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Abstract

In the course of simulation of differential equations, especially of marginally stable
differential problems using marginally stable numerical methods, one occasionally comes
across a correct computation that yields surprising, or unexpected results. We exam-
ine several instances of such computations. These include (i) solving Hamiltonian ODE
systems using almost conservative explicit Runge-Kutta methods, (ii) applying splitting
methods for the nonlinear Schrédinger equation, and (iii) applying strong stability pre-
serving Runge-Kutta methods in conjunction with weighted essentially non-oscillatory
semi-discretizations for nonlinear conservation laws with discontinuous solutions.

For each problem and method class we present a simple numerical example that
yields results that in our experience many active researchers are finding unexpected and
unintuitive. Each numerical example is then followed by an explanation and a resolution
of the practical problem.

Keywords: Hamiltonian differential equation, conservative difference method, marginal
stability, nonlinear Schrédinger, splitting, SSP, WENO

1. Introduction

The simulation of differential equations often requires complicated numerical meth-
ods. The resulting computations, even when long and complex, usually produce expected
results, at least qualitatively. Such is the case, for instance, when applying “reasonable”
methods for integrating parabolic PDEs, and using related procedures for solving convex
optimization and numerical linear algebra problems. Of course, emphasis on efficiency
and robustness in itself does not diminish the importance of corresponding numerical
methods, and their careful design, analysis and implementation are crucial tasks.

Occasionally, however, one comes across a (correct, bug free) computation that yields
surprising results. This may be the case when using marginally stable methods for solving
marginally stable differential problems. The present paper examines several instances of
such computations. These include (i) solving Hamiltonian ODE systems using almost
conservative explicit Runge-Kutta (ERK) methods, (ii) applying splitting methods for
the nonlinear Schrodinger (NLS) equation, and (iii) applying strong stability preserving
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(SSP) ERK methods in conjunction with weighted essentially non-oscillatory (WENO)
semi-discretization methods for nonlinear conservation laws with discontinuous solutions.
In general, the examples used to illustrate the methods and concepts examined were
specifically chosen to be simple rather than complex.

What can be qualified as “surprising” is of course a subjective matter. Indeed, we
argue that in marginally stable situations this can occasionally be a function of trend,
itself a function of human chronology, which may exhibit a swinging, pendulum-like
behavior. For instance, symplectic and other symmetric methods are currently in vogue.
They have been noted for their superior performance, especially for purposes involving
long time integration; see, e.g., [16, 23, 2] and the many references therein. Recall that
Hamiltonian systems describe the motion of frictionless, energy conserving mechanical
systems. Thus, they possess marginal stability, which corresponding symplectic numerical
schemes mimic. This “living at the edge of stability” is enabled, at least for sufficiently
small (but possibly many) time steps, by the implied geometric structure that such
discrete schemes conserve. On the other hand, it has long been known that conservative
discretization schemes for nonlinear, nondissipative PDEs governing wave phenomena
tend to become numerically unstable and exhibit other undesirable phenomena (e.g.,
when handling boundary conditions), hence numerical dissipation has subsequently been
routinely introduced into such numerical schemes. See, e.g., [30, 15, 34, 2], which describe
the seminal work of Kreiss [21] and much more. For nonlinear problems of this type,
in particular, conservative difference schemes are known to occasionally yield numerical
solutions which at first look fine, but at a later time may suddenly deteriorate and even
explode; see for instance [3]. Consequently, until the 1980s non-dissipative schemes were
discouraged, especially for long time integration. Typical work on pseudospectra, e.g.,
[35], when applied to stability studies of ODEs, also must assume that eigenvalues are
placed off the imaginary axis and into the left half plane, so that sufficiently small circles
of stability can be drawn around them: in the context of Hamiltonian systems this
corresponds to using a slightly dissipative discretization scheme.

Each of the following three sections presents a numerical example that we believe to
be novel, using numerical methods and demonstrating numerical phenomena that are not
in themselves new but that, our experience indicates, many active researchers are finding
unexpected and unintuitive. Each numerical example is then followed by an explanation
and a resolution of the practical problem. Necessarily, the relevant bibliography list will
be far from complete.

