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Abstract.
Inverse problems involving systems of partial differential equations (PDEs) can be very expensive to solve nu-

merically. This is so especially when many experiments, involving different combinations of sources and receivers,
are employed in order to obtain reconstructions of acceptable quality. The mere evaluation of a misfit function (the
distance between predicted and observed data) often requires hundreds and thousands of PDE solves. This article de-
velops and assesses dimensionality reduction methods, both stochastic and deterministic, to reduce this computational
burden.

We assume that all experiments share the same set of receivers and concentrate on methods for reducing the
number of combinations of experiments, called simultaneous sources, that are used at each stabilized Gauss-Newton
iteration. Algorithms for controlling the number of such combined sources are proposed and justified. Evaluating the
misfit approximately, except for the final verification for terminating the process, always involves random sampling.
Methods for selecting the combined simultaneous sources, involving either random sampling or truncated SVD, are
proposed and compared. Highly efficient variants of the resulting algorithms are identified, and their efficacy is
demonstrated in the context of the famous DC resistivity and EIT problems. We present in detail our methods
for solving such inverse problems. These methods involve incorporation of a priori information such as piecewise
smoothness, bounds on the sought conductivity surface, or even a piecewise constant solution.

Key words. inverse problem, stochastic algorithm, partial differential equation, many experiments, DC resistiv-
ity, EIT
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1. Introduction. Much recent attention has been given to the idea of applying stochastic
approximations in order to speed up otherwise expensive computational processes. Here we consider
the problem of recovering a model m ∈ IRlm from measurements di ∈ IRl, i = 1, 2, . . . , s. For each i,
the data is predicted as a function of m by a forward operator Fi, and the goal is to find (or infer)
m = m∗ such that the misfit function

ϕ(m) =
s∑

i=1

∥Fi(m)− di∥2(1.1)

is roughly at a level commensurate with the noise.1 Now, introducing a random vector w =
(w1, . . . , ws)

T , with the probability distribution of w chosen to satisfy

E(wwT ) = I,(1.2)

(with E denoting the expected value with respect to w and I the s × s identity matrix), we can
write (1.1) as

ϕ(m) = E

(
∥

s∑
i=1

wi(Fi(m)− di)∥2
)
.(1.3)

Next, in an iterative process for minimizing, or more precisely reducing (1.1) sufficiently, consider
approximating the expectation value at iteration n by random sampling from a set of sn vectors w,
with sn ≤ s potentially satisfying sn ≪ s; see, e.g., [31, 24, 17].

In the class of problems we focus on, the sought model is a grid injection of a function m(x) in
two or three space dimensions. Furthermore, the forward operator involves an approximate solution
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2 Stochastic algorithms for inverse problems

of a partial differential equation (PDE), or more generally, a system of PDEs. We write this in
discretized form as

A(m)ui = qi, i = 1, . . . , s,(1.4a)

where ui ∈ IRlu is the ith field, qi ∈ IRlu is the ith source, and A is a square matrix discretizing
the PDE plus appropriate side conditions. Furthermore, there are given projection matrices Pi such
that

Fi(m) = Piui = PiA(m)−1qi(1.4b)

predicts the ith data set. Note that the notation (1.4a) reflects an assumption of linearity in u but
not in m.

There are several problems of practical interest in the form (1.1), (1.4), where the use of many
experiments, resulting in a large number s (say, s is in the thousands), is crucial for obtaining
credible reconstructions in practical situations. These include electromagnetic data inversion in
mining exploration (e.g., [25, 13, 18, 27]), seismic data inversion in oil exploration (e.g., [15, 22, 30]),
DC resistivity (e.g., [32, 29, 20, 19, 11]) and EIT (e.g., [6, 8]; see more specifically Example 5.5
in [12]2). The last of these well-known problems enjoys the most extensive theory (e.g., [28, 1, 4]).
This theory strongly suggests that many well-placed experiments are a practical must, especially
when the surface m(x) to be recovered is rough and has large gradients. Note that in this context,
the mere evaluation of the objective function ϕ(m) of (1.1) involves solving s PDE systems. Thus,
methods to alleviate the resulting computational burden are highly sought after.

A popular method of simultaneous random sources [31, 24, 30, 22, 19, 14] selects the wi’s in
(1.3) to be randomly ±1, which satisfies (1.2). This choice of w minimizes variance of the residual
approximating ϕ [23]. A different set of ŝ realizations (ŝ≪ s) is chosen at each iteration, combined
with an averaging procedure for the measurements. However, more recently doubts were cast as
to the wisdom of choosing wi = ±1. In [5], the authors consider lower bounds on ŝ in order to
achieve a fixed probabilistic error. Based on this, drawing w from the standard normal distribution
is no longer a clearly inferior method. Furthermore, a deterministic simultaneous sources method
to reduce dimensionality may be obtained upon applying truncated singular value decomposition
(TSVD) to the data re-cast as an l × s matrix. Our first contribution in the present paper is to
discuss and compare these three simultaneous sources methods for choosing the weights w.

The papers cited above all appear to assume one purpose for the approximate evaluation of
the misfit function ϕ(m). In contrast, here we identify three different reasons or purposes for this
task, and furthermore we show that these different purposes may well require different estimation
methods.

