Reasoning Under Uncertainty: More on BNets structure and construction

Computer Science cpsc322, Lecture 28

(Textbook Chpt 6.3)

June, 15, 2017

///

CPSC 322, Lecture 28

Belief networks Recap

- By considering causal dependencies, we order variables in the joint.
- · Apply choin rule and simplify P(B,E,A,J,M) = P(B) P(E) P(A|B,E) P(J|A) P(M|A) why Minder(B,E,J) given A P(M,B,EJA)
 - Build a directed acyclic graph (DAG) in which the parents of each var X are those vars on which X directly depends.
 - By construction, a var is independent form it nondescendant given its parents. why?

Belief Networks: open issues

y vovs

- Independencies: Does a BNet encode more independencies than the ones specified by construction? γ_{es}
- **Compactness**: We reduce the number of probabilities from (2^{\vee}) to $(N 2^{\vee})$

In some domains we need to do better than that!

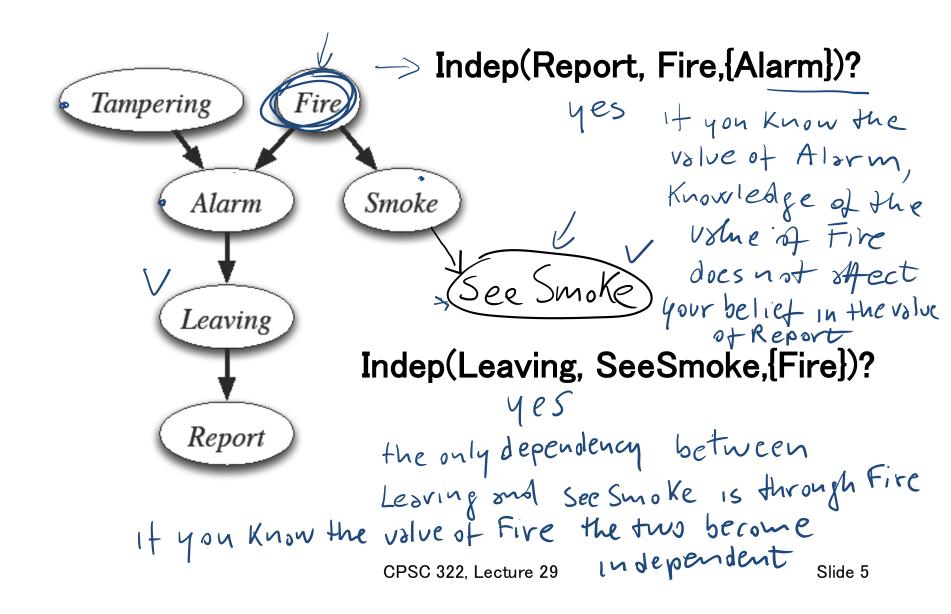
• Still too many and often there are no data/experts for accurate assessment

Solution: Make stronger (approximate) independence assumptions K porent

Lecture Overview

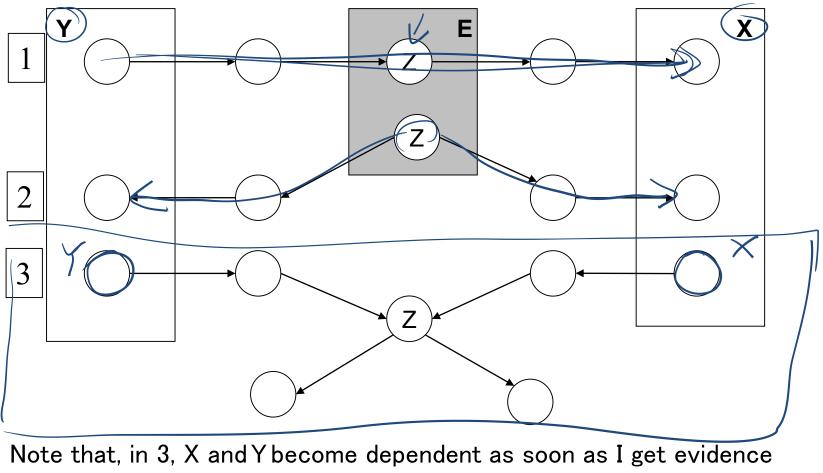
- Implied Conditional Independence relations in a Bnet
- Compactness: Making stronger
 Independence assumptions
 - Representation of Compact Conditional Distributions
 - Network structure(Naïve Bayesian Classifier)

