Reasoning Under Uncertainty: Bret Inference

(Variable elimination)

Computer Science cpsc322, Lecture 29
(Textbook Shpt 6.4)
M
June, 15, 2017

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
- Intro
- Factors
- Variable elimination Intro

Learning Goals for previous class

You can:

- In a Belief Net, determine whether one variable is independent of another variable, given a set of observations.
- Define and use Noisy-OR distributions. Explain assumptions and benefit.
- Implement and use a naïve Bayesian classifier Explain assumptions and benefit.

3 Configuration blocking dependency (belief propagation)

Bnets: Compact Representations

n Boolean variables, k max. number of parents

Only one parent with h possible values

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
- Intro
- Factors
- Variable elimination Algo

Bnet Inference

- Our goal: compute probabilities of variables in a belief network

What is the posterior distribution over one or more variables, eonditioned on one or more observed variables?

exomples
$\rightarrow \mathrm{P}$ (Alarm| Smoke $=f$) $P($ Fire | Smoke $=t$,Leaving $=t$)

Slide 7

Beet Inference: General

- Suppose the variables of the belief network are X_{1}, \cdots, X_{n}.
-(Z) is the query variable
- $Y_{1}=v_{1}, \cdots, Y_{j}=v_{i}$ are the observed variables (with their values)
$\cdot Z_{1}, \cdots, Z_{k}$ are the remaining variables
- What we want to compute: \square

$$
P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)
$$

Example:

$$
\begin{aligned}
& P(L \mid S=t, R=f) t \\
& Z \leftrightarrow L \\
& Y_{1} Y_{2} \leftrightarrow S, R
\end{aligned} Z_{1} Z_{2} Z_{3} \leftrightarrow T_{1} F_{1} A
$$

CPSC 322, Lecture 29

What do we need to compute?
Remember conditioning and marginalization...

$$
\begin{equation*}
P(L \mid S=t, R=f)=\frac{P(L, S=t, R=f) \leftarrow}{P(S=t, R=f)} \tag{2}
\end{equation*}
$$

L	S	R	$P(L, S=t, R=f)$
\mathbf{t}	\mathbf{t}	\mathbf{f}	, 3
\mathbf{f}	\mathbf{t}	f	, 2

Do they have to sum up to one?
A. yes
B. no

$$
\text { (2) }=.5
$$

\rightarrow| L | S | R | $P(L \mid S=t, R=f)$ |
| :---: | :---: | :---: | :---: |
| \mathbf{t} | \mathbf{t} | \mathbf{f} | .6 |
| \mathbf{f} | \mathbf{t} | \mathbf{f} | .4 |

In general-"..

$$
P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)=\frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{P\left(Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}=\frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{\substack{\sum_{Z} P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}}
$$

- We only need to compute the numerator and then normalize
- This can be framed in terms of operations between factors (that satisfy the semantics of probability)

Lecture Overview

- Recap Bnets
- Bnets Inference
- Intro
- Factors
- Variable elimination Algo

Factors

- A factor is a representation of a function from a tuple of random variables into a number. $\quad[0,1]$ We will write factor f on variables X_{1}, \cdots, X_{j} as

- A factor can denote:
- One distribution
- One partial distribution
- Several distributions
- Several partial distributions
over the given tuple of variables

Factor: Examples

$P\left(X_{1}, X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$

X_{1}	X_{2}	$f\left(X_{1}, X_{2}\right)$
T	T	.12
T	F	.08
F	T	.08
F	F	.72

$P\left(X_{1}, X_{2}=v_{2}\right)$ is a factor $f\left(X_{1}\right)_{x_{2}=v 2}$

Distribution

Partial distribution

X_{1}	X_{2}	$f\left(X_{1}\right)_{X_{2}=F}$
T	F	.08
F	F	.72

Factors: More Examples

- A factor denotes one or more (possibly partial) distributions over the given tuple of variables
- e.g., $P\left(X_{1}, X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$ Distribution
- e.g., $P\left(X_{1}, X_{2}, X_{3}=v_{3}\right)$ is a factor Partial distribution

$$
f\left(X_{1}, X_{2}\right)_{x 3=v 3}
$$

- e.g., $P(X / Z, Y)$ is a factor $f(X, Z, Y)$

Set of Distributions

Set of partial Distributions

- e.g., $P\left(X_{1}, X_{3}=v_{3} / X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)_{x 3=v 3}$
A. $P(X, Y, Z)$
B. $P(Y \mid Z, X)$
C. $P(Z \mid X, Y)$
D. None of the above

X	Y	Z	val
t	t	t	0.1
t	t	f	0.9
t	f	t	0.2
t	f	f	0.8
f	t	t	0.4
f	t	f	0.6
f	f	t	0.3
f	f	f	0.7

Factors

- A factor is a representation of a function from a tuple of random variables into a number. We will write factor f on variables X_{j}, \cdots, X_{j} as

A factor denotes one or more (possibly partial) distributions over the given tuple of variables

- e.g., $P\left(X_{1}, X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$ Distribution
- e.g., $\underset{P}{ }\left(X_{1}, X_{2}, X_{3}=v_{3}\right)$ is a factor $f\left(X_{1}, X_{2}\right) X_{3}=v 3$
- egg., $P(X / Z, Y)$ is a factor $f(X, Z, Y)$

Set of Distributions

Manipulating Factors:

We can make new factors out of an existing factor

- Our first operation: we can assign some or all of the variables of a factor.