Applying these simultaneous sources methods for the problem described in (1.4) yields an
efficient algorithm if the data in different experiments are measured at the same locations, i.e.,
Pi = P ∀i. This is because in such a case we have

s∑
i=1

wiFi =
s∑

i=1

wiPiA(m)−1qi = PA(m)−1
( s∑
i=1

wiqi

)
,(1.5)

which can be computed with a single PDE solve per realization of a vector of weights w. In [11] the
authors proposed a method that does not suffer from such a restriction on the receiver locations,
whereby (1.3) is estimated by using for w vectors with a single nonzero component at a random
location which is scaled to satisfy (1.2) (cf. [5]). This choice allows the computation of

∑s
i=1 wiFi in a

single PDE solve per realization; it boils down to selecting a random subset of the given experiments
at each iteration, rather than their weighted combination.

2 See also the Wikipedia description for electrical impedance tomography.
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In this paper we assume that Pi = P, i = 1, . . . , s. For this case we therefore have in the
above descriptions four methods for choosing the weights, which may be fused and compared. They
are described in detail in Section 3. It is important, especially when using stochastic weighting
methods, to carefully derive merit criteria for the minimization iterations, for one thing because
evaluating (1.1) too often defeats the purpose of reducing the number of PDE evaluations. This is
addressed in Section 3 as well.

The question of selecting the sample size sn is addressed in Section 4. We propose two new
algorithms which allow sn to be very small for small n, and potentially significantly increase as the
iteration approaches a solution. Algorithm 1 in Section 4.1 has the advantage of being simple, and
it generates an exponentially increasing sequence of sn values. Algorithm 2 in Section 4.2 uses cross
validation in a manner similar to but not the same as that proposed in [11], and it generates a
potentially more moderately increasing sequence of sn values. The latter algorithm is particularly
useful when s is “too large” in the sense that even near a satisfactory solution for the given inverse
problem, far fewer than s experiments are required to satisfy the given error tolerances, a situation
we qualitatively refer to as embarrassing redundancy. Within the context of these two algorithms,
we compare the resulting weighting methods of Section 3.1 against the more generally applicable
random subset method proposed in [11], and find that the three simultaneous sources methods are
roughly comparable and are better than the random subset method by a factor of roughly 2 on
average.

The computational work in Section 5 is done in the context of an EIT, or DC resistivity, problem.
This is a simpler forward problem than low-frequency Maxwell’s equations, and yet it reflects a
similar spirit and general behaviour, allowing us to concentrate on the issues in focus here. A
description of the implementation details is given in Appendix A. Conclusions and plans for future
work are offered in Section 6.

2. Model reduction for the inverse problem. Let us suppose for now that the forward
operators Fi(m), each involving a PDE solution, are given as in (1.4): see Appendix A and Section 5
for a specific instance, used for our numerical experiments. Next, consider the problem of minimizing
the misfit function ϕ(m) defined in (1.1). With the sensitivity matrices

Ji(m) =
∂Fi

∂m
, i = 1, . . . , s,(2.1)

we have the gradient

gradϕ(m) = 2

s∑
i=1

JT
i (Fi(m)− di).(2.2)

An iterative method such as Gauss-Newton (GN) is typically designed to reduce the misfit
function using the gradient. Although the methods and issues under consideration here do not
require a specific optimization method we employ variants of the GN method throughout the present
article, thus achieving a context in which to focus our attention on the new aspects of this work
and enabling comparison to past efforts. In particular, the way in which the GN method is modified
next is important more generally.

Our purpose is to use on average far fewer than 2s evaluations of forward operator components
Fi(m) per iteration. In order to develop this, let us rewrite the objective function (1.1) using the
Frobenius norm as

ϕ(m) = ∥F (m)−D∥2F ,(2.3a)

F =
[
F1,F2, . . . ,Fs

]
∈ IRl×s, D =

[
d1,d2, . . . ,ds

]
∈ IRl×s.

Note that upon using our assumption that Pi = P ∀i, we can write (1.4b) as

F = PA−1(m)Q, Q =
[
q1,q2, . . . ,qs

]
∈ IRlu×s.(2.3b)
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Next, in the nth iteration, 1 ≤ n ≤ N , consider approximating ϕ of (2.3), replacing the s experiments
by sn experiments (sn ≤ s) with linear combinations of the sources, described by the s× sn matrix
W =Wn =

[
w1,w2, . . . ,wsn

]
. We define the obtained estimator of (2.3) as

(2.4) ϕ̂(m,W ) =
1

sn
∥(F (m)−D)W∥2F .

Choices of W which keeps ϕ̂(m,W ) close to ϕ(m) are discussed in Section 3.1. Now it is also

easy to return to a form like (1.1) for ϕ̂(m,W ) and define sensitivity matrices Ĵi = Ji(m,W ) and

gradient gradmϕ̂ = gradm ϕ̂(m,W ) analogously to (2.1) and (2.2), respectively. The GN iteration
for (2.4) at a current iterate m = mn with W =Wn calculates the correction as the solution of the
linear system (

sn∑
i=1

ĴT
i Ĵi

)
δm = − gradm ϕ̂,(2.5a)

followed by the update

mn+1 = mn + δm.(2.5b)

Several nontrivial modifications are required to adapt this prototype method for our purposes,
and these are described in context in Appendix A, resulting in a method we refer to as stabilized
GN. This method replaces the solution of (2.5a) by r preconditioned conjugate gradient (PCG)
inner iterations, which costs 2r solutions of the forward problem per iteration, for a moderate
integer value r. Thus, if N outer iterations are required to obtain an acceptable solution then the
total work estimate (in terms of the number of PDE solves) is approximated from below by

Work estimate = 2(r + 1)
N∑

n=1

sn.(2.6)

This indicates how keeping sn small is important; see [11].
Note that an alternative method to GN such as L-BFGS [26] would require only r = 1 in (2.6).