Bnets: Entailed (in)dependencies



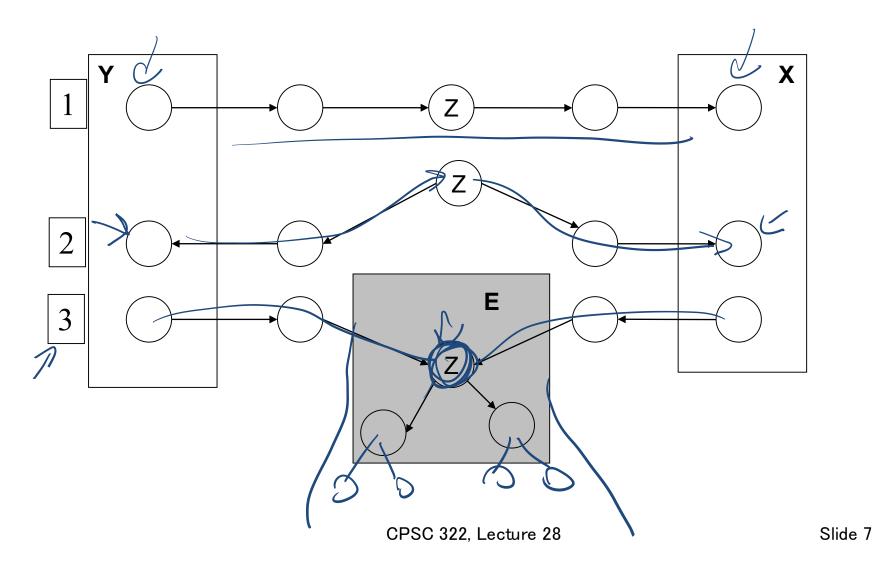
Conditional Independencies

Or, blocking paths for probability propagation. Three ways in which a path between X to Y can be blocked, (1 and 2 given evidence E)

