THE DISCRETE ADJOINT METHOD FOR EXPONENTIAL INTEGRATION

KAI ROTHAUGE*, ELDAD HABER', AND URI ASCHER?

Abstract. The implementation of the discrete adjoint method for exponential time differencing (ETD) schemes
is considered. This is important for parameter estimation problems that are constrained by stiff time-dependent
PDEs when the discretized PDE system is solved using an exponential integrator. We also discuss the closely related
topic of computing the action of the sensitivity matrix on a vector, which is required when performing a sensitivity
analysis. The PDE system is assumed to be semi-linear and can be the result of a linearization of a nonlinear
PDE, leading to exponential Rosenbrock-type methods. We discuss the computation of the derivatives of the ¢-
functions that are used by ETD schemes and find that the derivatives strongly depend on the way the -functions are
evaluated numerically. A general adjoint exponential integration method, required when computing the gradients,
is developed and its implementation is illustrated by applying it to the Krogstad scheme. The applicability of the
methods developed here to pattern formation problems is demonstrated using the Swift-Hohenberg model.

Key words. Exponential integration, parameter estimation, sensitivity analysis, inverse problems, adjoint
method, semi-linear PDE, Rosenbrock method, gradient-based optimization, high-order time-stepping methods, pat-
tern formation, Swift-Hohenberg equation

AMS subject classifications. Partial Differential Equations, Numerical Analysis, Optimization

1. Introduction. Large-scale distributed parameter estimation is an important type of
inverse problem dealing with the recovery or approximation of the model parameters appear-
ing in partial differential equations (PDEs). The PDE system models some real-life process
and observations of this process, which usually contain noise, are compared to numerically
computed solutions of the PDEs. Parameter estimation problems, often referred to as model
calibration, are very common in engineering, many branches of science, economics, and else-
where.

In this paper we consider such inverse problems in the context of stiff, time-dependent,
semi-linear PDEs. Using the method of lines approach, the PDE is discretized in space by ap-
plying a finite difference, finite volume or finite element method, where the (known) boundary
and initial conditions are assumed to have already been incorporated. This results in a large
system of ordinary differential equations (ODEs) that can be written in generic first-order
form as

% — f(y(t; In)7 t, m)
(1.1) = L(m)y(t; m) + n(y(t;m),t, m)
y(O) =Yo,

on an underlying discrete spatial grid, with 0 < ¢ < T. The vector m € R¥= is the set of
discretized model parameters that could, for instance, represent some physical properties of
the underlying material that we want to estimate. We refer to y = y(¢; m) in this context as
the forward solution. 1t is a time-dependent vector of length N and depends on m indirectly
through the discretized operators L and n. The operator L contains the leading derivatives
and is linear, while n is generally nonlinear in y. Many interesting PDEs have this form.
The problem of estimating the parameters in (1.1) based on a given set of measurements
is often tackled using gradient-based optimization procedures. For large-scale problems, the
adjoint method is a well-known efficient approach to computing the required gradients. The

*Department of Mathematics, University of British Columbia (rothauge@math.ubc.ca)
TDepartment of Earth and Ocean Science, University of British Columbia (haber@eos.ubc.ca)
fDepartment of Computer Science, University of British Columbia (ascher@cs.ubc.ca)

1

goal of this study is to systematically implement the discrete adjoint method for the case
where a fully discretized version of (1.1) is solved using an exponential time differencing
(ETD) scheme [13, 3, 17], also known as an exponential integrator. These methods have
come to form an important approach for numerically solving PDEs, particularly when the
PDE system exhibits stiffness in time; yet they pose several challenges in carrying out their
corresponding adjoint method. Our results are also relevant to the problem of sensitivity
analysis, where the efficient computation of the action of the sensitivity matrix on a vector is
required.

1.1. PDE-Constrained Optimization. The parameter estimation problem is to recover
a feasible set of parameters m that approximately solves the PDE-constrained optimization
problem

(1.2) m* = argmin Q(m) s.t. (1.1) holds,

m

where the objective function
Q(m) = Q(d, d°*; m, m"") = M(d,d°"*) + SR(m, m"")

has two components. The regularization function R(m, m"!) penalizes straying too far away
from the prior knowledge we have of the true parameter values (which is incorporated in
m"!). Common examples are Tikhonov-type regularization [6, 34], including least squares
and total variation (TV) [35]. The data misfit function M(d, d°®) in some way quantifies the
difference between d and d°bs, with d°Ps a given set of observations of the true solution and
d = d(m) = d(y(m)) the observation of the current simulated solution, depending on m
implicitly through the forward solution.

The most popular choice for M, corresponding to the assumption that the noise in the
data is simple and white, is the least-squares function M = % H d—d°bs] 3; but we will not
restrict our discussion to any particular misfit function. The relative importance of the data
misfit and prior is adjusted using the regularization parameter (3.

Several classes of optimization procedures can be used to solve (1.2), see for instance
[6, 35, 34]. Typically, all reduced space methods for PDE-constrained optimization require
the gradient of €2 with respect to m, V,,Q2 = Vi, M + BV, R [25, 4]. The derivatives of
the regularization function are known and are independent of the time-stepping scheme, so in
this paper we focus exclusively on computing the gradient of the misfit function M.

1.2. The Adjoint Method. The gradient of the misfit function requires computing the
ad

action of JT, where J = ey is the sensitivity matrix. This matrix function stores the first-
order derivatives of the predicted data with respect to the model parameters and can be calcu-
lated explicitly in small-scale applications. However, in cases such as those considered here
it is far more feasible to compute the action of the sensitivity matrix on a vector using the
adjoint method. Originally developed in the optimal control community, the adjoint method
was introduced in [2] to the theory of inverse problems to efficiently compute the gradient of
a function. See [26] for a review of the method applied to geophysical problems.

There are two frameworks that one can take when computing derivatives of the misfit
function, discretize-then-optimize (DO) or optimize-then-discretize (OD). In OD one forms
the adjoint differential problem, for either the given PDE or its semi-discretized form (1.1),
which is subsequently discretized, thus decoupling the discretization process of the problem
from that of its adjoint. A disadvantage of this approach is that the gradients of the discretized
problem are not obtained exactly, because a discretization error gets introduced when moving

from the continuous setting [9]. We therefore prefer the DO approach, where one applies

the adjoint method to the fully discretized form (1.1). The time-stepping method is therefore
of central importance and this article addresses the implementation of the discrete adjoint
method where the time-stepping method is an ETD scheme.

An alternative approach to computing the gradient that falls inside the DO framework is
automatic differentiation (AD) [8, 24]. AD is a great tool for many purposes, but for large-
scale problems where efficiency and memory allocation are essential, the adjoint method
approach is advantageous when performance is crucial. In such circumstances it is prefer-
able to have hard-coded and optimizable gradient and sensitivity computations. Having an
explicit algorithm for the adjoint time-stepping method, as we develop here, allows one to
exploit opportunities to increase the computational efficiency, such as parallelization and the
precomputation of repeated quantities. Furthermore, it would require a very sophisticated
AD code to compute the derivatives of the ¢-functions that arise in ETD schemes, further
elaborated upon in Sections 2 and 3.

1.3. Main Contributions and Structure of this Article. Exponential integration meth-
ods are reviewed in Section 2. It is shown how to abstractly represent them in the form
t(y,m) = 0, which we need when applying the discrete adjoint method. We also review
Rosenbrock-type methods, since our techniques can be applied to them as well [15, 14, 20,
22].

ETD schemes require the use of ¢-functions that are introduced in Section 2 and whose
numerical evaluation is briefly reviewed in Section 3.

