CSPs: Arc Consistency

& Domain Splitting

Computer Science cpsc322, Lecture 13

(Textbook Chpt 4.5,4.6)

May, 30, 2017

Lecture Overview

- Recap (CSP as search & Constraint Networks)
- Arc Consistency Algorithm
- Domain splitting

Standard Search vs. Specific R&R systems

Constraint Satisfaction (Problems):

- Successor function: assign values to a "free" variable
- Goal test: set of constraints
- Solution: possible world that satisfies the constraints
- Heuristic function: none (all solutions at the same distance

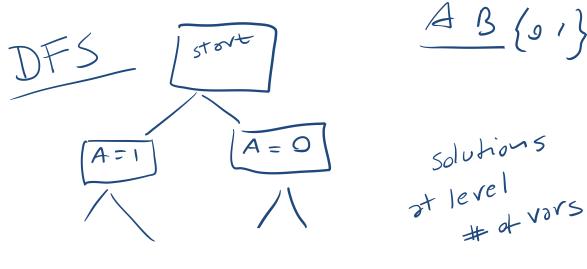
from start)

Planning:

- State
- Successor function
- Goal test
- Solution
- Heuristic function

Query

- State
- Successor function
- Goal test
- Solution
- Heuristic function



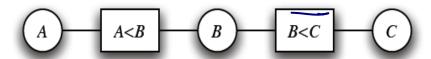
CPSC 322, Lecture 1

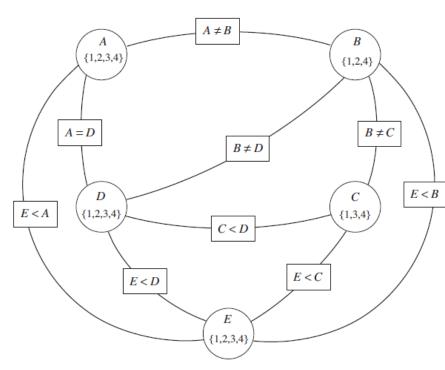
Slide 3

Recap: We can do much better...

Build a constraint network:

A<B B<<





Enforce domain and arc consistency

Lecture Overview

- Recap
- Arc Consistency Algorithm
 - Abstract strategy
 - Details
 - Complexity
 - Interpreting the output
- Domain Splitting

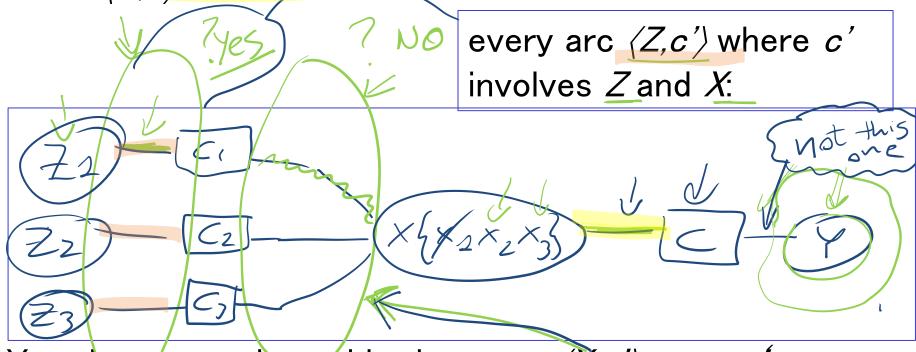
Arc Consistency Algorithm: high level strategy

- Consider the arcs in turn, making each arc consistent.
- BUT, arcs may need to be revisited whenever…

 NOTE – Regardless of the order in which arcs are considered, we will terminate with the same result

What arcs need to be revisited?