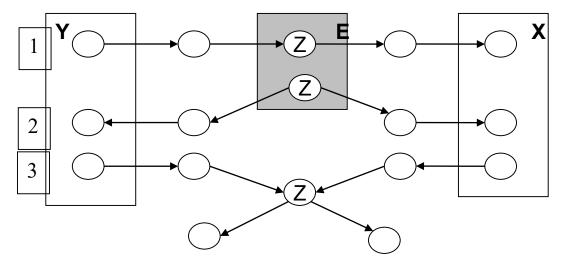


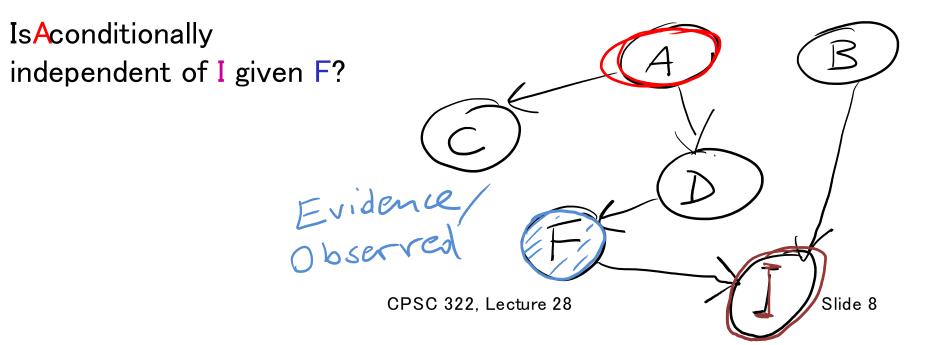
on Z or on any of its descendants

Or Conditional Dependencies In 1,2,3 X Y are dependent

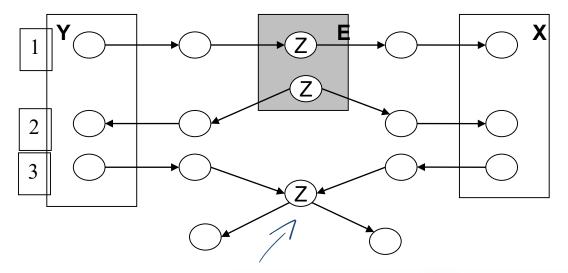


In/Dependencies in a Bnet: Example 1



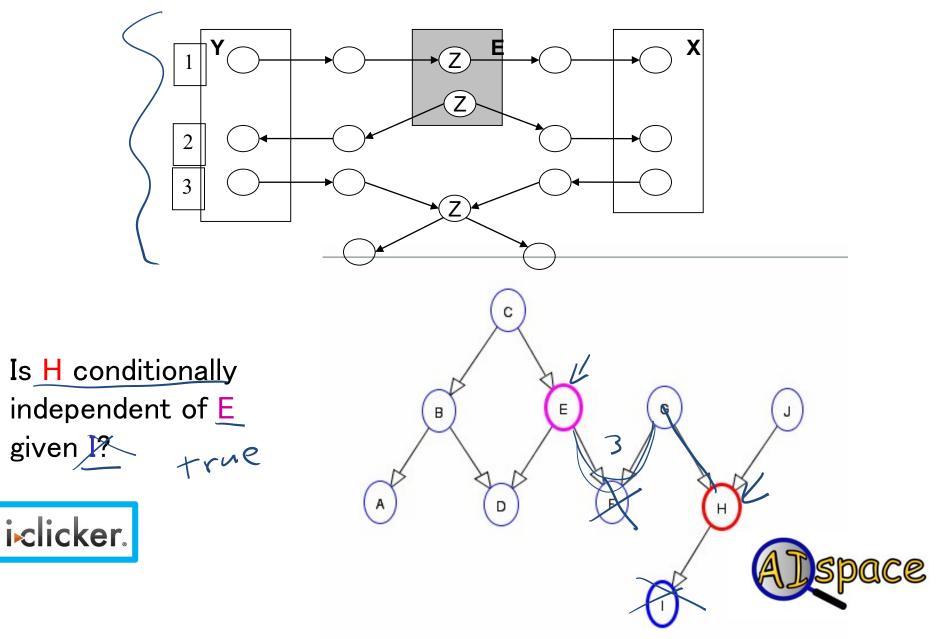


In/Dependencies in a Bnet : Example 2



Is Aconditionally independent of I given F? $f \sigma (\delta C)$ icclicker.

In/Dependencies in a Bnet: Example 3



Lecture Overview

- Implied Conditional Independence relations in a Bnet
- Compactness: Making stronger Independence assumptions
 - Representation of Compact Conditional Distributions
 - Network structure(Naïve Bayesian Classifier)

More on Construction and Compactness: Compact Conditional Distributions

Once we have established the topology of a Bnet, we still need to specify the conditional probabilities

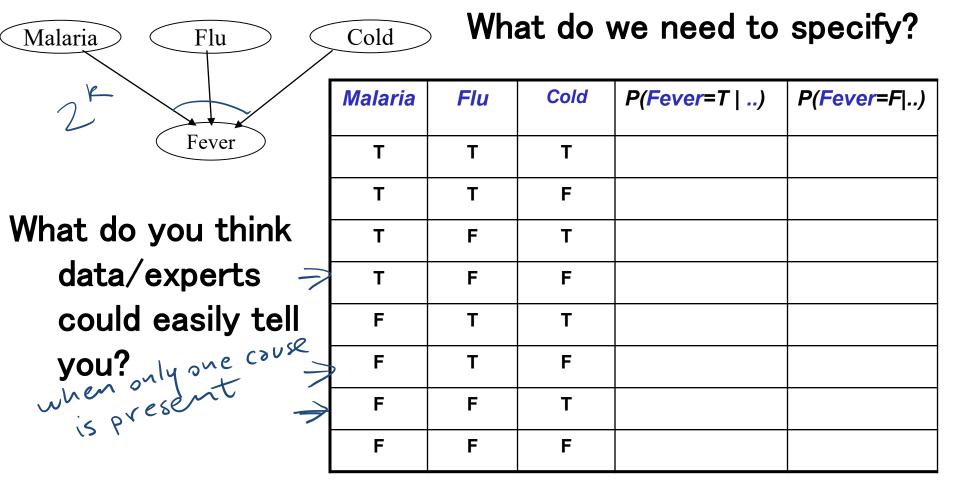
How?