$f(X, Z)$:	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
	t	f	f	0.8
	f	t	t	0.4
	f	L	f	0.6
	f	f	t	0.3
	f	f	f	0.7

What is the result of assigning $X=t$?

$$
f(X=t, Y, Z)
$$

$$
f(X, Y, Z)_{X=t}
$$

More examples of assignment

$r(X=t, Y=f, Z=f): \frac{\text { val }}{.8}$

Summing out a variable example

Our second operation: we can sum out a variable, say X_{1} with domain $\left(v_{p}, \cdots, v_{k}\right\}$, from factor $f\left(X_{p}, \cdots, X_{j}\right)$, resulting in a factor on X_{2}, \cdots, X_{j} defined by:

	(B)	A	c	val				
	t	t	t	0.03		A	c	val
	t	t	P	0.07				.57.43
	$\rightarrow \mathrm{f}$	t	t	0.54		t	t	
	f	t	f	0.36	$\Sigma_{8} \mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}):$	t	f	
$\mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$:	t	f	t	0.06		f	t	
	t	f	f	0.14		f	f	
	f	f	t	0.48				
	f	f	f	0.32				
$\left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right)=f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)+\ldots+f\left(X_{1}=v_{k}, X_{2}, \ldots, X_{j}\right)$								

Multiplying factors

- Our third operation: factors can be multiplied together.

Multiplying factors

-Our third operation: factors can be multiplied together.

	A	B	Val
	t	t	0.1
$\mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}):$	t	f	0.9
	f	t	0.2
islicker.	f	f	0.8

	B	C	Val
f_{2} (B,C):	t	t	0.3
	t	f	0.7
	f	t	0.6
	f	f	0.4

A	B	C	val
t	t	t	
t	t	f	
t	f	t	$? ?$
t	f	f	
f	t	t	
f	t	f	
f	f	t	
f	f	f	

A. 0.32	B. 0.54
C. 0.24	D. 0.06

Multiplying factors: Formal

-The product of factor $f_{1}(A, B)$ and $f_{2}(B, C)$, where B is the variable in common, is the factor $\left(f_{1} \times f_{2}\right)(A, B, C)$ defined by:

$$
\begin{gathered}
f_{1}(A, B) f_{2}(B, C)=\left(f_{1 \times f} \times f_{2}\right)(A, B, C) \\
t+f \quad A B+\frac{t+}{B C}
\end{gathered}
$$

Note1: it's defined on all A, B, C triples, obtained by multiplying together the appropriate pair of entries from f_{1} and f_{2}.

Note2: A, C can be sets of variables

Factors Summary

- A factor is a representation of a function from a tuple of random variables into a number.
- $f\left(X_{1}, \cdots, X_{j}\right)$.
- We have defined three operations on factors:

1. Assigning one or more variables \qquad

- $f\left(X_{1}=v_{1}, X_{2}, \cdots, X_{j}\right)$ is a factor on X_{2}, \cdots, X_{j}, also written as $f\left(X_{1}, \cdots, X_{j}\right)_{X_{1}=v_{1}}$

2. Summing out variables is a factor on X_{2}, \cdots, X_{j}

$$
\cdot \sum_{X_{1}} f\left(X_{1}, X_{2}, . ., X_{j}\right)=f\left(X_{1}=v_{1}, X_{2}, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, X_{2}, X_{j}\right)
$$

3. Multiplying factors

- $f_{1}(A, B) f_{2}(B, C)=\left(f_{1} \times f_{2}\right)(A, B, C)$

Lecture Overview

- Recap Bnets
- Bnets Inference
- Intro
- Factors
- Intro Variable elimination Algo

Variable Elimination Intro

- Suppose the variables of the belief network are X_{1}, \cdots, X_{n}.
(Z) is the query variable
$\cdot Y_{1}=v_{1}, \cdots, Y_{j}=v_{j}$ are the observed variables (with their values)
$\cdot Z_{1}, \cdots, Z_{k}$ are the remaining variables
- What we want to compute:

$$
P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)
$$

- We showed before that what we actually need to compute is

$$
P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)
$$

This can be computed in terms of operations between factors (that satisfy the semantics of probability)

Variable Elimination Intro

- If we express the joint as a factor,

-assigning $Y_{l}=v_{l}, \cdots, Y_{j}=v_{j}$
-and summing out the variables Z_{1}, \cdots, Z_{k}

Learning Goals for today's class

You can:

- Define factors. Derive new factors from existing factors. Apply operations to factors, including assigning, summing out and multiplying factors.
- (Minimally) Carry out variable elimination by using factor representation and using the factor operations. Use techniques to simplify variable elimination.

Next Class

Variable Elimination
The algorithm
An example
Temporal models

Course Elements

- Work on Practice Exercises 6A and 6B
- Assignment 3 is due on Tue the $20^{\text {th }}$!
- Assignment 4 will be available on Tue.