However, the number of such iterations would be significantly higher. This point again does not
affect the issues addressed in this article and is not pursued further.

3. Choosing weights and stopping criteria. In Section 3.1 below we discuss our four meth-
ods for choosing matricesW in (2.4). Then, in Section 3.2 we address two purposes for approximating
ϕ(m) which are additional to that used in (2.5).

3.1. Selecting a sampling method. In this section we discuss two approaches for choosing
W = Wn in the nth stabilized GN iteration (2.5): a stochastic approach where each of the sn
columns of W represents a realization of the weight vector w which appears in (1.3), drawn from an
appropriate probability distribution; and a deterministic approach.

Consider first the stochastic approach. In the sequel, we consider each column w = wj of W
to be independently drawn from (a) the Rademacher distribution, where Pr(wi = 1) = Pr(wi =
−1) = 1

2 (referred to in what follows as Hutchinson, in deference to [23, 5]), (b) the standard normal
distribution (referred to as Gaussian), and (c) uniformly from the column vectors of the scaled
identity matrix (referred to as Random Subset). This third method [11] can be efficiently applied to
estimating (1.3) even in the case where receivers are not shared.

The second approach is to abandon stochastic optimization altogether in this section, and instead
select W deterministically. In order to do that, we use the well-known TSVD approach. Thus, let
D = UΣV T , where Σ is the diagonal matrix of singular values in decreasing order, and U and V are
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orthogonal matrices. Note that DV = UΣ. Subsequently, we approximate (2.3) by letting W =Wn

consist of the first sn columns of V . This then uses only the first sn columns of UΣ and QV , and
should bring out the essence of what is in the data, especially when the current iterate is far from
the solution of the inverse problem. A plot of the singular values for a typical experiment (in the
present context) is depicted in Figure 3.1. The quick drop in the singular values suggests that just

Fig. 3.1. The singular values of the data used in Example 2 of Section 5.

a few singular vectors (the first columns of the orthogonal matrix U) represent the entire data well.
This simple method is suitable when both dimensions of the data matrix D are not too large. The
SVD is performed only once. Then, in the nth stabilized GN iteration, the first sn columns of V
provide fixed and deterministic weights for this simultaneous sources method.

3.2. Stopping criterion and uncertainty check. In this paper we make the popular as-
sumption that there is a known tolerance ρ such that the stopping criterion is given by

ϕ(m) ≤ ρ,(3.1a)

with ϕ(m) not being much smaller than ρ. For instance, consider the simplest (and often unrealistic)
case where for all experiments there is a Gaussian noise distribution for which the (same) standard
deviation σ is known. Thus D = D∗ + σN , where D∗ = F (m∗), with N an l × s matrix of i.i.d
Gaussians. Using the discrepancy principle (see, e.g., [33]) we wish to terminate the algorithm
when (2.3) falls below some multiple η ' 1 of the noise level squared, i.e. σ2∥N∥2F . Since the noise
is not known, we replace ∥N∥2F by its expected value, sl, obtaining

ρ = ησ2sl.(3.1b)

Unfortunately, however, the mere calculation of ϕ(m) requires s PDE solves. We therefore wish

to perform this check as rarely as possible. Fortunately, we often have in ϕ̂(m,W ) a good, unbiased
estimator of ϕ(m) using stochastic weight matricesW =W e with far fewer columns than s, provided
the columns of W e are independent and satisfy (1.2). Thus, in the course of an iteration we can
perform the relatively inexpensive uncertainty check whether

(3.2) ϕ̂(m,W e) ≤ ρ.



6 Stochastic algorithms for inverse problems

This is like the stopping criterion, but in expectation (with respect to W e). If (3.2) is satisfied,
it is an indication that (3.1) is likely to be satisfied as well, so we check the expensive (3.1a) only
then.

Note that, since we want ϕ̂(m,W e) to be an unbiased estimator, W e should not be constructed
deterministically! Furthermore, it should be independent of the noise. In our experiments we use
the Hutchinson method, because its trace estimator has the smallest variance [23].

4. Adaptive selection of sample size. In this section we describe two algorithms for deter-
mining the sample size sn in the nth stabilized GN iteration. Algorithm 1 adapts sn in a brute force
manner. Algorithm 2 uses a cross validation technique to avoid situations in which sn grows too
rapidly or becomes larger than necessary.

4.1. Sample size selection using uncertainty checks. While the management strategy of
sn in this algorithm is simply to increase it so long as (3.1) is not met, its novelty lies in the fusion
of different strategies for selecting the weight matrices at different stages of each iteration. Our
algorithm consists of three main steps: (i) data fitting – a stabilized GN outer iteration (2.5); (ii)
uncertainty check – a check for condition (3.2); and (iii) depending on the outcome of the uncertainty
check, perform either sample size adjustment or stopping criterion check for termination.