2. Integrating Hamiltonian systems using ode45

Surprisingly poor results can be obtained when applying the current version (num-
bered 7.8 and earlier) of MATLAB’s initial value ODE integrator ode45 with default
tolerances to certain Hamiltonian systems. R. McLachlan (private communication) has
noticed this for the Henon-Heiles (HeHe) problem [27], where a phase plane plot that is
very different from the correct one is obtained. Here we concentrate on another instance.

Example 1 A modification of the notorious Fermi-Pasta-Ulam (FPU) problem is
2
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Figure 1: Oscillatory energies for the Fermi-Pasta-Ulam (FPU) problem.

presented in the introductory chapter of [16]. It consists of a chain of m mass points
connected with springs that have alternating characteristics: the odd ones are soft and
nonlinear whereas the even ones are stiff and linear.

There are variables g1, ..., 25 and py, ..., p2s in which the associated Hamiltonian
is written as

2m m
1
H(ap) = (2D 9 +2°) ahyi+ (@ = gas1)" + (a0 + g2m)"
i=1 =1
-1
+ Y (@1 — G — G — Gnra) | (1a)
i—1

The parameter w relates to the stiff spring constant and is large. This Hamiltonian is
conserved as usual by the solution of the corresponding Hamiltonian system. In addition,
denote the energy in the ith stiff spring by

1

I; = é(pgh+i + w2 ) (1b)

Then it turns out that there is an exchange of energies such that the total oscillatory
energy
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Figure 2: Oscillatory energies for the FPU problem obtained using MATLAB’s ode45 with default toler-
ances. The deviation from Fig. 1 depicts a significant, non-random error.

is an adiabatic invariant, satisfying

I(a(), p(t)) = 1(a(0), p(0)) + O(w™") (1c)

for exponentially long times .

As a variation of the example in [16] we choose 7 = 3 (yielding an ODE system of
size m = 12), w = 100, q(0) = (1,0,0,w~1,0,0)”, p(0) = (1,0,0,1,0,0)”, and integrate
from ¢t = 0 to t = 500 using the classical storage-efficient, 4th order, 4-stage ERK method,
denoted RK4, with a constant step size k£ = .00025. The resulting Hamiltonian error is a
mere 6.8 x 1075, and the oscillatory energies are recorded in Fig. 1. The curves depicted
in the figure are exact as far as the eye can tell. The “noise” is not a numerical artifact.
Rather, small “bubbles” of rapid oscillations occasionally flare up and quickly die away;
see [16].

Next, we integrate this ODE system using ode45 with default tolerances (which are
relative tol = 1073, absolute tol = 1076). The result, depicted in Fig. 2, is a disaster. O

The error control mechanism in ode45, like in all fast ODE packages, is based on
local rather than global error estimates. Therefore, the above findings do not contradict
any claim regarding the guaranteed reliability of this software. Nonetheless, the default
error tolerances in ode45 were undoubtedly set based on experiments that indicated that
they typically work well, and the examples mentioned above are not of a freak, or highly
unusual, nature (as they are, e.g., in [22, 1]). Rather, there seems to be a family of
practical problems here where this software with default settings does not perform well.

The time integration method used in ode45 is the Dormand-Prince pair of orders 4
and 5, see [10, 4]. Denoting these ERK formulas by DP4 and DP5, respectively, it is
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Figure 3: RK4, DP5 and DP4 amplification factors along the imaginary axis (i.e., the independent
variable z = k) is purely imaginary).

the result of the 6-stage DP5 that gets propagated from one time step to the next. This
method is neither symmetric nor symplectic, so one could jump to the conclusion that
the phenomenon illustrated in Example 1 (and, less fully, also in Example 6.5 of [2]) is
related to that lack of structure preservation.

The crucial fact regarding Hamiltonian systems that we focus on below is that the
eigenvalues of the resulting Jacobian matrix, appropriately frozen, are purely imaginary.
Modes of the form e* neither grow nor decay when ) is purely imaginary, and this
gives rise to the interest in long time integration (because a quick steady state is often
not a natural conclusion for the differential problem) as well as the danger that some
uncontrollable perturbation would push these eigenvalues into the unstable right half-
plane during a numerical calculation. Dissipative methods proposed long ago attenuate
these eigenvalues towards the left half plane to ensure stability (see, e.g., Chapter 5 of
[2]), at the sacrifice that the solution itself be eventually unnaturally attenuated. On
the other hand, the philosophy of conservative methods, such as symplectic methods, is
to not allow unnatural attenuation at all. The attenuation visible in the total energy
I displayed in Fig. 2 may suggest that DP5 should not be used for this problem. We
investigate this further below.