In Section 4 we apply the discrete adjoint method to the abstract time-stepping repre-
sentation derived in Section 2. Derivatives of t with respect to both the solution and the
model parameters m are required, and we derive expressions for them in Section 5. These
expressions require the derivatives of the ¢-functions when the discretized linear operator
L depends on the solution or the model parameters, and we discuss their differentiation in
Section 6.

Section 7 discusses the linearized forward problem that must be solved when computing
the action of the sensitivity matrix on some vector. In Section 8§ we present the solution of
the adjoint problem needed when computing the action of the transpose of the sensitivity
matrix, thereby also playing a central role in the calculation of the gradient V,,M. We give
general algorithms applicable to any ETD scheme in these sections, and also illustrate their
implementation using the ETD scheme of [17].

The results of this work are used in Section 9 to solve a simple parameter estimation
problem involving the Swift-Hohenberg model, a PDE problem with solutions exhibiting the
interesting phenomenon of pattern formation. Some final thoughts and avenues for future
work are provided in Section 10.

2. Exponential Time Differencing. When considering time discretizations for the semi-
discretized PDE (1.1), it is often convenient to suppress the dependence on m in the notation.

Exponential time differencing methods, also referred to as exponential integrators, were
originally developed in the 1960s [1, 27] and have attracted much recent attention [13, 19, 18,
21,32, 31]. This has become an important approach to numerically solving PDEs, particularly
when the PDE system exhibits stiffness. Let us discretize the time interval as 0 = ¢ty < t; <
-+ < tg =T, with a possibly variable time-step size 7, = t;+1 — t. Consider (1.1) and let
¥k denote the approximation of its solution y (¢x) at time .

Before we review exponential integration, we first give a quick overview of Rosenbrock-
type methods. Here, an ODE system resulting from a spatial semi-discretization of a fully
nonlinear time-dependent PDE 2 y(¢) = f(y(t),t) is written in semi-linear form, after

4

which an exponential integrator can be applied. This can be done by writing

f(y(®),t) = Lry(t) + nx(y (1), 1),

where ny (y(t),t) = f(y(t),t) — Lry(¢t). ETD schemes are applied to this lineariza-
tion, involving exponentiation of the matrix Lj and leading to exponential Rosenbrock-type

0
methods [15, 14]. The matrix Lj is meant to approximate the Jacobian 6—(yk, t) at the
Yy

kth time-step. Occasionally it is sufficient to select Ly = L independently of time, but
when the dynamical system trajectory varies significantly and rapidly we may have to set

f
Ly =L (yx) = %(yk, tr.). The case where the linear operator Ly, depends on yy, adds a

significant amount of complexity to the adjoint computations considered later in this paper.

Exponential integration is briefly reviewed in Section 2.1 and we give examples of partic-
ular schemes in Section 2.2. The discrete adjoint method discussed in Section 4 requires that
the time-stepping method be abstractly represented in the form of a discrete time-stepping
equation

@.1) t (y,,m) =0,

where t is a vector representing the time-stepping method and y ., denotes the approximate
solution vector composed of all the y’s. In Section 2.3 we show how to represent an arbitrary
ETD scheme in the form (2.1).

2.1. Derivation of ETDRK methods. Recall the semi-discretized, semi-linear system
(1.1) which we write as

oy(t
2) W0 Ly (t) + i (y (1)),
Integrating (2.2) exactly from time level ¢y, to tx4+1 = £, + 73 gives
tht1
2.3) Vi1 = By + / el =Dy (y (b + 1), b, +) dt.
tr

The exponential Euler method is obtained by interpolating the integrand at the known value
ny, (Y,) only,

TrLy

(2.4) Yit1 = ey 4+ o1 (e L)ng (yi, tr)

where ¢1(z) = % This is the simplest numerical method that can be obtained for solving
(2.3).

The integral in (2.3) can be approximated using some quadrature rule, leading to a class
of s-stage explicit exponential time differencing Runge-Kutta (ETDRK) methods with matrix
coefficients a; ; (73 Ly), weights b; (7, Ly) and nodes ¢;, so for 1 <4, j < s we obtain

(2.50) Vi = € hyg 7Y bi(mLk) Y,
=1

with the internal stages
i—1

(2.5b) Yip1, =ny | ey 4oy Zaij(TkLk)Yk+1,j7tk + ¢iTk 1<i<s.
j=1

The procedure starts from a known initial condition yo. There are several alternate ways of
writing (2.5a), but for our purposes the representation given here is most useful.
The Butcher tableau for these methods is

C1
C2 agl(TLk)

Cs asl(TkLk) e as,sfl(TkLk)
‘51(7%1:1@) oo beoa(meLy) bs(TeLi)

The coefficients a;; and b; are linear combinations of the entire functions

! (1-6) gt
— e? — —v)z > .
wo(z) =e oy, /0 e =] dg, ¢>1

It is not hard to see that the -functions satisfy the recurrence relation

) = ©0e-1(2) — we-1(0)

(2.6) we(z , £>0,

and that ¢, (z) = > 0 ﬁ Notice that the expansion of (;(z) is that of the exponential

function with the coefficients shifted forward.

As is evident by the structure of ¢, for ¢ > 0, for small z the evaluation of @,(z) will be
subject to cancellation error, and this could become a problem when evaluating (7 Ly) if
the matrix 74 Ly has small eigenvalues.

From now on, for brevity of notation we use ¢, = @;(7, L) and pp; = po(c;iLi).

2.2. Examples. The four-stage ETD4RK method of Cox and Matthews [3] has the fol-
lowing Butcher tableau:

0
% %901"2 1
2.7 5 Onxn 5¥1,3
1 P14 — P13 Onxn ©1,3

‘ o1 —3p2 +4ps 209 —dp3 202 —dp3 o3 — 2

This method can be fourth-order accurate when certain conditions are satisfied, but in the
worst case is only second-order.
Krogstad [17] derived the method given by

0
3, 22
(2.8) 5 5¥1,3 — ¥2,3 ¥2,3
1| @14—2p24 Onxn 22 4

‘ 01— 302 +4p3 202 — 43 2¢2 — 43 Aoz — P2

It is usually also fourth-order accurate and has order three in the worst case.
The following five-stage method is due to Hochbruck and Ostermann [12]:

0
% 1 %@1,2
(2.9) 2 5¥1,3 — P23 ¥2,3
1 V1,4 — 2024 ©2.4 V2.4)
% %@1,5 - i@zs — as5,2 as.2 as 2 isﬂz,s —as2
p1 — 3p2 + 43 Onxn Onxn —w2+4ps 4p2 —8ps

6

with a5 o = %()0275 — @34+ %<p274 — %<p3,5. It has order four under certain mild assumptions.

2.3. Representation by t. The method given by (2.5) can be abstractly represented by

In Yk Onx1 Yk
(2.10) Lin Yit1| — |Nig1| = [Osnxi] s
—embe —Bl L In| |y Onx1 Onx1
with
Yii1,1 by(miLg) " ny 1
(211a) Ypq1 = : y Bri1 =Tk : and Ngy1=1| : |,
Yiqi,s bs (L) " ny s
where
i—1
(2.11b) ng,; =ny eCim iy o7y Z aij (TeLik) Yt1,5: th + CiTh
i=1

In (2.10) we have a single time step in the solution procedure, so the ETDRK procedure
as a whole can be represented by

(2.12) t(y-) =Ty, —n;(y;)—q=0,
with
T
y-=[Y{ yi YJ vy - Yg vyi] ,
.
n. =[Ny Oy Nj Oy -+ Ni On]
.
a=[01xsn (e™My0)T Oixinyn 0 Oixsinn]
_IsN 1
(2.13) -B/ In
IsN
T — —enti —BJ Iy
IsN
| _eTK—lLK—l —B}; IN_

which is a block lower-triangular matrix. We have explicitly included the internal stages in
y- because they will be needed later on.

