Reasoning Under Uncertainty: Belief Networks

Computer Science cpsc322, Lecture 27

(Textbook Chpt 6.3)

June, 15, 2017

Big Picture: R&R systems

Key points Recap

- We model the environment as a set of random vor s
 - $\times_1 \cdot \ldots \times_n$ JPD $\mathbb{P}(\times_1 \cdot \ldots \times_n)$
- Why the joint is not an adequate representation ?
- Solution: Exploit marginal&conditional independence

$$P(X|Y) = P(X)$$

$$P(X|YZ) = P(X|Z)$$

But how does independence allow us to simplify the joint?

Lecture Overview

- Belief Networks
 - Build sample BN
 - Intro Inference, Compactness, Semantics
 - More Examples

Belief Nets: Burglary Example

There might be a burglar in my house

The anti-burglar alarm in my house may go off

I have an agreement with two of my neighbors, John and Mary, that they call me if they hear the alarm go off when I am at work

Minor earthquakes may occur and sometimes the set off the alarm.

$$M = 5$$

Belief Nets: Simplify the joint

- Typically order vars to reflect causal knowledge (i.e., causes before effects)
 - A burglar (B) can set the alarm (A) off
 - An earthquake (E) can set the alarm (A) off
 - The alarm can cause Mary to call (M)
 - The alarm can cause John to call (J)

Simplify according to marginal&conditional independence

Belief Nets: Structure + Probs

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities

Directed Acyclic Graph (DAG)

P(B) <

Burglary: complete BN

P(B=T)	P(B=F)
.001	.999

Earthquake

P(E=T)	P(E=F)
.002	.998

P(A | B,E)

	В	E	$P(A=T \mid B,E)$	<i>P(A=F B,E)</i>
•	T	T	.95	.05
)	Т	F	.94	.06
>	F	Т	.29	.71
>	F	F	.001	.999

John Calls

(TIA)

Mory Calls

P(M/A)

A	$P(J=T \mid A)$	P(J=F A)
Т	.90	.10
F	.05	.95

Alarm

A	$P(M=T \mid A)$	P(M=F A)
Т	.70	.30
F	.01	.99

Lecture Overview

- Belief Networks
 - Build sample BN
 - Intro Inference, Compactness, Semantics
 - More Examples

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!

(Ex1) I'm at work,

- neighbor John calls to say my alarm is ringing,
- neighbor Mary doesn't call.
- No news of any earthquakes.
- Is there a burglar?

(Ex2) I'm at work,

- Receive message that neighbor John called ,
- News of minor earthquakes.
- Is there a burglar?

Set digital places to monitor to 5

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!

(Ex1) I'm at work,

- neighbor John calls to say my alarm is ringing,
- neighbor Mary doesn't call.
- No news of any earthquakes.
- Is there a burglar?

The probability of Burglar will:

- A. Go down
- B. Remain the same
- C. Go up

Bayesian Networks - Inference Types

BNnets: Compactness

P(B=T)	P(B=F)
.001	.999

Earth quake

P(E=T)	P(E=F)
.002	.998

$A_{l_{a}}$	×~)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	
	$\overline{}$	
1		
J/—	_ \	

В	E	P(A=T B,E)	P(A=F B,E)
Т	T	.95	.05
Т	F	.94	.06
F	Т	.29	.71
F	F	.001	.999

A	P(J=T A)	P(J=F A)
Т	.90	.10
F	.05	.95

John Calls

Mory Calls

 $P(M=T \mid A)$ $P(M=F \mid A)$.70 .30 .01 .99

BNot

$$||TPD|| = 2^5 - ||CPSC 322, Lecture 27||$$
 Slide 13

Canditional Probability

BNets: Compactness

In General:

A CPT for boolean X_i with k boolean parents has the combinations of parent values

2 rows for

Each row requires **one number** p_i for $X_i = true$ (the number for $X_i = false$ is just $1-p_i$)

If each variable has no more than parents, the complete network requires $O(\frac{\sqrt{2^{\frac{1}{2}}} \text{numbers}}{2^{\frac{1}{2}}})$

For k << n, this is a substantial improvement,

the numbers required grow linearly with n, vs. $O(2^n)$ for the full joint distribution

BNets: Construction General Semantics

The full joint distribution can be defined as the product of conditional distributions:

$$P(X_1, \dots, X_n) = \mathcal{T}_{i=1} P(X_i | X_1, \dots, X_{i-1})$$
 (chain rule)

Simplify according to marginal&conditional independence

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities

$$P(X_1, \dots, X_n) = \underbrace{\mathcal{T}_{i=1} P(X_i | Parents(X_i))}_{CPSC 322. Lecture 27}$$

BNets: Construction General Semantics (cont')

n

$$P(X_1, \dots, X_n) = \mathcal{\pi}_{i=1} P(X_i | Parents(X_i))$$

• Every node is independent from its non-descendants given it parents

Lecture Overview

Belief Networks

- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Other Examples: Fire Diagnosis (textbook Ex. 6.10)

Suppose you want to diagnose whether there is a fire in a building

you receive a noisy report about whether everyone is leaving the building.

• if everyone is leaving, this may have been caused by a fire alarm.

- if there is a fire alarm, it may have been caused by a fire or by tampering
- if there is a fire, there may be smoke raising from the bldg.

P(R|L)

ture 27 Slide 18

Other Examples (cont')

Make sure you explore and understand the **Fire Diagnosis** example (we'll expand on it to study

Decision Networks)

Electrical Circuit example (textbook ex 6.11)

Patient's wheezing and coughing example (ex. 6.14)

Several other examples on

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Assuming there are ~60 nodes in this Bnet with max number of parents =4; and assuming all nodes are binary, how many numbers are required for the JPD vs BNet

Answering Query under Uncertainty

Learning Goals for today's class

You can:

Build a Belief Network for a simple domain

Classify the types of inference

Diagnostic, Predictive, Intercousal, Mixed

Compute the representational saving in terms on number of probabilities required

Next Class (Wednesday!)

Bayesian Networks Representation

- Additional Dependencies encoded by BNets
- More compact representations for CPT
- Very simple but extremely useful Bnet (Bayes Classifier)

Belief network summary

- A belief network is a directed acyclic graph (DAG) that effectively expresses independence assertions among random variables.
- The parents of a node X are those variables on which X directly depends.
- Consideration of causal dependencies among variables typically help in constructing a Bnet