When we reduce the domain of a variable X to make an arc (X,c) arc consistent, we add



You do not need to add other arcs $\langle X,c' \rangle$, $c \neq c'$

• If an arc (X,c') was arc consistent before, it will still be arc consistent (in the ``for all' we'll just check fewer values)

ARC CONSISTENCY PSEUDO-CODE

TDA e all arcs in Constraint Network

WHILE (TDA is not empty)

- select arc a from TDA

IF (a is not consistent) THEN

- make a consistent
- add arcs to TDA that I may now be inconsistent

SEE PREVIOUS SLIDE

Arc consistency algorithm (for binary constraints)

```
Procedure GAC(V,dom,C)
                      Inputs
                                V: a set of variables
                                dom: a function such that dom(X) is the domain of variable X
                                C: set of constraints to be satisfied
                                                                                             Scope of constraint c is
                       Output
                                                                                             the set of variables
                                arc-consistent domains for each variable
TDA:
                                                                                             involved in that
                       Local
ToDoArcs.
                                                                                             constraint
                                \mathbf{D}_{\mathsf{X}} is a set of values for each variable X
blue arcs
                                TDA is a set of arcs
in Alspace
                       for each variable X do
          2:
                                 \mathbf{D}_{\mathsf{X}} \leftarrow \mathsf{dom}(\mathsf{X})
                                                                                                             X's domain changed:
                       TDA \leftarrow \{(X,c) \mid X \in V, c \in C \text{ and } X \in scope(c)\}
          3:
                                                                                                             \Rightarrow arcs (Z,c') for variables
                                                                                                             Z sharing a
                                                                ND<sub>x</sub>: values x for X for
                                                                                                             constraint c' with X are
                       while (TDA \neq {})
          4:
                                                                which there is a value for y
                                                                                                             added to TDA
          5:
                                 select \langle X,c \rangle \in TDA
                                                                supporting x
                                 TDA \leftarrowTDA \ {\langle X,c \rangle}
          6:
                                 ND_X \leftarrow \{x \mid x \in D_X \text{ and } \exists y \in D_Y \text{ s.t. } (x, y) \text{ satisfies } c\}
          7:
          8:
                                 if (ND_x \neq D_x) then
                                           TDA \leftarrowTDA \cup \{ \langle Z,c' \rangle \mid X \in \text{scope}(c'), c' \neq c, Z \in \text{scope}(c') \setminus \{X\} \}
          9:
               If arc was
          10:
                                          D_X \leftarrow ND_X
               inconsistent
                                                              Domain is reduced
                        return \{D_X | X \text{ is a variable}\}
          11:
```

Arc Consistency Algorithm: Complexity

- Let's determine Worst-case complexity of this procedure (compare with DFS
 - let the max size of a variable domain be d
 - let the number of variables be n
 - The max number of binary constraints is ?

$$A. n*d$$

B.
$$d*d$$

C.
$$(n * (n-1)) / 2$$

D.
$$(n * d) / 2$$

Arc Consistency Algorithm: Complexity

- Let's determine Worst-case complexity of this procedure (compare with DFS)
 - let the max size of a variable domain be d
 - let the number of variables be n
- How many times the same arc can be inserted in the ToDoArc list?

A. n

B. **d**

C. n * d

D. d^2

 How many steps are involved in checking the consistency of an arc?

 $A. \, n^2$

B. **d**

C. n * c

D. **d**²

iclicker.

Arc Consistency Algorithm: Complexity

- Let's determine Worst-case complexity of this procedure (compare with DFS
 - let the max size of a variable domain be d
 - let the number of variables be n
 - The max number of binary constraints is u(u-1)
- How many times the same arc can be inserted in the ToDoArc list?

 How many steps are involved in checking the consistency of an arc? a^2

Arc Consistency Algorithm: Interpreting Outcomes

- Three possible outcomes (when all arcs are arc consistent):
 - One domain is empty → 40 50
 - Each domain has a single value > unique sol
 - Some domains have more than one value → may or may not be a solution
 - in this case, arc consistency isn't enough to solve the problem: we need to perform search

Lecture Overview

- Recap
- Arc Consistency
- Domain splitting

Domain splitting (or case analysis)

- Arc consistency ends: Some domains have more than one value → may or may not be a solution
 - A. Apply Depth-First Search with Pruning
 - B. Split the problem in a number of (two) disjoint cases

$$(8P = \{x = \{x_1 x_2 \times x_3 x_4 \}...]$$

$$(SP_1 \{x = \{x_1 x_2 \} - - \}) \quad (SP_2 \{x \{x_3 x_4 \}\})$$

Set of all solution equals to….

