Reasoning Under Uncertainty: Belief

Networks

Computer Science cpsc322, Lecture 27
(Textbook Chpt 6.3)

June, 15, 2017

2

Big Picture: R\&R systems

Environment
 Deterministic Stochastic

Problem

Static

Key points Recap

- We model the environment as a set of \cdots. random vors $x_{1} \ldots x_{n}$ JPD $P\left(x_{1} \ldots x_{n}\right)$
- Why the joint is not an adequate representation?
"Representation, reasoning and learning" are "exponential" in \cdot.at uors

Solution: Exploit marginal\&conditional inglependence

$$
P(X \mid Y)=P(X) \quad P(X \mid Y Z)=P(X \mid Z)
$$

But how does independence allow us to simplify the joint?

$$
\text { CHIAIN RULE }\left.\right|_{\text {CPSC } 322, \text { Lecture } 27}
$$

Lecture Overview

- Belief Networks
- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Belief Nets: Burglary Example

There might be a burglar in my house

The anti-burglar alarm in my house may go off

I have an agreement with two of my neighbors, John and Mary, that they call me if they hear the alarm go off when I am at work

$$
M
$$

Minor earthquakes may occur and sometimes the set off the alarm.

$$
E
$$

Variables:

Joint has $2^{5}-1$ entries/probs

$$
\begin{aligned}
& n=5 \\
& 2^{n}-1
\end{aligned}
$$

Belief Nets: Simplify the joint

- Typically order vars to reflect causal knowledge (i.e., causes before effects)
- A burglar (B) can set the alarm (A) off
- An earthquake (E) can set the alarm (A) off
- The alarm can cause Mary to call (M)
- The alarm can cause John to call (J)

$$
P(B, E, A, M, \sigma)
$$

- Apply Chain Rule margind indep.

$P(E \mid B) P(A \mid B E) P$

Belief Nets: Structure + Probs

$$
\rightarrow P(B)+P(E) * P(A \mid B, E) \times P(M \mid A) * P(J \mid A)
$$

- Express remaining dependencies as a network
- Each var is a node
- For each var, the conditioning vars are its parents
- Associate to each node corresponding conditional probabilities

- Directed Acyclic Graph (DAG)

Lecture Overview

- Belief Networks
- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!
(Ex1) I'm at work,
\Rightarrow neighbor John calls to say my alarm is ringing,

- neighbor Mary doesn't call.
- No news of any earthquakes.
- Is there a burglar?
(Ex2) I'm at work,

- Receive message that neighbor John called,
- News of minor earthquakes.
- Is there a burglar?

Set digital places to monitor to 5

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!
(Ex1) I'm at work,

- neighbor John calls to say my alarm is ringing,
- neighbor Mary doesn't call.
- No news of any earthquakes.
- Is there a burglar?

iclicker.

The probability of Burglar will:
A. Go down
B. Remain the same
C. Go up

Bayesian Networks - Inference Types

BNnets: Compactness

$P(B=T)$
.001
$.9(B=F)$

BNet

$$
|J P D|=2^{5}-\left.\right|_{\text {CPSC 322, Lecture 27 }}+2+4+1+\frac{1}{\text { slide } 13}=10
$$

BNets: Compactness

In General:
ACPT for boolean X_{i} with k boolean parents has the combinations of parent values
Each row requires one number p_{i} for $X_{i}=$ true (the number for $X_{i}=f a l s e$ is just $1-p_{i}$)
(for each node
If each variable has no more than parents, the complete network requires O (n (2) numbers

For $k \ll n$, this is a substantial improvement,

- the numbers required grow linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution

BNets: Construction General Semantics

The full joint distribution can be defined as the product of conditional distributions:
$\boldsymbol{P}\left(X_{1}, \cdots, X_{n}\right)=\pi_{i=1}^{n} \boldsymbol{P}\left(X_{i} / X_{1}, \ldots, X_{i-1}\right)$ (chain rule)
Simplify according to marginal\&conditional independence

- Express remaining dependencies as a network
- Each var is a node
- For each var, the conditioning vars are its parents
- Associate to each node corresponding conditional probabilities

$$
\boldsymbol{P}\left(X_{1}, \cdots, X_{n}\right)=\frac{\pi_{i=1} \boldsymbol{P}\left(X_{i} / \operatorname{Parents}\left(X_{i}\right)\right)}{\operatorname{CPSC} 322, \text { Lecture } 27}
$$

BNets: Construction General Semantics

(cont')

n

$$
\boldsymbol{P}\left(X_{i}, \cdots, X_{n}\right)=\pi_{i=1} \boldsymbol{P}\left(X_{i} / \operatorname{Parents}\left(X_{i}\right)\right)
$$

- Every node is independent from its non-descendants given it parents

Lecture Overview

- Belief Networks
- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Other Examples: Fire Diagnosis (textbook Ex. 6.10)

Suppose you want to diagnose whether there is a fire in a building

- you receive a noisy report about whether everyone is leaving the building.
- if everyone is leaving, this may have been caused by a fire alarm.
- if there is a fire alarm, it may have been caused by a fire or by tampering
if there is a fire, there may be smoke raising from the bldg.

Other Examples (cont')

- Make sure you explore and understand the Fire Diagnosis example (we' ll expand on it to study Decision Networks)
- Electrical Circuit example (textbook ex 6.11)

- Patient's wheezing and coughing example (ex. 6.14)
- Several other examples on

Realistic BRet: Liver Diagnosis JPD

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999
Assuming there are ${ }^{\sim} 60$ nodes in this Bnet with max number of parents $=4$; and assuming all nodes are binary, how many numbers are required for the JPD vs BNet

Slide 22

Answering Query under Uncertainty

Learning Goals for today's class

You can:

Build a Belief Network for a simple domain

Classify the types of inference
Diagnostic, Predictive, Intercausal, Mixed

Compute the representational saving in terms on number of probabilities required

Next Class (Wednesday!)

Bayesian Networks Representation

- Additional Dependencies encoded by BNets
- More compact representations for CPT
- Very simple but extremely useful Bnet (Bayes Classifier)

Belief network summary

- A belief network is a directed acyclic graph (DAG) that effectively expresses independence assertions among random variables.
- The parents of a node X are those variables on which X directly depends.
- Consideration of causal dependencies among variables typically help in constructing a Bnet