3. The Action of ¢, on Arbitrary Vectors. To simplify the notation in this section, let
L = 7Ly and ¢ = ¢, for some k,¢ > 0. We very briefly review some methods used in
practice to evaluate the product of (L) € RY*¥ with some arbitrary vector w € RY, where
N is too large for ¢ (L) to be computed explicitly and stored in full, or where it is impractical
to first diagonalize L.

Much has been written about the approximation of these products for large N; see [13]
and the references therein. Here we mention four of the most relevant approaches to perform-
ing these approximations, all of which also help to address the numerical cancellation error
that would occur when computing (directly using the recurrence relation (2.6).

If using a Rosenbrock-type scheme with L depending on yy, then we are interested in
finding methods that lend themselves to calculating the derivatives of ¢(L(yx, m))w with
respect to y or m. This will be explored in more detail in Section 6.

7

3.1. Krylov Subspace Methods. The Mth Krylov subspace with respect to a matrix
L and a vector w is denoted by K/ (L, w) = span{w,Lw,..., LM ~'w}. Normalizing
|w|| = 1, the Arnoldi process can be used to construct an orthonormal basis V; € CNV*M
of Ky (L,w) and an unreduced upper Hessenberg matrix Hy; € CM*M satisfying the
standard Krylov recurrence formula

LV = VyHy + hymVarsien, VuVy =1y,

with e, the Mth unit vector in CV. Using the orthogonality of V;, it can then be shown
that

3.1 p(L)w = Vyo(Hp e

(see for instance [28]). It is assumed that M < N, so that ¢(Hj,) can be computed using
standard methods such as diagonalization or Padé approximations.

There has been a lot of work on Krylov subspace methods for evaluating matrix func-
tions, see for instance [5, 10] and the references therein. See in particular [11] for a discussion
on Krylov subspace methods for matrix exponentials.

3.2. Polynomial Approximations. Polynomial methods approximate (L) using some
truncated polynomial series, for instance Taylor series (which is rarely used in this context),
Chebyshev series for Hermitian or skew-Hermitian L, Faber series for general L, or Leja
interpolants. See [13] and the references therein for a review of Chebyshev approximations
and Leja interpolants in the context of exponential time differencing.

A polynomial approximation can generally be written in the form

M
(3.2) p(L)w =~ Z c; Liw,
j=0

although sometimes other forms are more suitable. For instance, in the case of Chebyshev
polynomials it makes more sense to write

M
(3.3) pL)w = > ¢; Tj(L)w
§=0
if L is Hermitian or skew-Hermitian and the eigenvalues of L all lie inside [—1, 1]. The T} (L)
satisfy the recurrence relation
Ty (L) =2LT;(L) — Tj_,(L), j=1,2,...

initialized by Ty(L) = I and T3 (L) = L.

3.3. Rational Approximations. The function ((z) can be estimated to arbitrary order
using rational approximations

o(2) = Pl (2) = Y aiz' | Y bz = pi(2) fan(2).
i=0 k=0

The polynomials p,, (z) and ¢,,(z) can be found using either Padé approximations or by using
the Carathéodory-Fejér (CF) method on the negative real line, which is an efficient method
for constructing near-best rational approximations. It has been applied to the problem of
approximating ¢-functions in [29]. The Padé approximation works for general matrices L,

but the CF method used in [29] works only if 2 is negative and real, so that L must be
symmetric negative definite.

For large NV it will generally be too expensive to evaluate ¢y, ,,j(L) in this form. But
suppose we have that m < n, g, has n distinct roots denoted by sy, ..., s,, and p,, and g,
have no roots in common. Then we can find a partial fraction expansion

n
Ch
Pl (2) = co+)
=1

3
S; — 2

where ¢y is some constant and ¢y = Res [cp[mm] (2), pk]. In practice one would find these
coefficients simply by clearing the denominators.
The product of ¢(L) with some vector w therefore is

(3.4) L)W = P (L)w=cow + Z ek (81— L)71 w.

i=1

See [29] for a discussion on how a common set of poles can be used for the evaluation of
different ;. While this approach requires a higher degree n in the rational approximation to
achieve a given accuracy, in the use of exponential integration this would still lead to a more
efficient method overall since the same computations can be used to evaluate different ;.

3.4. Contour Integration. The last approach we consider is based on the Cauchy inte-
gral formula

6(2) = o [2 g

2mi Jr s— 2

for a fixed value of z, where ¢(z) is some arbitrary function and I" is a contour in the complex
plane that encloses z and is well-separated from 0. This formula still holds when replacing z
by some general matrix L, so that

G3) o) = 5= [o) (T-1)7 s

where I' can be any contour that encloses all the eigenvalues of L. The integral is then
approximated using some quadrature rule.

There is some freedom in choosing the contour integral and the quadrature rule. Kassam
and Trefethen [16] proposed the contour integral approach to circumvent the cancellation
error in (2.6). For convenience, they let I' simply be a circle in the complex plane that is
large enough to enclose all the eigenvalues of L, and then used the trapezoidal rule for the
approximation. If LL is real, then one can additionally simplify the calculations by considering
only points on the upper half of a circle with its center on the real axis, and taking the real
part of the result. Discretizing the contour using M points s; and using the trapezoidal rule
to evaluate (3.5), we have

) M
(3.6) o(L) = Vi R (Z si (si) (sil — L)1> ;

=1

where M must be chosen large enough to give a good approximation. Then let ¢ = ¢ and
multiply by w to get an approximation of the product ¢ (L)w. This is important in the context
of multi-stage ETDRK.

Since the same contour integral will be used throughout the procedure, the quadrature
points s; remain the same for all ¢-functions and one can therefore use the same solutions
v, = (s;I— L)f1 w of the resolvent systems when computing the product of different -
functions with some vector w.

A contour integral that specifically applies to ¢-functions is

1 es 1
we(z) / ds.

- 2mi Jposts—z

Again, different contour integrals and quadrature rules can be used. If z is on the negative
real line or close to it, then we can use a Hankel contour (see also [33]). Letting z = L and
using the trapezoidal rule, we get

1 [e _
(3.7) po(L) ~ - R (Z %, (s;1 — L) 1) 7

i=1 "t

for quadrature points s; on I'. This integral representation has the advantage that the integrand
is exponentially decaying and therefore fewer quadrature points need to be used [29, 13].

Incidentally, (3.6), (3.7) and (3.4) all require an efficient procedure for solving linear
systems of the form

(s;I-L)v;, =w.

This can be achieved, for instance, using sparse direct solvers or preconditioned Krylov sub-
space methods. Solving M different linear systems might seem prohibitive, but when using
Krylov methods one has the advantage that K (L, w) = Kps(sI — L, w) for all s € CV,
so that the same Krylov subspace can theoretically be used for all s;. The computation also
allows for parallelization since each system can be solved independently.

4. The Discrete Adjoint Method. To save on notation, we omit throughout the next
five sections the subscript 7 and write the abstract representation (2.12) of the discrete linear
time-stepping system as

t(y,m)=0.