Consider the test equation

du

— = A,

dt
with A a complex scalar, and denote z = kA for a numerical discretization with step size
k = At which can be written as

Unt1 = R(2)un, n=0,1,....
5



Problem Method Steps  Result good?

HeHe ode45 def. 5,961 No
oded5 1077 22,001 Yes
ode45 107° 8,737 Yes
ode45 1074 5,505 Barely
RK4 20,000 Yes
RK4 10,000 No
DP5 10,000 Yes

FPU ode45 def. 112,085 No
ode45 1074 156,697 No
ode45 107° 253,369 No
ode45 1076 402,045 Yes
RK4 1,000,000 Yes
RK4 500,000 Barely
RK4 200,000 No
DP5 500,000 Yes
DP5 200,000 Barely
DP5 100,000 No
Verlet 200,000 Yes
Verlet 100,000 Barely
Verlet 50,000 No

Table 1: Taking more time steps for the Henon-Heiles (HeHe) and Fermi-Pasta-Ulam (FPU) problems
fixes the plots qualitatively. For the MATLAB function ode45, “def.” denotes using the default tolerances
while, e.g., “1075” denotes both absolute and relative tolerances set equal to 1075.

It is well-known that the forward Euler method is unstable along the imaginary axis of z,
ie., |R(z)| > 1, unless A = 0. Moreover, the backward Euler method is highly damping
along the imaginary axis, i.e., |R(2)| is significantly smaller than 1 when 2 is not very
small. Both these methods therefore perform rather poorly for Hamiltonian systems.

The same cannot be said about the classical RK4 method. It contains a segment of
the imaginary axis in its stability region and is only mildly dissipative; specifically, | R(2)|
is only a little less than 1 for |[Zmz| < 1.2, say. This method is therefore well-suited for
integrating hyperbolic-type PDEs with smooth solutions, enjoying heavy use in practice
even though it is non-conservative.

The above discussion brings up a question regarding the behavior of the DP formulae
along the imaginary axis. Fig. 3 depicts the relevant amplification factors. We can
see that DP5 in particular behaves very well for Zmz < 1.1, say. Assuming that the
error control mechanism keeps z in the stable region (which Fig. 3 strongly suggests is
indeed the case in view of the stability behavior of DP4), there is a rather small artificial
dissipation with this method. The poor simulation depicted in Fig. 2 is not due just to
the lack of symplecticity of the DP pair! Rather, it appears that the default step size
selection tolerances of ode45 are simply too permissive.

In Table 1 we list the results of applying ode45 with the indicated value for both
absolute and relative tolerances, as well as applying RK4, DP5 and the symplectic Verlet
method with a fixed number of steps using a constant step size. Listed are the total
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Figure 4: Integrating FPU using RK4 with a constant step size: (a) barely OK; (b) qualitatively wrong.

number of steps, as well as an indication whether the resulting plot is “qualitatively
good”, meaning it looks like Fig. 1 as far as the eye can tell, or not.

For the FPU problem, using constant step size, the “failures” of RK4 and DP5 yield
behavior along the pattern of Fig. 2, see Figs. 4 and 5, although the decay in I is not quite
as pronounced. In contrast, the Verlet failure, depicted in Fig. 6, looks like an instability
(oscillation) in the energy derivatives. As is the case for the Henon-Heiles problem, the
failure especially using DP5 comes for a step size that is only about twice larger than
that which causes failure of a different shape when employing Verlet’s method.

It is natural to speculate on the reasons why the default tolerance values in ode45
have been set to be so permissive as to allow the spectacular failures in the examples we
have mentioned: obviously this cannot happen too often in general practice, or else the
software designers would have adjusted by now.