Algorithm 1 Solve inverse problem using uncertainty check

Given: sources Q = [q1q2 · · ·qs], measurements D = [d1d2 · · ·ds], stopping criterion level ρ (i.e.
the desired misfit) and initial guess m0.
Initialize: m = m0 , s0 = 1.
for n = 0, 1, 2, · · · until termination do

- Choose a W f
n ∈ IRs×sn deterministically or stochastically as described in Section 3.1.

- Fitting: Perform one stabilized GN iteration approximating (2.5), with W =W f
n .

- Choose W e
n ∈ IRs×sn stochastically as described in Section 3.2.

- Uncertainty Check: Compute (3.2) using mn+1 and W e
n.

if Uncertainty Check holds then
- Stopping Criterion: Compute (3.1) with mn+1. Terminate if it holds.

else
- Sample Size Increase: Increase sn+1, for example set sn+1 = min(2sn, s).

end if
end for

The exponential growth of the sample size in Algorithm 1 can be theoretically appealing, as
such a schedule (unlike keeping sn fixed) enables the general convergence theory of [16]. However,
in cases where there is embarrassing redundancy in the set of experiments, it may not be desirable
for the sample size to grow so rapidly and in an unchecked manner, as we could end up using far
more experiments than what is actually needed. Some mechanism is required to control the growth
of sample size, and one such is proposed next.

4.2. Adaptive selection of sample size using cross validation. For monitoring the growth
of sn more closely, one strategy is to compare the objective function ϕ at the current iterate to its
value in the previous iterate, increasing the sample size if there is no sufficient decrease. Unfortu-
nately, evaluating ϕ involves solving s PDEs, which defeats the purpose (in Section 5 typically the
total numbers of PDE solves are small multiples of just one evaluation of ϕ). Fortunately, however,
using an unbiased estimator of the objective function, described in Section 3.2, we can get a handle
of how the objective function is likely to behave. A method of this sort, based on “cross validation”,
is proposed in [11] together with a Random Subset method forW . Here we generalize and adapt this
technique in the present context. Thus, the following algorithm involves the steps of Algorithm 1,
with an additional check for a sufficient decrease in the estimate (2.4) using another, independently
selected weight matrix. Only in case that this test is violated, we increase the sample size.
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Algorithm 2 Solve inverse problem using uncertainty check and cross validation

Given: sources Q = [q1q2 · · ·qs], measurements D = [d1d2 · · ·ds], stopping criterion level ρ (i.e.
the desired misfit), objective function sufficient decrease factor κ < 1, and initial guess m0

Initialize: m = m0 , s0 = 1.
for n = 0, 1, 2, · · · until termination do

- Choose a W f
n ∈ IRs×sn deterministically or stochastically as described in Section 3.1.

- Fitting: Perform one stabilized GN iteration approximating (2.5), with W =W f
n .

- Choose a W c
n ∈ IRs×sn and W e

n ∈ IRs×sn stochastically as described in Section 3.2.

if ϕ̂(mn+1,W
c
n) ≤ κϕ̂(mn,W

c
n), i.e., Cross Validation is satisfied then

- Uncertainty Check: Compute (3.2) using mn+1 and W e
n.

if Uncertainty Check holds then
- Stopping Criterion: Compute (3.1) with mn+1. Terminate if it holds; otherwise set
sn+1 = sn.

end if
else
- Sample Size Increase: for example, set sn+1 = min(2sn, s).

end if
end for

Note that our use of the term “cross validation” does not necessarily coincide with its usual
meaning in statistics. But the procedure retains the sense of a control set and this name is conve-
nient. The performance of Algorithm 2 is not automatically better than that of Algorithm 1, as the
computations in Section 5 demonstrate. However, it provides an important safety mechanism.

5. Numerical experiments. Our experiments are performed in the context of solving the
EIT/DC resistivity problem. Consider a linear PDE of the form

∇ · (σ(x) gradu) = q(x), x ∈ Ω,(5.1a)

where Ω ⊂ IRd, d = 2 or 3, and σ is a conductivity function which may be rough (e.g., discontinuous)
but is bounded away from 0: there is a constant σ0 > 0 such that σ(x) ≥ σ0, ∀x ∈ Ω. This elliptic
PDE is subject to the homogeneous Neumann boundary conditions

∂u

∂n
= 0, x ∈ ∂Ω.(5.1b)

For Ω we will consider a unit square or a unit cube. The inverse problem is to recover σ in Ω from
sets of measurements of u on the domain’s boundary for different sources q. This is a notoriously
difficult problem in practice, so in Appendix A we detail the numerical methods employed both
for defining the predicted data F and for solving the inverse problem in appropriately transformed
variables.

5.1. Numerical experiments setup. The experimental setting we use is as follows: for each
experiment i there is a positive unit point source at xi

1 and a negative sink at xi
2, where xi

1 and xi
2

denote two locations on the boundary ∂Ω. Hence in (5.1a) we must consider sources of the form
qi(x) = δ(x− xi

1)− δ(x− xi
2), i.e., a difference of two δ-functions.