It is now used in conjunction with the adjoint method to systematically find the procedures
for computing the action of the sensitivity matrix

_0d _9d oy
S 0m Jdy Om’

We emphasize that here y = y(m) is a discrete vector which is the solution of the discrete

forward problem. To find an expression for g—y, we start by differentiating t (y(m), m) =0

. m
with respect to m:

0 ot 0t dy
+—t(y(m),m) = m + %% =O0ONxNy-

It follows that

dy (9t ot ~ad (ot ot

10

It is neither desirable nor necessary to compute the Jacobian J explicitly: what one really
needs is to be able to quickly compute the action of J and its transpose on appropriately-sized
arbitrary vectors w. Notice that the computation of the product of J with some vector w of

length Ny, requires the solution of the linearized forward problem g—;v = q(withq = g—;‘w

here); we will discuss the structure of g—:’ in the following section. The computation of the
product of J T with some vector w of length N requires the solution of the adjoint problem

=
(g—;) A = 6, where A is the adjoint solution and 0 is the adjoint source. In this context

aa\ "
Now, to compute the gradient of the misfit function, we use the chain rule to write

() wo=a"

VM= |—-—| VaM=J V4M.

om

The gradient V,, M is therefore easily obtained by letting w = V4M above. In addition to

the forward solution y, one must compute the adjoint solution in order to get the gradient.
The gradient is used by all iterative gradient-based optimization methods, including

steepest descent, nonlinear conjugate gradient, quasi-Newton such as BFGS, Gauss-Newton

and Levenberg-Marquardt. The latter two methods, in particular, require the computation of

a solution to the linearized forward problem as well as an adjoint solution, in addition to the

computation of y.

5. The derivatives of t. We now focus on deriving expressions of the derivatives for

ot ot
7y and m required by the sensitivity matrix. Recall equations (2.12) and (2.13), and let
y m

A7 be the s x s block matrix where the (¢, 7)th entry is a;;(7xLx). To ease the notation
further, let

(5.1a) tri =t + CiTk,
i—1

(5.1b) Vs = €TI0y 4 S (L (e, m) Yir g,
j=1

and'

(5.1¢)

ONp1 _ dia (anm 8nk,s>
Oy & oy 7 9y)’

The solution procedure at the (k + 1)th time-step is represented by

Yii1 — Niyr]

52 b1 =
(5.2) k+1 [eTkkak — B—,;_l’sYk—s-l + Yi+1

We will now take the derivative of t with respect to y and m in turn.

ot ot 0
5.1. Computing oy’ We compute the derivative of oy =T - 8—;1 at the (k + 1)th

. P T o L
time-step. Letting y,+1 = [Y 1 ¥py1] . this derivative is

atk+1:|:6tk+1 Otk 3tk+1}
dy 031 0y2 0V K

k,i

On
I'The Jacobian 3 is taken with respect to the semi-discretized y ().

with
9 (Y Njoi1)
Otpy1 y; a s
(5.3) | Y
Y == (—e™Myr =By Yer1 +yii)
8}’]‘

Looking at the terms in (5.3) individually and using the chain rule, we have for j = k + 1

oY ON ON
T}i: = [Linxsy Osnxn)] 8?:: =Tk a];rl [Af Osnxn]
OYk+t1 OBy, Yi1) T
=~ = |Onxsy 1 —— =By, O
8yk+1 [NxsN N><N] a}’k+1 [k41 N><N]
and forj =k
8Nk+1 — 0unvan 6Nk+1:| 8<eTkkak) _ |:0 a(emkak):|
a?k sN xs ayk 8?16 NxsN 8yk
OBy Yr) _ {0 a(B;-s-lYkJrl)}
ayk NxsN ayk
The terms

OB Y1) - i O(bi (kL (y&)) Yit1,i)
B Oyk

ayk ay 5}% ayk
with
6‘Xk+17i (yk) _ 8eC7TkLk Yk)yk Z alj TkLk Yk))Yk—i-l,])
Oyx dy P OV)
where
M — eCiTkLk(yk) + 8(eCiTkLk(yk)yzxed)
8y}€ ayk ’
will be discussed in detail in the following section.
Now let
ON ON,
Appr =Ly — kﬁAz Ckﬂz_%’
5.4 Yk
0 (eTkkak) 1o} (BZ,—_,'_lYkJrl)
Dyy1=— -
8yk ayk

ot
so that the (k + 1, j)th (s + 1) N x (s + 1) N block of v is
y

Agp OsNxN] ik
-B; Iy a
6tk+1 _ k+1

0y,

5.5 Ounveny C
(5.5) NxsN k1 i = k
Onxsny Dig

O(s+1)Nx(s+1)N otherwise.

11

12

and we can therefore write

AL
“B] Iy
C, A,
5.6) ot _ D, -B] Iy 7
oy : :
CK AK
i Dy -Bj Iy]

which is a block lower-triangular matrix representing the linearized forward problem.

ot
5.2. Computing m We now turn our attention to computing the derivative of t with
m

respect to m. Consider the derivative of the (k + 1)th time-step:
aNk’-‘rl (y(m)v m)
Otrt1 -

(5.7) =1 5 dm
Jdm =~ (Tkkak _ Bk+1Yk+1)

The individual terms are

9By, Yi) o i A(bi (kL (m)) Yk41,:)

(5.8a) om 2 m ,
and
(5.5b) ony; (Xk+1.,i(m)’ m) _ Ony,i(m) (“)ka Py Ony.;(m)
' om 0y Om om
with
azk+1,i _ 0 (ecZT"L"(m)Yk Z 0(aij(TkLk))Yk+1,i)
Om Om '

If the linear terms 71 Ly are independent of m then the only term that depends on m is Ny,
so trivially we have

(5.9) o) om
NXNm

Dty i1 [M]
We consider the case of TkLk depending on m in the next section.
oty
The product of ——

5‘m
ot N N .
akH Wit1, With Wi = [W,IH w,L_JT an arbitrary vector of length (s + 1)V
m

defined analogously to ¥+ (replacing Y11 by Wy1), is

L with some vector wp, of length Vy, is obvious. The product

.
Oty | ony,; | 9 (e Lk (m)
R = — 6'm7 Wi — O™ yk) W1+

om om

S (Y O(bi(re L (m)) Ysr) |
(5.10) +Z<kr;“ Vi+1,i + Tk (b7 (1)) Y1) W41)

om

13

ony ;|
where vy 1 = 5 bt W41, and
, y ;
T . T T
Wiin Dty +Tz sl Vi)
am k41,7 8111 k+1,i k am k+1,7-

The terms in braces in (5.10) are ignored if Ly, is independent of m.

6. The Derivatives of ¢. If the linear operator L, depends on either y;, or m we have to
be able to take the derivatives of the products a;; (7L (yr, m))w, b; (7L (yr, m))w and
e¢iTeLk(yrm)w where w is an arbitrary vector of length N, with respect to y, or m.

Since the a;; and b; are linear combinations of the ¢y ;-and ¢,-functions respectively, we
will simply consider the derivatives of ¢(L)w for some arbitrary ¢-function and matrix L =
T L (yr, m). Without loss of generality we assume in this section that the differentiation is
with respect to yy, but all the results also apply when taking the derivative with respect to m.

The calculation of the derivatives of the products of the ¢,-functions will depend on the
way these terms are evaluated numerically. Recall the approaches for evaluating , reviewed
in Section 3.

6.1. Krylov Subspace Methods. Using Krylov subspace methods is unfortunately un-
suitable for our purposes since if L depends on y; or m, it is extremely difficult to find the
dependence of the right-hand side of (3.1) on these variables. For this reason we will not con-
sider this approach further here, although it can of course be used for parameter estimation
problems where L is independent of yj, and m.

6.2. Polynomial Approach. If we represent ¢ by a truncated polynomial series as in
(3.2) and multiply by w, we have

M
W A Z c; L (yr)w
j=0

Let L depend on a single parameter z first. The derivative of L’ (z)w then is

BLJ ZLZ 10 LJ i ZLZ 10 »

with v,;_; = L/~*w. In the case of L = L(y,) we therefore have

8Lj()’k)w _ ZJ:Li—laL(yk)V] i

Yk P Oy

OL(V Vi .
This implies that we need to have j — 1 derivatives M available for each j, but of
course a lot of these derivatives can also be reused for different values of ;.