A simple explanation is that most problems do contain a degree of dissipation or
damping (assuming they are stable). The global error in any form or measure at a fixed
time ¢t = T is a sum of local errors (whose formal accuracy order is one higher) propagated
along the solution modes from the times where they occurred. If there is damping,
therefore, then the local (or truncation) errors propagating from afar have essentially
evanesced by the time they arrive at T, so the global error is essentially proportional
to a sum of the local errors nearby T only. Note that R(z) = e* for approximation
(consistency) reasons. On the other hand, for a Hamiltonian system there is no damping
of any of the local errors, and the global error is therefore proportional to the sum
of all local errors. The global error is therefore significantly larger than a local error,
especially after many time steps, and since ode45 controls only local errors a much larger
accumulating error than what is controlled can be obtained.

For DP5 and even more so RK4, there is some numerical dissipativity, and the very
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(a) kK =.0025, N = 200,000 (b) k= .005, N = 100,000

Figure 5: Integrating FPU using DP5 with a constant step size: (a) barely OK; (b) qualitatively wrong.

small but many local error contributions thus add up to form an approximation to a per-
turbed ODE problem with dissipation (damping). This does not occur for the symplectic
Verlet method.

3. The nonlinear Schrédinger equation in 1D

The cubic nonlinear Schrédinger equation (NLS) in one space variable can be written
as

Yy = 1Y(Vge + l€|1/)|21/)) (2)

This equation arises in deep water wave modulation, in Bose-Einstein condensate theory
and in nonlinear fiber optics (see, e.g., the corresponding wikipedia entry).

We know that for the pure initial value problem the solution’s Lo-norm remains
constant for all time, [ (¢, 2)y(t,z)dx = ||[¢(t)]|? = [|v(0)]|*>. Moreover, this is a Hamil-
tonian PDE, which means that it can be written as

u = D((SH), where

Su
Hu] = /H(:c,u, Uy, . ..)dz,
d

6—Hvdm = (
u

Hu+ sv]) , (3)

de e=0

with
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(a) kK =.005, N = 100,000 (b) k=.01, N = 50,000

Figure 6: Integrating FPU using the symplectic Verlet method with a constant step size: (a) (perhaps
not) barely OK; (b) qualitatively wrong.

The Hamiltonian H is conserved in time. There is also a multisymplectic structure here
8, 6, 7].

Note that H is positive if k < 0. In the case x > 0 the solution is known to possibly
exhibit instabilities, see [37] and references therein, but these are not what we see in the
examples below. Explicit soliton solutions are provided in [29] for the case k > 0.

Often, the scaled form

2
'ngt - _%wwm - /{|w|2¢a MRS R7 t Z 07 (4)

with smooth prescribed initial values is considered; see for instance [26]. Of course, the
constant € is small, 0 < ¢ < 1. Considering instead periodic BC on, say, [—7, 7], and
limiting the time range to 0 < ¢t < T, where T is of moderate size, we can make the

stretching transformation

1

t=~t, &=-zx.
€

M | =

Then 1; = e1;, and in each component of x, 93z = €2th,,. Hence we have (2) in the
stretched coordinates, for 0 <t < T/e, —n/e < & < mw/e. Thus, (4) corresponds to our
problem (2) on a large domain in both space and time.

For the numerical solution we consider some well-known splitting methods, where the
right hand side of (2) is split in an obvious way into its two terms. Although there are
many other methods, e.g., [9], and most numerical difficulties in practice may arise in
the context of more space variables, our intention here is to examine what can happen
even for well-justified and well-tested methods in a relatively simple setting. Note that
the problem

Up = Wag (5)
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is linear with constant coefficients, and it can be efficiently discretized in various ways
to be specified below. The nonlinear part

wy = 2|w|*w,
is really an ODE with = as a parameter, whose exact solution is
w(t) = w(ty) e’(t_t“)lw‘2,
with |w| independent of ¢. Hence, stepping from ¢ with any time step At = k we have
w(t+ k) = w(t) ekl

So, we use the Strang splitting to compose the two resulting solution operators in a
staggered, standard way to obtain an approximation for (¢, z); see, e.g., [2].

We consider three splitting methods, depending on the discretization of (5). They
are specified as follows:

1. A symmetric, compact finite difference semi-discretization of (2), using the usual
D, D_ operator with a uniform step size Az = h in space, yields a Hamilto-
nian ODE system in time. For (5) we subsequently use the (symplectic) midpoint
method in time. Thus, denoting the semi-discretization for u by

v =1Apv,
we apply
n+l _ n
% = % [Ahv"Jrl + Ahvn} . (6a)

See [37, 19, 2]. Since this method is symplectic, norm-preserving and 2nd order
accurate in both ¢ and z, so is the ensuing staggered composition with the exact
solver of the ODE part of the splitting.