For our experiments in 2D, when we place a source on the left boundary, we place the corre-
sponding sink on the right boundary in every possible combination. Hence, having p locations on
the left boundary for the source would result in s = p2 experiments. The receivers are located at
the top and bottom boundaries. No source or receiver is placed at the corners.

In 3D we use an arrangement whereby four boreholes are located at the four edges of the cube,
and source and sink pairs are put at opposing boreholes in every combination, except that there are
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no sources on the point of intersection of boreholes and the surface, i.e., at the top four corners,
since these four nodes are part of the surface where data values are gathered.

In the sequel we generate data di by using a chosen true model (or ground truth) and a source-
receiver configuration as described above. Since the field u from (5.1) is only determined up to
a constant, only voltage differences are meaningful. Hence we subtract for each i the average of
the boundary potential values from all field values at the locations where data is measured. As
a result each row of the projection matrix P has zero sum. This is followed by peppering these
values with additive Gaussian noise to create the data di used in our experiments. Specifically,
for an additive noise of 3%, say, denoting the “clean data” l × s matrix by D∗, we reshape this
matrix into a vector d∗ of length sl, calculate the standard deviation sd = .03∥d∗∥/

√
sl, and define

D = D∗ + sd ∗ randn(l, s) using Matlab’s random generator function randn.

For all numerical experiments, the “true field” is calculated on a grid that is twice as fine as the
one used to reconstruct the model. For the 2D examples, the reconstruction is done on a uniform
grid of size 642 with s = 961 experiments in the setup described above, and we used η = 1.2. For
our 3D examples, the reconstruction is done on a uniform grid of size 173 with s = 512 experiments,
and we set η = 1.5.

In Section 5.2 below, for the first three examples we use the transfer function (6.3) with σmax =
1.2maxσ(x), and σmin = .83minσ(x). In the ensuing calculations we then “forget” what the exact
σ(x) is. Further, we set the PCG iteration limit to r = 20, and the PCG tolerance to 10−3. The
initial guess is m0 = 0. Our last example is carried out using the level set method (6.4). Here we
can set r = 5, significantly lower than above. The initial guess for the level set examples is displayed
in Figure 5.1.

Fig. 5.1. Example 4 – initial guess for the level set method.

In addition to displaying the log conductivities (i.e., log(σ)) for each reconstruction, we also
show the log-log plot of misfit on the entire data (i.e. ∥F (m) − D∥F ) vs. PDE count. A table of
total PDE counts (not including what extra is required for the plots) for each method is displayed.
In this table, as a point of reference, we also include the total PDE count using the “plain vanilla”
stabilized Gauss-Newton method which employs the entire set of experiments at every iteration.

We emphasize that, much as the rows in the work-unit table are easier to examine in order
to determine which method is more efficient, it is important to also consult the corresponding data
misfit plots, especially when the comparison is between relatively close quantities. This is so because
one evaluation of the stopping criterion consumes a significant fraction of the total PDE count in
each case, so an extra check that can randomly occur for a given experiment in one method and not
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another may affect the work table far more than the misfit figures. In particular, the performance of
the Hutchinson vs. Gauss estimators was found to be comparable in almost all experiments below.

Finally, before we turn to the numerical results let us comment on the expected general quality
of such reconstructions. The quantifiers “good” and “acceptable” are relative concepts here. Our 3D
experiments mimic DC geophysics surveys, where a reconstruction is considered good and acceptable
if it generally looks like the true model, even remotely so. This is very different from the meaning
of similar quantifiers in image denoising, for instance.

5.2. Numerical experiments comparing eight method variants. In each of the four
examples below we apply Algorithm 1 and Algorithm 2 with κ = 1; smaller values of κ would result
in more aggressive increases of the sample size between one stabilized GN iteration and the next.

Furthermore, for convenience of cross reference, we gather all resulting eight work counts in
Table 5.1 below. The corresponding entries of this table should be read together with the misfit
plots for each example, though.

Example Algorithm Vanilla Random Subset Hutchinson Gaussian TSVD
1 1 86,490 3,788 1,561 1,431 2,239

2 3,190 2,279 1,618 2,295
2 1 128,774 5,961 3,293 3,535 3,507

2 3,921 2,762 2,247 2,985
3 1 36,864 6,266 1,166 1,176 1,882

2 11,983 3,049 2,121 2,991
4 1 45,056 1,498 1,370 978 1,560

2 2,264 1,239 896 1,656
Table 5.1

Work in terms of number of PDE solves for Examples 1–4. The “Vanilla” count is independent of the algorithms
described in Section 4.

Example 1.

In this example, we place two target objects of conductivity σI = 1 in a background of conductivity
σII = 0.1, and 3% noise is added to the data: see Figure 5.2(a). The reconstructions in Figures 5.2
and 5.3 are comparable.

(a) True model (b) Random Subset (c) Gaussian (d) Hutchinson (e) TSVD

Fig. 5.2. Example 1 – reconstructed log conductivity using Algorithm 1 and the four methods of Section 3.1.