. . oL
In the special case where the matrices L and — commute for each element y of yj, we

dy
can simplify the above by using the matrix analogue of the usual power rule:
aLJ(Yk) _ i1 OL(yr)w

oYk Oyk

14

This is much less cumbersome to implement, but it is hard to think of realistic scenarios
where this commutativity property would hold.

The drawback of considering each monomial term on its own is that this does not neces-
sarily reflect how the polynomial approximation of ¢ is actually computed. For instance, the
Chebyshev approximation (3.3) is

pL)w~) ¢ Ti(L)w

assuming L(m) is Hermitian or skew-Hermitian and the eigenvalues of L(yy,) all lie inside
[—1, 1]. Each T} (yx)w is computed using the recurrence relation

Tj1(L(yx))w = 2LT;(L(yx))w — Tj—1 (L(ye))w, j=1,2,...

initialized by To(L(yx))w = w and T3 (L(y%))w = L(yx)w. Taking the derivative of (3.3)
with respect to y,

0p(L)w - i C_BTj(L)W
OYk =7 Oy

with the recurrence relation

OTin(L)w _,0(Lv) | oy OT,(M)w 0T a()w .y
where v = Tyw, JOIIW o ang 200w O(Lw)

IeM)w .0

We also need to be able to compute the products of the transposes of f)
Yk

some vector; this is straightforward to derive from the equations above.

6.3. Rational Approximations and Contour Integration. We saw in Sections 3.3 and
3.4 that the action of a ¢-function can be computed by both rational approximations (under
certain conditions) and contour integrals in the form
M
o(L)yw ~ ¢i(ssI—L) 'w,
i=1

for some complex scalars ¢; and s;, where the s; do not coincide with the eigenvalues of L.
To find the derivative of ¢(L)w in this case, let v; = (s;I — L)™' w, so that

dp(L)w M ov,
.1 —_— 0 = i .
©6.1) 3y, e

. 0v; . o .
To find an expression for —, consider (s;I — L)v; = w and take the derivative with

Yk
respect to yj on both sides,
0 ov; 8(Lvl)
Oyk (s)v o (s)3}% Oyk Ve
ov; 1 9(Lv;)
= =(s;,I-L ,
Ay (s) Iy

15

where the v; on the right-hand side is taken to be fixed.

For each term in the sum in (6.1) we thus require two matrix solves, one to find v; and
an additional one to then find (s;I — L)_1 %y:) As mentioned previously, the v; can be
computed using the same Krylov subspace. However, with z an arbitrary vector of length N,
the linear systems

8(Lvi)z

SZI - L u; =
() Oy

each have a different right-hand side, and therefore we are no longer working in the same
Krylov subspace. This means that we need to solve M different linear systems just for a
single evaluation of the derivative of a given (-function, which is not ideal. The process is
fortunately highly parallelizable and given the ease of access to a large number of processors
these days, we do not consider this to be the bottleneck it might have been just a few years ago.
Nonetheless it is a significant inconvenience for many a mathematician, and the polynomial
approach does not suffer from this limitation.
We also should be able to compute the transpose of (6.1). In this case we have

doL)yw ' N fj: . ov;
oYk — "y
T T T
i Lv; - Lv; - o
with ov = 9 (Lvi) (s;I—1L) T = 9(Lvi) (ssI-LT) ' so when multiplying by
Yk oy oy

some vector z we can work within the same Krylov subspace K/ (LT, z) for any s; € CV.

7. Solving the Linearized Forward Problem. In Section 4 we showed that computing
the action of the sensitivity matrix J on some vector w of length IV, requires the solution of
the linearized forward problem

-1
(7.1) v = (m) q,

dy
_ T T T T7 : :
where v.= [V v{ ... VL vi]is the solution (the V1 represent the internal
stages) and q = [QT q]— e QE q};] is taken in this section to be some arbitrary

source term including internal stages. In the context of sensitivity analysis we will have
q= a%;w’ see (4.1), where w is an arbitrary vector of length Ny,. The linearized time-
stepping system g—; was derived in Section 5.1 and is given in (5.6).

7.1. The General Linearized ETDRK Method. The linear system to be solved is

A Vi Q
-B{ Iy Vi q1
C, A2T Vs Q2
(7.2) D; -B; Iy =] |,
' ' VK-1 qK -1
CK AK VK QK
i Dx -Bj In]| | vk | | dx |
with Ak+1, Ck+1 and Dk+1 defined in (54) and B;rJrl = Tk [bl(TkLk) s bs(TkLk)]

Since the system is block-lower triangular we use forward substitution to get

.
V41 = dk+1 + By Viepr — Digavy

16

fork =0,..., K — 1 and internal stages

A1 Vg = Qrr — Crqavi,

with vg = O 1.
Substituting (5.4) then gives

9 (e Lryy)
Yk

9 (BEHY/CH)
Oy

.
Virl = det1 + By Vi + Vi + Vi

fork =0,..., K — 1 and internal stages

N1

oy

0 ON
Vit1 = Qpe1 + Vi + T %szk-&-r

The detailed solution procedure is summarized in Algorithm 7.1.
ALGORITHM 7.1. The Linearized ETDRK Method

Let vo = Onx1 and ignore the terms in braces if Ly, does not depend on yy.
Fork=0,..., K —1:
e Fori=1,...,s, compute the internal stages

i—1
8nki .
7 o
Vit1,i = Quyr,i + —— | e“™ v + 7% g a;j (TuLi) Vi1 | +

Jdy =~
. . ciTeLig (Y) yfixed
(7.3a) + 8nk’zvzg+6nk’l Ole Yk)Vk +
Oyk dy oy

(aij (oL (yr)) Y1)
+ 7 J v
’CZ Oy

o Compute the update:

S
Virr = Qien + €V 7Y bi(TRLk) Vi it
i=1

(7.3b) L)y e
a o Tk Lk (Y xe L Y
+{ (e Yi Vk"'TkZ i (T L (Y1) k-‘rlz)vk}'

Oyk Oyk

O

The derivatives in the braces in (7.3) can be evaluated by writing a,; and b; in terms

of ¢-functions and then differentiating the (-functions as in Section 6. Notice that without

the terms in braces we simply have the standard ETDRK method where the nonlinear term

has been linearized, except that we allow for the possibility of a source term in the update
formula.

7.2. Application to Krogstad’s scheme. We show the above algorithm applied to the
scheme proposed in [17]. Recall that the matrix coefficients a;; and b; are given in (2.8) in
terms of the -functions. The linearized scheme is presented in Algorithm 7.2.

ALGORITHM 7.2. The Linearized Scheme

Let vo = Onx1, o = @o(TeLik(yr)) and @e; = po,i(TLik(yr)), and ignore the terms in
braces if Ly, does not depend on yy. Fork =0,..., K — 1:

17

o Compute the internal stages

3nk al’lk
Vi1 = Qry11 + v+ { Ly

dy oyr
ony Tk
Viti2 = Qpy12 + 87312 (sﬁo,QVk + 5801,2Vk+1,1) +

fixed
n {3nk72 <8(g0072yk) m3(¢1,2Yk+1,1)> Vit ong 2 Vk}
dy oy 2 Oy Oy

on T
Vit1,3 = Qre1,3 + T;g (@0,3Vk + §¢1,3Vk+1,1 + 723 (Vg2 — Vk+1,1)) +
{3nk,3 ony 3 (3(@0,3}’2"6(1) Tk 3(@1,3Yk+1,1)> }
Vi + — Vi
oy dy oyk 2 Oy
0 0 Y -Y
+ {Tk ng 3 < (902,3(k+1,2 k+1,1))> Vk}

oy oy

81’1]“4

Viti,4a = Qpy1a + Dy (povi + 01,4 Vit1,1 + 2724 (Vit1,3 — Vier11)) +

. {3nk,4v ony 4 (3(<P0Y2XCd) 4 6(901,4Yk+1,1)> Vk}+

dyr © "y Oyk , Oyk
. {man’““ (8(902,4(Yk+173 - Yk+1,1))> Vk}
oy Oyk

o Compute the update:

Vi1 = Qe 1 + oV + T2 (—3Vig11 +2Vier120 +2Vig13 — Vig4)+
+ 7601 Vit1,1 +4703(Vies1,1 — Vir12 — Vier13 + Vip14)+

o fixed o Y
+{ (Poyp)vk+7k (o1 1c+1,1)vk+
8yk a}’k
O(p2(—3Y k41,1 +2Ysq120+2Y 5113 — Yig1,4))
Tk Vi+
oy
Y -Y -Y: Y
4, O(p3(Ykt11 1,2 k1,3 + k+1,4))vk}.
oy
O

The way the scheme is written here may of course not represent the most computationally
efficient implementation: for instance, there are some opportunities for parallelization and
one should also exploit the fact that co = ¢3 = 1/2.