2. The same three-point centered scheme is used in space, and a slightly attenuated
version of the midpoint method is applied in time, reading

vn—i—l —y"

k

(1 +e)Apv™ 4+ (1 —e)Apv™]. (6b)

N =

We choose ¢ = ch?, and set ¢ = 1 in the experiments below. This method then
retains 2nd order accuracy in time and space.

3. Replace the finite difference method for u; = wu,, by a spectral method in both
space and time. Thus, the solution to the subproblem (5) is given by

u(t + k) = F! (e‘lf2k}"(u(t))) . (6¢)
This is discretized in the standard way with u(t) = v = (vf,...,0]), v} =~
u(jh, kn), u(t + k) = v"T! and F the fast Fourier transform.
The resulting method is popular in practice, see [37, 11, 25, 12] and references

therein.
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Example 2 To see the resulting methods in action we used an example from [19],
where periodic BC were specified on the interval [—20, 80], and the initial value function
was

(0, ) = €/ ?sech(z/v/2) + €%/ Psech((x - 25)/V/2).

This yields two pulses for |1| which propagate to the right at different speeds, with their
shapes unchanged except when they coalesce.

We ran the methods for various values of k and h (k = At and h = Ax), and at
ty =200 and ty = 1000 computed the relative difference in the discrete Hamiltonian and
fo-norm from the values at t = 0. Results are collected in Table 2.

ty method k h Error-Ham  Error-norm
200 (6a) 1 1 3.7e-5 4.3e-13
(6¢) 1 1 1.5e-2 1.2e-13
(6a) 01 .01 3.9¢-9 1.5e-11
(6¢) .01 .01 4.3e-6 1.0e-12
1000 (6a) 1 1 5.2e42 2.9e-12
(6¢) 1 1 8.7Te+2 6.1e-13
(6a) .01 1 3.3e-7 4.2e-12
(6¢) .01 1 2.0e+3 2.3e-12
(6¢) .0025 1 9.1e-8 5.6e-12
(6a) .01 .01 3.4e+2 7.7e-11
(6b) .01 .01 8.9e-4 7.3e-5
(6¢) .01 .01 1.2e+5 8.3¢e-13
(6a) .005 .005 1.0e+42 3.0e-10
(6¢) .005  .005 1.5e+5 1.7e-12

Table 2: Relative error indicators in Hamiltonian and #2-norm for Example 2 measured at ¢ = 200 and
t = 1000.

The error indicators using all three methods (6a)—(6c¢) are pleasantly small at ¢ = 200.
The solution profile is plotted in Fig. 7(a).

But continuing on to ¢ = 1000, using method (6a) the results were not acceptable, see
Fig. 7(b). Another run, using h = .1 and k = .02, also leads to visible instability before
t hits 1000. The bad effect, which is an instability in the derivative of v, disappeared
upon using k = h2 for h = .1.

Employing the spectral method (6¢), the error indicators are again pleasantly small
at ¢ = 200. But continuing on to ¢ty = 1000, the results are in fact similar to and even
worse than those for the finite difference scheme. Note that, keeping h = .1 fixed, using
k = .01 still results in an instability here, and only a smaller value of k& = .0025 yields
decent results. See plots in Fig. 8.

If we flip to k = —1, so that H in (3) is a norm, then the solution no longer consists of
a couple of moving solitons and has a wilder, varying shape. It takes longer for the same
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Figure 7: Solution magnitude for the Schrodinger equation (2) using a splitting symplectic 2nd order
finite difference method (6a) with ¥ = h = .01. The two pulses look accurate at t = 200. But as
integration proceeds an instability in the solution derivative arises, yielding sharp oscillations that in the
figure look like a thick line. See Table 2.

sort of numerical instability to set in, but the phenomenon is similar: at ¢ty = 10000 we
have for k = h = .1, Error-Ham = 3.1e+2; for £k = h = .01, Error-Ham = 1.0e+4; and
for £k = .01, h = .1, Error-ham = 2.9e-4. O

What gives rise to the poor results when using the symplectic method (6a) is the fact
that the imaginary eigenvalues of the semi-discretization are 10(h~2). So, when k = O(h)
we have in the terminology of Section 2 a very large imaginary z = kA stability argument.
This can cause trouble (cf. [5]) in the long run in case there are unfortunate, even
though small, perturbations to these large imaginary eigenvalues. Such perturbations
are provided by the splitting scheme. (For this particular example, at least, the same
midpoint scheme without splitting is found to be more stable.)