- From Data
- From Experts
- To facilitate acquisition, we aim for compact representations for which data/experts can provide accurate assessments

More on Construction and Compactness:
Compact Conditional DistributionsFrom JointPD $2^{\prime\prime}$ to $\mathcal{L}^{\prime\prime}$ $\mathcal{L}^{\prime\prime}$

- But still, CPT grows exponentially with number of parents
- In semi-realistic model of internal medicine with 448 nodes and 906 links 133,931,430 values are required!
- And often there are no data/experts for accurate assessment

Effect with multiple non-interacting causes



More difficult to get info to assess more complex conditioning....

Solution: Noisy-OR Distributions

- Models multiple non interacting causes
- Logic OR with a probabilistic twist.
 - Logic OR Conditional Prob. Table.

Malaria	Flu	Cold	<i>P(Fever=T</i>)	<i>P(Fever=F</i>)
Т	Т	Т	l	0
т	Т	F	1	0
Т	F	Т	1	0
Т	F	F)	0
F	Т	Т	(0
F	Т	F	١	0
F	F	Т	l	\bigcirc
F	F	F	0	

Solution: Noisy-OR Distributions

The Noisy-OR model allows for uncertainty in the ability of

each cause to generate the effect (e.g., one may have a cold

without a fever)	Malaria	Flu	Cold	<i>P(Fever=T</i>)	P(Fever=FL)		
	Malaria	114	Cord				
	Т	т	т				
	Т	Т	F				
non zeros	T	F	Т		+		
MON	Т	F	F				
	F	Т	Т				
	F	Т	F				
	F	F	т				
	F	F	F	0			
wo assumptions							

- 1. All possible causes a listed
- 2. For each of the causes, whatever inhibits it to generate the target effect is independent from the inhibitors of the other causes

Noisy-OR: Derivations

For each of the causes, whatever inhibits it to generate the target effect is independent from the inhibitors of the other causes

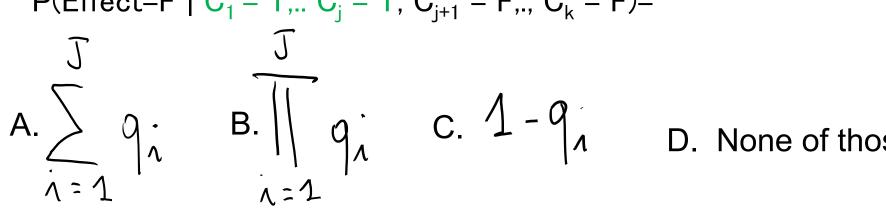
Independent Probability of failure q_i for each cause alone:

- P(Effect=F | $C_i = T$, and no other causes) = q_i
- P(Effect=F | $C_1 = T, ..., C_i = T, C_{i+1} = F, .., C_k = F)$ =