8. Solving the Adjoint Problem. The major ingredient needed when calculating the
action of the transpose of the sensitivity matrix, and therefore especially important for the
gradient computation, is the solution of the adjoint problem,

-T
t

8.1 A= <a> 0,
oy

where A = [A] A] - AL AL]' is the adjoint solution (with internal stages Ay)

and 0 = [G)lT 6] - O 0}] is taken in this section to be some arbitrary adjoint

. . . T
source; for the gradient computation we will have 8 = g—; VaM.

18

8.1. The General Adjoint ETDRK Method. The linearized time-stepping system g—;
is lower block-triangular (see (5.6)) and therefore the linearized forward problem can con-
ceptually be seen as being solved by forward substitution, which corresponds to solving the
problem forward in time, as we saw in the previous section. The adjoint, i.e., its transpose in
the finite-dimensional setting we are in, will thus be upper block-triangular:

Al -B, 1TA T [6©]
I C; Dj A 6,
A;— —B2 A2 @2
(8.2) : = : ,
Iy CL Dk | [Ak Ox—1
A; —BK AK GK
i In | | Ax | | Ox |

which is solved by backward substitution (this corresponds to solving the adjoint problem
backward in time), for k = K, K — 1, ..., 1. One such step reads

(8.3a) Ak =0r — Cli Ak — D A
followed by the internal stages
(8.3b) ApAr = O + By,

where }‘K-‘rl = 0N><1 and AK+1 = OsN><1~
Using the general formulas for A, Cg and Dy, defined in (5.4) gives

ONgy1\ ' a(em iy OBl Yer) |
(8.4a) Ak:9k+<k+1> Ak+1_|_< (e Vi) n (Biy1Yert1) Art

dy Oyk Oyk
with internal stages

T (ONR)
(8.4b) Ay =0, + 71 (Af_) (ayk) Ay + By
The detailed solution procedure is summarized in Algorithm 8.1.
ALGORITHM 8.1. The Adjoint Exponential Runge-Kutta Time-Stepping Method
Fork=K K-1,...,1:

o Compute

)

s T
6 .
(8.52) A, = O + €™l Ay + Y e (“’“) Apyri+

i=1 oy

s [o Z_T 9eCiTLli(yr) fixed |
RO D by Ve 4

= Oyk oy

T T
O(aij (kL (yr)) Y1) Iny,;
9 A i

+ Tkz Oy oy bt ¥

a(e"'kLk(Yk)ygxed bi (TxLig yk))Yk+1 z)T

A

’ (oy o Z Ay o

where the terms in braces are ignored if L, does not depend on yy..

e Fori=s,5s—1,...,1, compute
(8.5b) Ap; = Oy +

s T

ong_1;

+ Trk—1 Z ajiTk_le_l <a’J Ay + biTk_lL;ﬁr_l)\k
j=it1 Y

The derivatives in the braces in (8.5b) are computed as discussed in Section 6.

19

O

Incidentally, inspecting the different ways in which the (,-functions are evaluated reveals
that @, (75 L) T = po(7x L}), and since in many applications the linear operator is symmetric

we will have ng(TkLk)T = (pg(Tk-Lk).

8.2. Application to Krogstad’s scheme. We continue the example from Section 7.2
and apply the above algorithm to a specific scheme. Recall the matrix coefficients a;; and b;

given in (2.8). The adjoint scheme is given in Algorithm 8.2.
ALGORITHM 8.2. The Adjoint Krogstad Scheme
ong_1,
dy
o In this step, let oo = ©o(TxLi(yr)) and o ; = po(c;Li(y)). Compute

-
Let.//ik,i: () Ay Fork=K,... 1

A = 0, + e le ()\k+1 + Kk+1,4) +ea Ll (Kk+1,2 + Kk+1,3> + Xk+1,1+

4 T
ony ;
’ { At
Yk

=1

1 T T
8627kLk(Yk)y2X9d ae‘rkLk(Yk)yﬁxed

iy (XHLQ + ka+1,3) + Oyn Aryrat
LG TkLk<Yk>yﬁxed)T L edeaYeny) g
2 oy S
1 8 (1, 3Yk+1 1) 9(p2,3(Yit1,2 — Yk‘*‘l’l))T A
+ Ak+173+
8yk ayk
8 .Y T a Y _ Y T ~
. (p1.4Ye411) 42 (p2,4(Yit1,3 k+1,1)) Arsiat
+ <8 <P1Yk+1 1 8(992 BYrt1,1 —2Ysp12 —2Y 13+ Yk+1v4))—r
oy

+ 4

oy

with Ag+1 = Ak 41,; = Onx1. Ignore the terms in braces if Ly, is independent of yy.

0(p3(Yit11 — Yiq12 — Yip13+ Yipia)) T) A) }
k41

o Now let o = @o(T—1Lk—1(yr—1)) and @¢; = pe(ciTh—1Lk—1(yx—1)). The internal

20

stages are computed as follows:
Apa = Tro1b) A = i1 (43 — @5) Ak
A3

T TR T3
Apo=Tr1by Ap + 104 o Apa + Th—105 Ak 3

Th—1bg Ak + Tho1 alglA\kA = Th—1 (290; — 490;) AL+ Tr—1 230;47\1@,4

(8.6) = Tho1 (209 — 403) Ak + Tho109 3k 3
Ap1 = Th10] Mg + Ty al1l/§k,4 + Th—1 a:—),il—//ik,?, + Th—1 alllA\k,z
=7h-1 (o1 — 303 +403) Mo+ Tho1 (014 — 209 4) Apat

Th—1 -~ Th—1 -~
+ 5 (90;3 - 2‘»0;,3) Aps+ ?wizAk,%

O

Other schemes can be handled similarly. We note that the procedure gives ample opportunity
for parallelization and precomputing quantities, for instance when computing the products of
Ai with ¢ or the products of Ay ; with ¢ .

9. Numerical Example. As an interesting and simple application of the methods de-
rived above we consider the parameter estimation problem applied to the following version
of the fourth-order Swift-Hohenberg model on the torus Q@ = T2 : [0, L) x [0, L,):

0 2
©.1) a%:ry—(lﬂtvz) y+gy’ -y’
where > 0 and g are parameter functions that determine the behaviour of the solution. After
spatially discretizing in some appropriate way we have

92) %i = diag (r)y — (I+ V)" y + diag (g) y* - ¥,

with y = y(t), r and g being the spatial discretizations of r and g respectively, and V3
the spatially discretized Laplace operator. The Swift-Hohenberg model is an example of a
PDE whose solutions exhibit pattern formation, a phenomenon that occurs in many different
branches of science, for instance biology (morphogenesis, vegetation patterns, animal mark-
ings, growth of bacterial colonies, etc.), physics (liquid crystals, nonlinear waves, Bénard
cells, etc.) and chemical kinetics (e.g. the Belousov-Zhabotinsky, CIMA and PA-MBO re-
lations). The field is enormous; see [7, 23] for some interesting applications, but there are
many others. The Swift-Hohenberg model itself was derived from the equations of thermal
convection [30], and it is possible to use other nonlinear terms than the one used here.