The error indicators in Table 2 are underestimators for the general solution error. The
error in the Hamiltonian proves to be a good indicator, as it fowls up (by becoming large)
where the instability sets in. In contrast, the error in the /5-norm of the discrete solution,
except for the one obtained when using (6b), is very small whether the computed solution
is good or not. This should serve as a sobering example regarding “energy conserving”
methods, suggesting that preserving such one property does not yield an automatic
guarantee of a successful simulation.

The same symptom is seen for the spectral method. The splitting nature of the
scheme is what provides perturbation to this conservative method for a marginally stable
problem, so a better approximation to one of the split operators, which is what (6c¢)
presumably provides for a sufficiently small h, is no guarantee against an unfavorable
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(b) k=h=.01
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Figure 8: Solution magnitude for the Schrodinger equation (2) using a splitting spectral method (6c) at
t = 1000. An instability develops for k = h in the solution derivative, yielding sharp oscillations. See
Table 2. The plot for k = .0025 is acceptably accurate.

accumulation of roundoff errors.

In [37] there is a detailed analysis of instabilites, based on linearization around a
uniform wave train, for both methods (6a) and (6¢) experimented with here. First,
there are instabilities in the problem itself that are mirrored, generally speaking, by the
numerical methods. But the phenomenon discussed here concerns purely numerical, high
frequency instabilities. For the case k > 0 and using the spectral splitting method (6¢),
Weideman and Herbst derive in [37] the stability condition

h2
k<. (7)
This condition agrees well with our experiments. But for (6a), there are no theoretical
bounds in [37] corresponding to what we have observed.
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Let us concentrate on the case k = h, ty = 1000. Our explanation for the long time
instability for the finite difference scheme centers around the fact that the eigenvalues
of the semi-discretization for u; = wu,, are large and imaginary, so using the implicit
midpoint method with k& = h puts us in the highly oscillatory regime for this marginally
stable method as in [5]. The splitting leads to small perturbations of those imaginary
eigenvalues that may push them slightly to the right half plane, so errors may accumulate
in an unfavorable way. The scheme (6b) differs only little from (6a), but its attenuation
improves upon the accumulation of such errors. Indeed, the results using (6b) with
k = h = .01 are pleasing, see Table 2, even though the f5-norm of the solution is no
longer preserved to a hyper-accuracy level. The corresponding solution plot at ¢ = 1000
does not differ qualitatively from Fig. 8(c). Our point here is not to promote the method
(6b) as a general tool, but rather to indicate that the surprising effects depicted in
Figs. 7(b) and 8(a,b) are the result of sticking with a conservative scheme to the (bitter)
end. The corresponding error indicators using (6b) for k¥ = h = .1 were Error-Ham =
3.0e-1 and Error-norm = 5.1e-2, which is too coarse for comfort.

We emphasize that our numerical example depicts a potential instability that becomes
a practical problem only at “long times”. There may well be applications where using
either one of the methods (6a) or (6¢) with & = h produces fine results for all intents and
purposes. Hopefully, the computable error in the Hamiltonian can serve as an indicator
for the potential onset of trouble for problems where the expected shape of the solution
is not known in advance.

A limitation such as (7) is comparable to what we have for explicit methods, and
indeed using the explicit RK4 or DP5 for the symmetrically discretized unsplit problem
(2) is an alternative option under such conditions. However, the phenomenon depicted
here is not that of an explicit scheme. The source is perturbations (due to the splitting)
to the midpoint method in the highly oscillatory regime, and this is why the instability
shows up so late in the game, and also, why introducing a slight attenuation in (6b)
“fixes” it. Moreover, the implicit midpoint method provides an approximation to the
matrix exponential that in the spectral method is obtained “explicitly” via the transform.
Finally, if this was a simple instability for an explicit method then the results for k = h
would not have been acceptable at ¢ = 200 and at earlier times either.