From Table 5.1 we see that all our methods offer vast improvements over the plain Vanilla
method. Furthermore, the Random Subset method reduces the objective (i.e., misfit) function at a
slower rate, requiring roughly twice as many PDE solves compared to the other methods of Section 3.1.
Consulting also Figure 5.4, observe in addition that although the final PDE count for TSVD is slightly
larger than for Hutchinson and Gaussian, it reduces the misfit at a faster, though comparable, rate.
In fact, if we were to stop the iterations at higher noise tolerances then the TSVD method would
have outperformed all others. In repeated similar tests, we have observed that the performance of
Hutchinson and Gaussian is comparable.
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(a) True model (b) Random Subset (c) Gaussian (d) Hutchinson (e) TSVD

Fig. 5.3. Example 1 – reconstructed log conductivity using Algorithm 2 and the four methods of Section 3.1.

(a) Algorithm 1 (b) Algorithm 2

Fig. 5.4. Data misfit vs. PDE count for Example 1.

Finally, comparing the first two rows of Table 5.1 and the subplots of Figure 5.4, it is clear that
the performance of Algorithms 1 and 2 is almost the same.

Example 2.

For this example, we merely swap the conductivities of the previous one, see Figure 5.5(a), and
add the lower amount of 1% noise to the “exact data”. The reconstruction results in Figures 5.5
and 5.6 are comparable. The performance indicators are gathered in Table 5.1 and Figure 5.7.

(a) True model (b) Random Subset (c) Gaussian (d) Hutchinson (e) TSVD

Fig. 5.5. Example 2 – reconstructed log conductivity using Algorithm 1 and the four methods of Section 3.1.

Note that since in this example the noise is reduced compared to the previous one, more PDE
solves are required. Similar observations to all those made for Example 1 apply here as well, except
that using the cross validation algorithm results in a notable reduction in PDE solves.

Example 3.

In this 3D example, we place a target object of conductivity σI = 1 in a background with con-
ductivity σII = 0.1. See Figure 5.8, whose caption also explains what other plots for 3D runs depict.
A 2% noise is added to the “exact” data.
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(a) True model (b) Random Subset (c) Gaussian (d) Hutchinson (e) TSVD

Fig. 5.6. Example 2 – reconstructed log conductivity using Algorithm 2 and the four methods of Section 3.1.

(a) Algorithm 1 (b) Algorithm 2

Fig. 5.7. Data misfit vs. PDE count for Example 2.

The reconstruction quality for all eight method variants, see Figures 5.9 and 5.10, appears less
clean than in our other examples; however, the methods are comparable in this regard, which allows
us to concentrate on their comparative efficiency. It should be noted that no attempt was made here
to “beautify” these results by post-processing, a practice not unheard of for hard geophysical inverse
problems. Better reconstructions are obtained in the next example which employs more a priori
information and higher contrast.

In cases where more experiments are needed, the differences among the sampling methods are
even more pronounced. This 3D example is one such case. All of the methods (excluding Vanilla)
ended up using half of the experiments (i.e., SN ≈ .5s) before termination. Clearly, the Random
Subset method is far outperformed by the other three, see Table 5.1 and Figure 5.13.

This is one example where Algorithm 1 achieves reconstructions of similar quality but more
cheaply than Algorithm 2. This is so because in this case there is little embarrassing redundancy, i.e.,
larger sample sizes are needed to achieve the desired misfit, hence growing the sample size at a faster
rate leads to an efficient algorithm. The sample size using cross validation grows more slowly, and
relatively many GN iterations are performed using small sample sizes where each iteration decreases
the misfit only slightly. These added iterations result in larger total PDE solve count.

Example 4. This one is the same as Example 3, except that we assume that additional prior
information is given, namely, that the sought model consists of piecewise constant regions with
conductivity values σI and σII . This mimics a common situation in practice. So we reconstruct
using the level set method (6.4), which significantly improves the quality of the reconstructions:
compare Figures 5.11 and 5.12 to Figures 5.9 and 5.10.

Here we observe less difference among the various methods. Specifically, in repeated experiments,
the Random Subset method is no longer clearly the worst, see Table 5.1 and Figure 5.14. The numbers
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Fig. 5.8. True Model for Examples 3 and 4. The left panel shows 2D equi-distant slices in the z direction from
top to bottom, the right panel depicts the 3D volume.

(a) RS slices
(b) 3D view

(c) Gaussian slices
(d) 3D view

(e) Hutchinson slices
(f) 3D view

(g) TSVD slices
(h) 3D view

Fig. 5.9. Example 3 – reconstructed log conductivity for the 3D model using Algorithm 1 and (a,b) Random
Subset, (c,d) Gaussian, (e,f) Hutchinson, and (g,h) TSDV.

in the last row of Table 5.1 might be deceiving at first glance, as Random Subset seems to be worse
than the rest; however, the graph of the misfit in Figure 5.14 reflects a more complete story. At
some point in between the final PDE counts for Hutchinson and TSVD, the Random Subset misfit
falls below the desired tolerance; however, the uncertainty check at that iterate results in a “false
negative” which in turn does not trigger the stopping criterion. This demonstrates the importance of
having a very good and reliable trace estimator in the uncertainty check. For all our eight algorithm
variants and in all of our examples, we used the Hutchinson trace estimator for this purpose, as it
has the smallest variance. And yet, one wrong estimate could result in additional, unnecessary GN
iterations, leading to more PDE solves. False positives, on the other hand, trigger an unnecessary
stopping criterion evaluation, which results in more PDE solves to calculate the misfit on the entire
data set.