The fourth-order derivative term implies that this equation is very stiff, making it a good
candidate for use with an exponential integrator. The obtained patterns depend on the param-
eters m = (r, g) reshaped as a vector. It is possible to obtain different patterns in different
regions of the domain if these parameters exhibit spatial variability, which is the case that we
consider here. This is therefore a distributed parameter estimation problem.

We take the linear part to be L = — (I+ V,QL)Q, hence n(y, m,t) = diag (r)y(t) +
diag (g) y(t)? — y(t)3. Notice that we have included the linear term diag (r) y in the nonlin-
ear part of the equation: the dominant differential term is in L anyway.

9.1. Experiment setup. Using a finite difference spatial discretization with N, x N,
grid points, the periodic boundary conditions allow us to diagonalize the linear term using the

20 F

40

80

100 [

120 ¢

20

40

80

100

120

o
N
o
N
o
[}
o
o]
o

100
@r (b) g

Fig. 1: Actual parameter values

pseudospectral method, where we compute the product with the linear part in the frequency
domain and then switch back to the real domain to compute the nonlinear part. Hence

03 P _ L5 4 F (ding (1) F15(0) + dins (&) (F'5(0)° — (F-15(1)").

where F represents the 2D Fourier transform in space, F~1 is its inverse, y(t) = Fy(t)
and L is the diagonalized differential operator. The wave numbers on this grid are ky, =
%—t(—% : e — 1) and ky = i—’j(—% : % — 1), so V? is then diagonalized with each
diagonal entry the negative of the sum of the square of an element of ky and the square of an
element of k. Now ¥(¢) is taken to be the forward solution instead of y (¢).

In our experiment we let L, = L, = 407, N, = N, = 27, and the initial condition
Yo is given by a field of Gaussian noise. We employ contour integration to evaluate the -
functions, using a parabolic contour with 32 quadrature points. The actual parameter fields
r and g are taken to be piecewise constant, as shown in Figure 1. The value of r is 2 in the
outer strips and 0.04 in the inner strip. The value of g is —1 in the outer strips and 1 in the
inner strip. The solution y(¢) at time ¢ = 50s is shown in Figure 2. The outer vertical strips
in the solution evolve fairly quickly relative to the central vertical strip, which evolves on a
much slower time scale due to the small value of r there.

9.2. Derivatives of n. The adjoint solution procedure and sensitivity computations re-
quire the derivatives of

n(y.m,) = F (diag (r) F~'3(t) + diag () (F'5(1))" — (F'5(1)")

0.5

-05

22

Fig. 2: Ground truth solution at ¢ = 50s.

with respect to ¥(¢) and m, as well as their transposes. We have

2588 — p (ding () + 2ding (8) (P'9(0)) — 3 (F'5(0)°) £
O00 _ [aas(30)) Paiag (050))°)]

)
50— (ding () + 2diog (g) (F'5(0) — 3 (F~'9(0)°) F”

om

on(t) " diag (y(t))
= |aiag (F'9()") FT

The transposes of F and F~! are FT = NF~'and F~T = L F, with N = N, N, so that

8“(15)—r . . —1a —1o0)2) -1
5 = F <d1ag (r) + 2diag (g) (F'y(t)) — 3 (F'y(t))) F

on(t) " diag (¥(t))

om | Ndiag (F'y(1))") F

an(t)" an(t)
dy 9y’

9.3. Order of Accuracy. We numerically illustrate that the adjoint solution and the
gradient have the same order of accuracy as the forward solution, meaning that pth-order for-
ward schemes are expected to lead to pth-order adjoint schemes. In this subsection we let
y(n7), A(nT) and V(n7) denote the quantity of interest one gets when performing the com-
1

putations with a time-step n7, where we let 7 = 505 We let Yexact> Aexact and Vexact

denote the “exact” values attained by performing the computations with a fine time-step

Note that

23

Euler Cox-Matthews Krogstad Hochbruck-

Ostermann
py (27,7) 0.9914 4.0644 4.0699 4.0275
py (47,27) 0.9908 3.9726 3.9732 3.9719
py (87,47) — 3.9375 3.9378 3.9387
py (167, 87) - 3.8849 3.8835 3.8770

Table 9.1: Approximate order of accuracy py for the forward solution, computed using
py (2°7,2°717) =log, (|ley (2°7)|/lley (2' 7)) fori = 1,2,3,4, with €y (2°T) = y(2'7) — Yexact.

Euler Cox-Matthews Krogstad Hochbruck-

Ostermann
pa (27, 7) 0.9976 4.0383 4.0588 3.9902
pa (47,271) 0.9434 3.9516 3.9568 3.9679
pa (87,47) — 3.8969 3.9041 3.9343
pa (167, 87) — 3.8027 3.8100 3.8616

Table 9.2: Approximate order of accuracy px for the adjoint solution, computed using
1,2,3,4, with ex(2'7) = A(2'7) —

pa (27,2717) = log, (lex(@7)/llex (2~)]]) for i

exact -

ﬁs using the Krogstad scheme. The error between the computed and exact forward so-
lution is €y (nT) = y(nT) — Yexact> and we must have ||ey,(n7)|| ~ O(n7)? for a pth-
order method, from which it follows that (|ley(2°7)|/|ley(2°7'7)||) ~ 2P. Computing
py (2i7,2717) = log, (|ley (2°7)|/lley (2071 7)||) for different values of i = 1,2, ... then
gives an approximation of the order of accuracy p, with the estimate being more accurate for
smaller values of 7 and ¢. The results for the four ETD schemes mentioned in this paper are
given in Table 9.1. We note the following:

e The simulations were run from Os to 20s for the forward solution, and from 20s to Os for
the adjoint solution.

e The initial condition is Gaussian noise and the approximate orders of accuracy actually
differ from simulation to simulation because of this. These differences are only slight for
the higher-order methods, but can be quite pronounced for the lower-order Euler method.
Therefore the results shown are the averages of 10 simulations using different initial con-
ditions.

e The larger time steps are too large for the Euler method, and even the smaller time-steps
can lead to inaccurate results on occasion. In computing the average order of accuracy we
have therefore only included the computed p,,’s that are in the interval (p — 0.5, p + 0.5).

e Incidentally, for the Swift-Hohenberg equation with periodic boundary conditions, we see
that Cox-Matthews and Krogstad schemes do indeed attain fourth order accuracy.

The quantities px (2°7,2°7'7) and py (27,27!7) are defined analogously to py and are

given in Tables 9.2 and 9.3, respectively. We have again averaged the approximate orders of

accuracy from 10 simulations.

The crucial observation here is that the orders of accuracy of the adjoint ETD schemes
and the resulting gradient are the same as that of the corresponding forward scheme.

9.4. Testing the Rosenbrock Approach. To test the order of accuracy of adjoint ex-
ponential Rosenbrock methods, and simulataneously check that our derivations and imple-
mentations for these methods are correct, the Swift-Hohenberg equation was reformulated by

24

Euler Cox-Matthews Krogstad Hochbruck-

Ostermann
pv (27,7) 1.0260 4.0430 4.0627 3.9947
pv (47,271) 0.9270 3.9546 3.9575 3.9684
pv (87,471) - 3.9022 3.9056 3.9347
pv (167, 87) — 3.8103 3.8136 3.8622

Table 9.3: Approximate order of accuracy pv for the gradient, computed using py (2i7'7 21"17') =
log, (lev (2'7)[|/llev (2° 7)) fori = 1,2, 3,4, with ey (2'7) = V(2°T) — Vexact.