4. SSP methods

Strong stability preserving (SSP) methods were first developed in the late 1980s [32].
But they really caught fire only about a decade later; see [14] for a relatively early review
and [13] for another, more general and more recent one with many relevant references.

The original development was in the context of essentially non-oscillatory (ENO)
methods [17]. Consider for simplicity the scalar conservation law

u+ f(u), =0, —oco<z<oo, t>0, (8)
u(0, ) = up(x).

It is well-known that discontinuities may develop in the solution u(t,z) for ¢ > 0 even if
uo(x) is smooth. Now, the usual upwind discretization for (8), which on a uniform mesh

14



at t, = kn and x; = jh reads

J J h ) (9)

gk {[f(v;ul) — f@p)] i Er) <0
with v? = up(z;), can be viewed at time level ¢,, as a location-dependent semi-discretization
in space followed by forward Euler in time. Further, ENO is a set of sophisticated higher
order spatial semi-discretizations replacing the simple upwinding in (9). Subsequently,
SSP methods are correspondingly higher order time discretizations, which preserve the
non-oscillatory nature of the solution in the presence of discontinuities provided that for-
ward Euler does so. Thus, SSP methods have generally been perceived as more accurate
generalizations of the forward Euler method.

Much work was carried out in constructing such methods and in providing extensive
nonlinear theory, see [13, 33, 20, 18] and references therein. There is general agreement
in the relevant community that the SSP concept has yielded a bullet-proof class of time
discretization methods in conjunction with ENO, even though examples where the SSP
property is actually essential for performance are uncommon and even though spurious
oscillations using ENO remain possible in principle.

Further, however, currently ENO methods are rarely used in practice. Instead,
weighted ENO (WENO) semi-discretization methods are favored, see [31]. Thus, at each
spatial mesh point a weighted combination of ENO stencils is employed, with the weights
determined to maximize order of accuracy in regions where the solution is smooth. The
typical setting is that from three ENO molecules of accuracy order 3 and spanning 4
mesh points each, one constructs a WENO method that has accuracy order 5, call it
WENOb5. Of course, the exact meaning of a high order of accuracy in the wake of a
passing shock wave is subject to debate, but WENO also has other favorable properties
and in any case apparently always majorizes ENO. We then ask, does the SSP property
retain its meaning and importance also when the semi-discretization is WENO, rather
than ENO? The present section concentrates on this question.

In the context of WENO, unlike that of ENO, there is no known theory to support SSP
methods [13]. The essential reason for this lack of theory is highlighted in [36]. In fact,
these authors found out both in terms of linear stability theory and in simple numerical
examples that forward Euler does not do well when complementing the WENO5 semi-
discretization. Thus, the method that SSP methods “want to be like” is nothing to aspire
to in the WENO context; see also [2, 28].

The intuitive reason for this is as follows. In regions where the solution is smooth
the WENO maximization of order makes it produce a semi-discretization that is close
to being centered. Thus, the eigenvalues of the time-dependent ODE system tend to be
near the imaginary axis, albeit at its stable side. But the forward Euler absolute stability
region does not even get close to the imaginary axis unless the step size is rather small!
Thus, unlike for typical higher order ERK discretizations (cf. Fig. 3), the forward Euler
discretization produces local linear instabilities. These instabilities, for sufficiently small
time steps, are automatically handled by WENO before they become too large. But then
WENO is unnecessarily working on the imperfection of the time discretization scheme.
The net effect is the necessity when working with forward Euler of occasionally taking
much smaller time steps than would otherwise be allowed; see also [28]. So, the SSP
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concept in its unmodified form may be irrelevant when a WENO semi-discretization is
employed.

Example 3 The Buckley-Leverett flux [24] for water is given by

u?

=—=—. 10
F00 = et o (10)
Set a = .5 and choose periodic boundary conditions on [—1,1].

The WENO5 semi-discretization as in [31, 36] was employed in space. In time, we
looked at the following ERK methods, denoted (s,p) where s is the number of stages and

p is the order:

1. Forward Euler (which is SSP(1,1)).

Explicit trapezoidal (which is SSP(2,2)).