For this example it was also observed that typically the Gaussian method outperforms Hutchinson
by a factor of roughly 1.5.
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6. Conclusions and future work. In this paper we have developed and compared several
highly efficient stochastic algorithms for the solution of inverse problems involving PDEs (specifically,
in the context of DC resistivity and EIT problems), in the presence of many measurements or
experiments s. Two algorithms for controlling the size sn ≤ s of the data set in the nth stabilized
GN iteration have been proposed and tested. For each, four methods for selecting the weight matrix
W were proposed, three stochastic and one deterministic, making for a total of eight algorithm
variants. Our algorithms are known to converge under suitable circumstances because they satisfy
the general conditions in [16, 7].

It is important to emphasize that any of these algorithms is far better than a straightforward
utilization of all experiments at each GN iteration. This is clearly borne out in Table 5.1. Note
further that in order to facilitate a fair comparison we chose a fixed number of PCG inner iterations,
ignoring the adaptive Algorithm 1 of [11], even though that algorithm can impact performance
significantly. We also utilized for the sake of fair comparison a rather rigid (and expensive) stopping
criterion. Further, we use the Hutchinson estimator for the uncertainty check in all methods, thus
making them all stochastic. In particular, TSVD may not be used in (3.2) because it does not lead
to a good unbiased estimator for the objective function ϕ when sn ≪ s.

Inverse problems with many measurements arise in different applications which may have very
different solution sensitivity to changes in the data (e.g., the full waveform inversion, although having
other big difficulties in its solution process, is far less sensitive in this sense than DC resistivity).
But in any case, it is an accepted working assumption that more data can only help and not hurt the
conditioning of the problem being solved. This then gives rise to the question whether our model
reduction techniques may worsen the conditioning of the given problem. We have not observed any
such effect in our experiments (and our “Vanilla” reconstructions in Section 5 are never better, or
sharper, than the other, cheaper ones). In a sense it could be argued that a good model reduction
algorithm actually covers approximately the same grounds as the full data problem, so it achieves a
similar level of solution sensitivity to data.

As demonstrated in Examples 2 and 3, neither Algorithm 1 nor Algorithm 2 is always better than
the other, and they often both perform well. Their relative performance depends on circumstances
that can occasionally be distinguished before committing to calculations. Specifically, if there are
relatively few data sets, as in Example 3, then Algorithm 1 is preferable, being both simpler and

(a) RS slices
(b) 3D view

(c) Gaussian slices
(d) 3D view

(e) Hutchinson slices
(f) 3D view

(g) TSVD slices
(h) 3D view

Fig. 5.10. Example 3 – reconstructed log conductivity for the 3D model using Algorithm 2 and (a,b) Random
Subset, (c,d) Gaussian, (e,f) Hutchinson, and (g,h) TSDV.
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(a) RS slices
(b) 3D view

(c) Gaussian slices
(d) 3D view

(e) Hutchinson slices
(f) 3D view

(g) TSVD slices
(h) 3D view

Fig. 5.11. Example 4 – reconstructed log conductivity for the 3D model using the level set method with Algo-
rithm 1 and with (a,b) Random Subset, (c,d) Gaussian, (e,f) Hutchinson, and (g,h) TSDV.

(a) RS slices
(b) 3D view

(c) Gaussian slices
(d) 3D view

(e) Hutchinson slices
(f) 3D view

(g) TSVD slices
(h) 3D view

Fig. 5.12. Example 4 – reconstructed log conductivity for the 3D model using the level set method with Algo-
rithm 2 and with (a,b) Random Subset, (c,d) Gaussian, (e,f) Hutchinson, and (g,h) TSDV.

occasionally faster. On the other hand, if s is very large, the data having been massively calculated
without much regard to experimental design considerations (as is often the case in geophysical
exploration applications), then this may naturally lead to a case of embarrassing redundancy, and
caution alone dictates using Algorithm 2.

The three methods of simultaneous sources, namely, Hutchinson, Gaussian and TSVD, are
comparable (ignoring the cost of SVD computation), and no definitive answer can be given as to
which is better for the model reduction W f

n . Further, especially when the level set method may not
be used, we have found the methods of simultaneous sources to be consistently more efficient than
the Random Subset method of [11], roughly by a factor of two. This raises the question whether the
restriction that the projection matrices Pi must not depend on i (i.e., shared receivers) can somehow
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(a) Algorithm 1 (b) Algorithm 2

Fig. 5.13. Data misfit vs. PDE count for Example 3.

(a) Algorithm 1 (b) Algorithm 2

Fig. 5.14. Data misfit vs. PDE count for Example 4.

be removed or relaxed, thus allowing use of the faster methods of simultaneous sources. This is a
subject of investigation that we plan to carry out in the near future.

Appendix A. Here we describe the forward problem that yields the operators Fi(m) of (1.4b),
and provide some detail on the stabilized GN iteration used in our numerical experiments. There
is nothing strictly new here, and yet some of the details are both tricky and very important for
the success of an efficient code for computing reasonable reconstructions for this highly ill-posed
problem. It is therefore convenient to gather all these details in one place for further reference.

