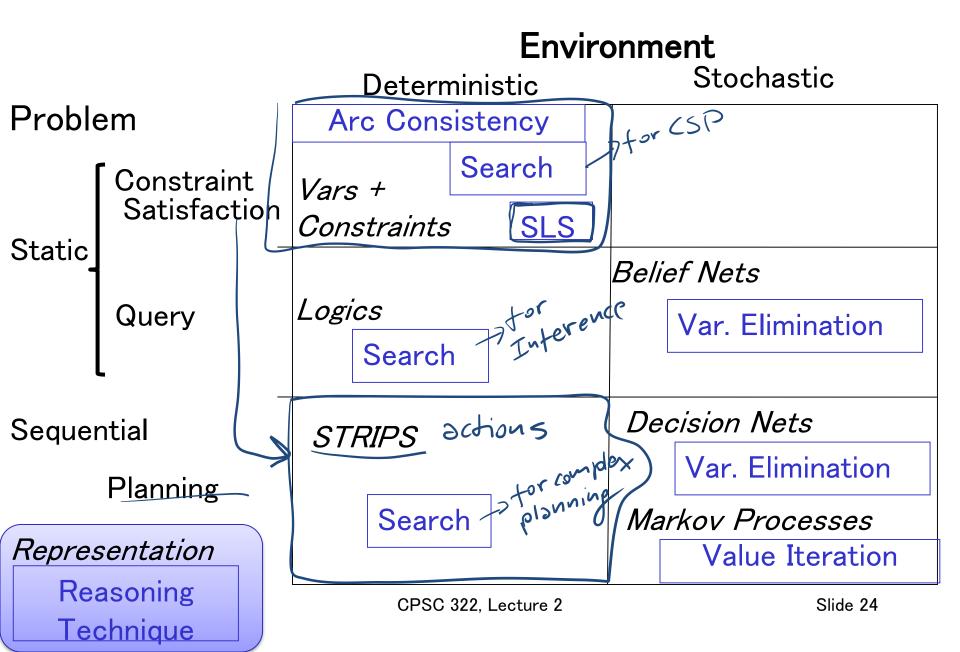
e.g. Sim Amesling. Select n' with probability P generate randou [9,1]) 17<.3 Drept n' e.g. Beam Search : Select K individuals. Probability of selection proportional to their value N3 first sample SAME HERE P1= -> N1 M1 second sample P2= . 3  $\rightarrow N_2$  $\sim$   $N_3$  $\rightarrow$   $^{\prime\prime}4$ CPSC 322. Lecture 16 Slide 22

### Learning Goals for today's class

You can:

- Implement a tabu-list.
- · Implement the simulated annealing algorithm
- Implement population based SLS algorithms:
  - Beam Search
  - Genetic Algorithms.
- Explain pros and cons of different SLS algorithms .

### Modules we'll cover in this course: R&Rsys



#### **Next class**

How to select and organize a sequence of actions to achieve a given goal...

. . . . . . . . . . . . . . . . . . .

#### Start Planning (Chp 8.1-8.2 *Skip 8.1.1-2*)