The popular SSP(3,3) method of [32].

The “optimal” SSP(5,3) method of [33].

The classical RK4 (which is a storage-efficient non-SSP (4,4) method).

The storage-efficient SSP(10,4) method of [20], which is implemented within the
software package Clawpack, see http://wuw.amath.washington.edu/~claw.

S P N

Only uniform meshes are considered, as before.

At first, consider the initial value profile

uo(x) = .25 + .5sin(wx). (11)

The qualitatively exact solution is depicted in Fig. 9(c). The SSP(2,2) result in
Fig. 9(b) is not quite clean, but lowering the step size to k = .0004 (not shown) does
provide a clean profile for all times 0 < ¢ < 1.1. The SSP(1,1) method in Fig. 9(a) is a
disaster, although it does not blow up. For h = .01, k& = .001, forward Euler also yields
oscillatory results, but for h = .01, k£ = .0001, a qualitatively correct solution profile is
recovered.

The SSP(3,3) method performs similarly to SSP(2,2) in terms of time step size “al-
lowed” (meaning, still providing a qualitatively correct solution profile). The SSP(5,3)
method allows for a step size that is less than 1.5 times as large as that of SSP(3,3), so
it is slightly inferior for this example.

The SSP(10,4) method allows for a step size as large as k = .0015. Dividing by the
number of function evaluations per time step, this is comparable to RK4.

So, for this example, we pick three winners and one loser. The winners are the
workhorse RK4 and the 10-stage-4th-order low-storage SSP method. The SSP(2,2)
method allows the largest time step per function evaluation, but of course it is only
2nd order accurate, and its stability region is more susceptible to perturbations near the
imaginary axis. The loser is forward Euler: its allowed time step is much smaller than
those of any of the other methods.

Next, consider the initial value profile

uo(x) = sin(lwa)e_loxz. (12)
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Figure 9: Solution profiles at ¢ = 1.1 for the Buckley-Leverett conservation law with a = .5 and initial
profile given by (11). The spatial step size in all cases is h = .001.

This yields several solution discontinuities.

Some results are depicted in Fig. 10. In all cases, h = .001, although corresponding
results for h = .01 were run as well, yielding no further insight. With forward Euler a
step size of k = .0001 is small enough to yield a qualitatively acceptable solution, unlike
that in Fig. 10(a). The step sizes in Fig. 10(b) and Fig. 10(c) are close to the largest they
are allowed to be for good quality solutions throughout 0 < ¢ < 1. These two 4th order
methods again perform roughly similarly, while forward Euler for this case is not that
much behind either (only by a factor of about 2, when counting function evaluations). O

Not much can be concluded with certainty from one or two examples, although we
have run some tests also for the Burgers equation. However, the inadequacy of forward
Euler is already clear enough. We are then faced with the situation where some SSP
methods do perform rather well with WENQO, but others do not, and it is unclear whether
the property of being SSP is an important, “defining” one, or it is just another property
that happens to hold for some good methods.

The SSP(10,4) time discretization [20] is impressive by the mere fact that a 10-
stage method can be competitive. But its bottom-line performance is not breathtakingly
better. Such appears to be the overall impression regarding the use of SSP methods in
the WENO context.
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Figure 10: Solution profiles at ¢ = 1 for the Buckley-Leverett conservation law with initial profile given
by (12). The spatial step size in all cases is h = .001.

5. Conclusions and further comments

We have briefly considered three popular problem areas and corresponding popular
numerical methods, and have shown that conventional wisdom may run into snags using
such methods, even for rather simple examples.

Although the topics of Sections 2, 3 and 4 are rather different, there are clearly
uniting themes in our observations and explanations. Essentially, we are advocating spe-
cial awareness when treating marginally stable differential problems. For such problems
it may be easier and relevant to prove theorems regarding conservation properties for
numerical methods that attempt to reproduce important dynamical system and exact
solution features. But this may also be the underlying cause for unwelcome surprises
in practical computation. Ironically, some geometric integration methods are nowadays
making their way into the toolboxes of computer graphics simulation experts, perhaps
simply because such methods may look “different” in certain contexts. Such a gener-
ally positive development from the numerical analyst’s point of view thus also dictates
maintaining a heightened sense of alert.
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