Discretizing the forward problem. The PDE (5.1) is discretized on a staggered grid as
described in [3] and in Section 3.1 of [2]. The domain is divided into uniform cells of side length
h, and a cell-nodal discretization is employed, where the field unknowns ui,j (or ui,j,k in 3D) are
perceived to be located at the cell corners (which are cell centers of the dual grid) while σi+1/2,j+1/2

values are at cell centers (cell corners of the dual grid). For the finite volume derivation, the PDE
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(5.1a) is written first as

j = σ(x) gradu, x ∈ Ω,(6.1a)

∇ · j = q(x), x ∈ Ω,(6.1b)

and then both first order PDEs are integrated prior to discretization. A subsequent, standard
removal of the constant null-space then results in the discretized problem (1.4a).

To solve the resulting linear system, since there are a large number of right hand sides in (1.4a),
a direct method which involves one Cholesky decomposition followed by forward and backward
substitution for each right hand side is highly recommended. If the program runs out of memory
(on our system this happens in 3D for h = 2−6) then we use a preconditioned conjugate gradient
method with an incomplete Cholesky decomposition for a preconditioner.

Taking advantage of additional a priori information. In general, we wish to recover σ(x)
based on measurements of the field u(x) such that (5.1) approximately holds. Note that, since the
measurements are made only at relatively few locations, e.g., the domain’s boundary rather than
every point in its interior, the matrices Pi (whether or not they are all equal) all have significantly
more columns than rows. Moreover, this inverse problem is notoriously ill-posed and difficult in
practice, especially for cases where σ has large-magnitude gradients. Below we introduce additional
a priori information, when such is available, via a parametrization of σ(x) in terms of m(x) (see
also [12]). To this end let us define the transfer function

ψ(τ) = ψ(τ ; θ, α1, α2) = α tanh
( τ

αθ

)
+
α1 + α2

2
, α =

α2 − α1

2
.(6.2)

This maps the real line into the interval (α1, α2) with the maximum slope θ−1 attained at τ = 0.
1. In practice, often there are reasonably tight bounds available, say σmin and σmax, such that
σmin ≤ σ(x) ≤ σmax. Such information may be enforced using (6.2) by defining

σ(x) = ψ(m(x)), with ψ(τ) = ψ(τ ; 1, σmin, σmax).(6.3)

2. Occasionally it is reasonable to assume that the sought conductivity function σ(x) takes
only one of two values, σI or σII , at each x. Viewing one of these as a background value,
the problem is that of shape optimization. Such an assumption greatly stabilizes the inverse
problem [1]. In [9, 10, 11] we considered an approximate level set function representation
for the present problem. We write σ(x) = limh→0 σ(x;h), where

σ(x;h) = ψ(m(x);h, σI , σII).(6.4)

The function ψ(τ ;h) depends on the resolution, or grid width h. It is a scaled and mollified

version of the Heaviside step function, and its derivative magnitude is at most O( |σI−σII |
h ).

Thus, as h→ 0 the sought function m(x) satisfying

∇ · (ψ(m(x)) gradui) = qi, i = 1, . . . , s,(6.5)

∂ui

∂n

∣∣
∂Ω

= 0,

has bounded first derivatives, whereas σ(x) is generally discontinuous.
Establishing the relationship between σ and m completes the definition of the forward operators

Fi(m) by (1.4b).

Stabilized Gauss-Newton. Here we briefly describe the modifications made to the GN
method (2.5), turning it into the stabilized GN method used in our experiments. The first modifi-
cation is to replace (2.5b) by

mn+1 = mn + γδm,(6.6)
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where γ, 0 < γ ≤ 1, is determined by a weak line search ensuring sufficient decrease in ϕ̂(mn+1,Wn)

as compared to ϕ̂(mn,Wn).

More importantly, the matrix at the left hand side of (2.5a) is singular in the usual case where
l < lm, and therefore this linear system requires regularization. Furthermore, δm also requires
smoothing, because there is nothing in (2.5) to prevent it from forming a non-smooth grid function.
These regularization tasks are achieved by applying only a small number of PCG iterations towards
the solution of (2.5a), see [10, 11]. This dynamic regularization (or iterative regularization [21]) is
also very efficient, and results in a stabilized GN iteration. An adaptive algorithm for determining a
good number of such inner iterations is proposed in [11]. However, here we opt to keep this number
fixed at r PCG iterations independently of n, in order to be able to compare other aspects of our
algorithms more fairly. Further, the task of penalizing excessive non-smoothness in the correction
δm is achieved by choosing as the preconditioner a discrete Laplacian with homogeneous Neumann
boundary conditions. This corresponds to a penalty on

∫
| gradm(x)|2 (i.e., least squares but not

total variation).

The modified GN iteration described above is our outer iteration, and the entire regularization
method is called dynamical regularization [10, 11]. The essential cost in terms of PDE solves comes
through (2.5a) from multiplying Jni or Jn

T
i by a vector. For the case Pi = P ∀i, each such

multiplication costs one PDE solve, hence 2rsn solves for the left hand side of (2.5a). The evaluation
of the gradient costs another 2sn PDE solves per outer iteration. This gives the work under-estimate
formula (2.6). This still neglects, for clarity, the additional line search costs, although the additional
PDE solves necessitated for determining γ in (6.6) have of course been counted and included in the
work tallies reported in Section 5.
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