Slide 17

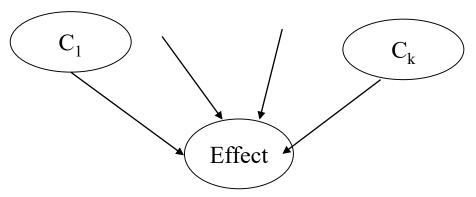
CPSC 322, Lecture 28

Effect

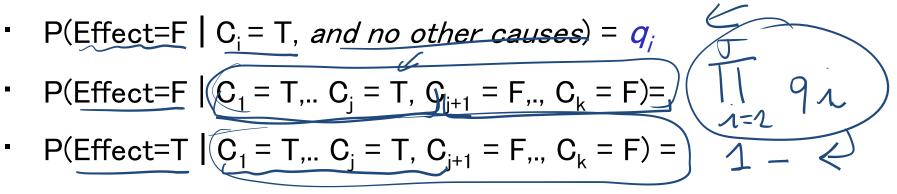


 C_k

Noisy-OR: Derivations



- For each of the causes, whatever inhibits it to generate the target effect is independent from the inhibitors of the other causes
- Independent Probability of failure q_i for each cause alone:



المان Noisy-OR: Example								
P(Fever=F	Cold=,TF	Mu=FMalaria	=F) = 0.6	Model of internal medicine				
		lu=,TMalaria lu=,FMalaria		133,931,430 > 8,254 using Noisy-ORs				
• P(Effect=F $C_1 = T, C_j = T, C_{j+1} = F, C_k = F = \prod_{i=1}^{j} q_i$								
Malaria	Flu	Cold	<i>P(Fever=T</i>)	<i>P(Fever=F</i>)				
⇒ T	Т	Т	· 988	$0.1 \times 0.2 \times 0.6 = 0.012$				
->(T)	T	F	-> ,98	<u>0.2 × 0.1 = 0.02</u>				
Т	F	Т	. 94	0.6 × 0.1 =0.06				
\rightarrow T	F	F	0.9	0.1 <				
F	Т	Т	. 88	0.2 × 0.6 = 0.12				
F	Т	F	0.8	0.2 ←				
↑ F	F	Т	0.4	0.6 <				
F	F	F	O req	nived 1.0				
• Number of probabilities linear in K 3, and serample								

Lecture Overview

- Implied Conditional Independence relations in a Bnet
- Compactness: Making stronger
 Independence assumptions
 - Representation of Compact Conditional Distributions
 - Network structure (Naïve Bayesian Classifier)

Naïve Bayesian Classifier

A very simple and successful Bnets that allow to classify entities in a set of classes C, given a set of attributes

Example:

- Determine whether an email is spam (only two classes spam=T and spam=F)
- Useful attributes of an email ?

```
words contained
in the email
```

Assumptions

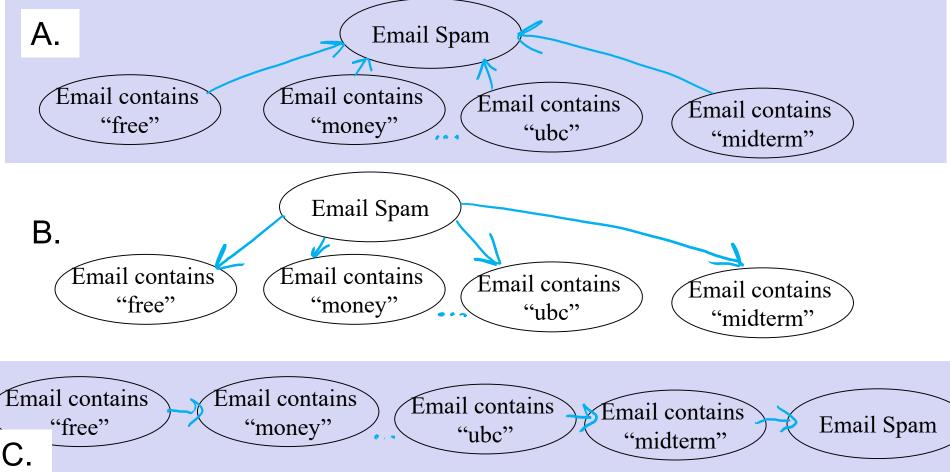
- The value of each attribute depends on the classification
- (Naïve) The attributes are independent of each other given the classification

P("bank" | "account" , spam=T) = P("bank" | spam=T)

What is the structure?