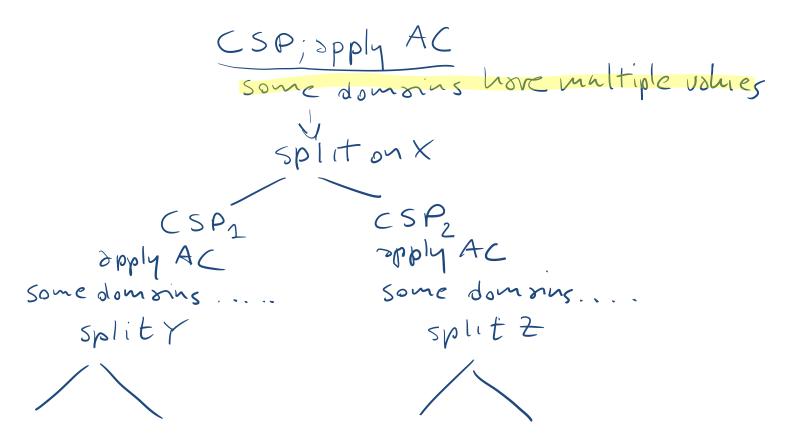
$$Sol(CSP) = \bigcup_{\lambda} Sol(CSP_{\lambda})$$

But what is the advantage?

By reducing dom(X) we may be able to ... run Ac your

- Simplify the problem using arc consistency
- No unique solution i.e., for at least one var,
 |dom(X)|>1
- Split X =
- For all the splits
- Restart arc consistency on arcs (Z, r(Z,X))
 these are the ones that are possibly
- Disadvantage : you need to keep all these CSPs around (vs. lean states of DFS)

Searching by domain splitting



More formally: Arc consistency with domain splitting as another formulation of CSP as search

- Start state: run AC on vector of original domains (dom(V₁), ···, dom(V_n))
- States: "remaining" domains $(D(V_1), \dots, D(V_n))$ for the vars with $D(V_i) \subseteq dom(V_i)$ for each V_i
- Successor function:
 - split one of the domains + run arc consistency
- Goal state: vector of unary domains that satisfies all constraints
 - That is, only one value left for each variable
 - The assignment of each variable to its single value is a model
- Solution: that assignment

Domain Splitting in Action:

3 variables: A, B, C {1, 2, 3, 4} Domains: all {1,2,3,4} $A=B, B=C, A\neq C$ not(A=C) {1, 2, 3, 4} B=C A=B Let's trace B: {1, 2, 3, 4} arc consistency + domain splitting for this network for "Simple Problem 2" in AIspace

Learning Goals for today's class

You can:

 Define/read/write/trace/debug the arc consistency algorithm. Compute its complexity and assess its possible outcomes

 Define/read/write/trace/debug domain splitting and its integration with arc consistency

Work on CSP Practice Ex:

- Exercise 4.A: arc consistency
- Exercise 4.B: constraint satisfaction problems

•

Next Class (Chpt. 4.8)

- Local search:
- Many search spaces for CSPs are simply too big for systematic search (but solutions are densely distributed).
 - Keep only the current state (or a few)
 - Use very little memory / often find reasonable solution
- · ···.. Local search for CSPs₁₂s_{Lecture 13}

K-ary vs. binary constraints

- Not a topic for this course but if you are curious about it…
- Wikipedia example clarifies basic idea…
- http://en.wikipedia.org/wiki/Constraint_satisfaction_dual_problem
- The dual problem is a reformulation of a <u>constraint satisfaction</u> <u>problem</u> expressing each constraint of the original problem as a variable. Dual problems only contain <u>binary constraints</u>, and are therefore solvable by <u>algorithms</u> tailored for such problems.
- See also: hidden transformations