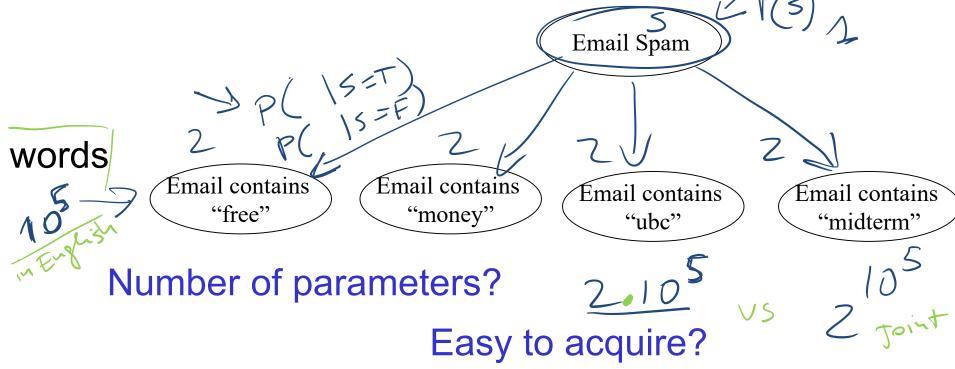
Assumptions

- The value of each attribute depends on the classification
- (Naïve) The attributes are independent of each other given the classification



Naïve Bayesian Classifier for Email Spam Assumptions

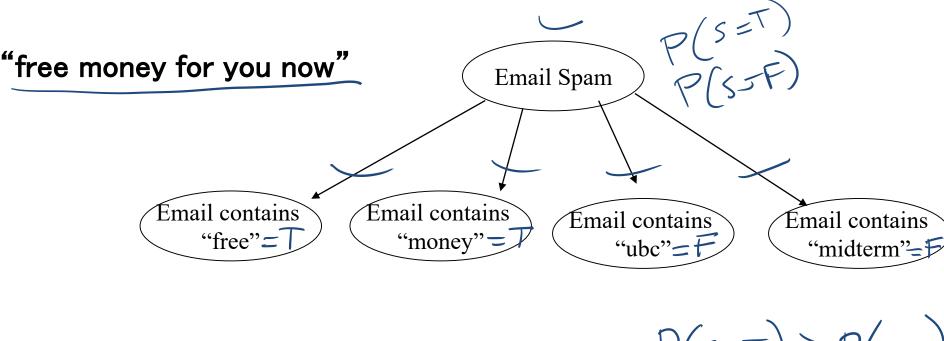
- The value of each attribute depends on the classification
- (Naïve) The attributes are independent of each other given the classification



If you have a large collection of emails for which you know if they are spam or not.....

NB Classifier for Email Spam: Usage Most likely class given set of observations

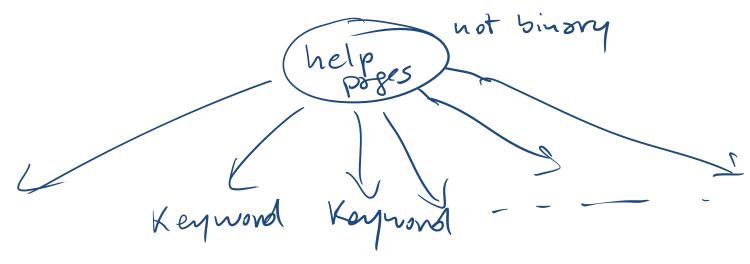
Is a given Email *E* spam?



For another example of naïve Bayesian Classifier

See textbook ex. 6.16

help system to determine what help page a user is interested in based on the keywords they give in a query to a help system.



Learning Goals for this class

You can:

 Given a Belief Net, determine whether one variable is conditionally independent of another variable, given a set of observations.

Define and use Noisy-OR distributions. Explain assumptions and benefit.

Implement and use a naïve Bayesian classifier.
 Explain assumptions and benefit.

Next Class

Bayesian Networks Inference: Variable Elimination

Course Elements

- Work on Practice Exercises 6A and 6B
- Assignment 3 is due on Tue the 20th !
- Assignment 4 will be available on the same day and due TBA as soon as I know when the final will be.