Euler Cox-Matthews Krogstad Hochbruck-

Ostermann
py (47,27) 1.9505 4.1970 4.1967 4.1213
py (87,47) 1.9713 4.0774 4.0811 4.0561
py (167, 87) 1.9846 3.7946 3.7991 3.7884

Table 9.4: Approximate order of accuracy py for the forward solution using a Rosenbrock approach,
computed using py (2°7,2°7'7) = log, (|ley (2°7) |/ lley (21 7)|[) fori = 1,2,3, 4, with e, (2°7) =
y(2l7_) — Yexact-

finding the Jacobian of the right-hand side of (9.3),

g—; = L + F (diag (r) + 2diag (g) diag (Fy(t)) — 3diag (F~'y(t))) F!,

Ot (yr)

BE: at the kth time-step. Consequently, with y;, = F~1yy,
y

and then setting Ly, =

Ly = L + Fdiag (r +2g Oy, — 3y:) F 1,
and hence
~ . 1~ 1~ 2 1~
n, = f — L, y(t) = Fdiag (g © (F'y(t) —2yx) — (F7'5(t)" — SYi) Fly(t).

The experiment from the previous subsection is repeated, but due to the significant increase
in computational effort required by the additional terms in the derivatives we have run the
simulations for only 2 different random initial conditions, and for a smallest time-step of 27,
with the “exact” equations computed using a time-step of 7. We have also run the simulations
for just 10s instead of 20s. The results in tables 9.4-9.6 suggest that the adjoint exponential
Rosenbrock method does indeed also attain the same (numerical) order of accuracy as the
corresponding forward method. Oddly the Euler method seems to have an order of accuracy
of around 2 instead of the expected value of 1, but this result should be viewed with reser-
vation. The results for the largest time-step suggest that this time-step was too large, with a
noticeable decrease in the order of accuracy especially for the adjoint solution.

9.5. Parameter Estimation. Although outside the stated scope of this paper, we show a
possible parameter estimate attained using a gradient-based optimization method, where the
gradient is computed using the results from this paper. Recovering estimates that are closer
to the ground truth parameters takes a more sophisticated approach than the one used here. In
particular, the regularization term R(m, m™') in (1.2), which is not the focus of this paper,
may have to be altered, or a level set method may be introduced; this is the subject of a future
investigation. The initial guesses for the parameters are shown in Figures 3a and 3b, and the
recovered parameters are shown in Figures 3¢ and 3d. Here are details of the setup:

25

Euler Cox-Matthews Krogstad Hochbruck-

Ostermann
pa (47,271) 1.8885 4.2572 4.2482 4.2244
pa (87,47) 1.9414 4.0531 4.0498 4.0411
pa (167, 87) 1.9702 3.1043 3.1029 3.0998

Table 9.5: Approximate order of accuracy px for the adjoint solution using a Rosenbrock approach,
computed using px (2°7,2°7'7) =log, (|lex(2°7)[|/llex(2" 7' 7)|) fori = 1,2,3,4, with ex(2°7) =
)\(27'7') —)\exact-

Euler Cox-Matthews Krogstad Hochbruck-

Ostermann
pa (47,27) 1.8730 4.2892 4.2779 4.2580
pa (87,471) 1.9345 4.0911 4.0839 4.0764
pa (167, 87) 1.9669 3.4815 3.4758 3.4754

Table 9.6: Approximate order of accuracy pv for the gradient using a Rosenbrock approach, com-
puted using py (27,27 '7) = log, (|lev (2T)|l/[lev (2" 7)||) for i = 1,2,3,4, with ey (2'7) =
V(Ql'r) - vexact-

The simulations were run using the Krogstad scheme with a time-step of 0.25s.

Observations were taken every 0.5s up to 25s, and 5% noise was added to each observation.

The standard least-squares misfit function M = ||d(m) — d°"®|| was employed.

TV regularization using the smoothed Huber norm was used with 5 = 10.

The parameters were recovered using 400 iterations of L-BFGS (keeping 20 previous up-

dates in storage) with cubic line search. The results after 200 iterations were already very

similar to those in Figure 3.

e We used a projected gradient method, where the value of r at each point was constrained
to always lie in the interval [0.01, 2.3] and the value of g at each point was in [—1.2,1.2].

We make the following remarks on the results:

e The recovered values of r are quite acceptable, as are the values of g on the two outside
vertical strips, whereas the estimate of the central vertical strip of g is poor.

e This is the result of the observations having only been taken for up to 25s, a time after

the patterns on the outside vertical strips have formed but before the central pattern, which

evolves on a much slower time scale, has formed.

10. Conclusions and Future Work. This paper considers the application of the discrete
adjoint method to exponential integration methods for the purposes of (distributed) parameter
estimation and sensitivity analysis in time-dependent PDEs. We have derived algorithms for
the linearized forward and, more importantly, the adjoint problem, and have applied these
algorithms, as an instance of these integration methods, to a specific scheme.

We have found that if the linear operator depends on the solution y;, at the current time
step (as is the case with some Rosenbrock-type methods) or the model parameters, the deriva-
tives of the ¢-functions with respect to y; and m introduce significant computational over-
head. The extra expense introduced in this case could be prohibitive in some applications,
and it might then be more reasonable to instead apply an IMEX method to the linearized
PDE. The use of IMEX methods in the context of parameter estimation will be the subject of
a future investigation.

A simple experiment reveals that the adjoint exponential integrator and the computed
gradient of the misfit function have the same order of accuracy as the corresponding expo-
nential integrator. This of course does not constitute a general proof. In case that the linear

26

0 20 40 60 80 100
X X
(a) Initial guess for r (b) Initial guess for g
0 0
20 20
40 40 :
Y 60 Y 60
80 80
100 100 h
120 120 ’
0 0 50 100
X X
(c) Recovered r (d) Recovered g

Fig. 3: Recovered parameter values (bottom) and initial guesses (top)

operator L is independent of the forward solution and the model parameters it appears that
one should be able to analytically prove the conjecture that this observation offers. A gen-
eral proof in the case of Rosenbrock-type methods, however, appears to be a more remote
prospect given how dependent the evaluations of the derivatives of the y-functions are on
their numerical implementation.

The results of this work will be of interest in applications where exponential integration
is the best choice for solving the forward solution, in particular when the PDE is stiff. One
such application of interest to us is pattern formation when the model parameters exhibit
spatial variability, and we have applied the techniques from this paper to a simple parameter
estimation problem involving Swift-Hohenberg model. A more in-depth examination into
parameter estimation of pattern formation problems will be the subject of future work.

120

(1]
(2]

31
[4]
[5]

(6]
(71

(8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]
[28]
[29]
[30]
[31]

[32]

27

REFERENCES

J. CERTAINE, The solution of ordinary differential equations with large time constants, in Mathematical
Methods for Digital Computers, A. Ralston and H. Wilf, eds., Wiley, New York, 1960.

G. CHAVENT, Identification of function parameters in partial differential equations, in Identification of Pa-
rameters in Distributed Systems: Symposium, Joint Automatic Control Conference, R. Goodson, ed.,
American Society of Mechanical Engineers, New York, 1974.

S. M. Cox AND P. C. MATTHEWS, Exponential Time Differencing for stiff systems, Journal of Computational
Physics, 176 (2002), pp. 430-455.

J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, SIAM, 1996.

M. EIERMANN AND O. G. ERNST, A restarted Krylov subspace method for the evaluation of matrix func-
tions, SIAM Journal of Numerical Analysis, 44 (2006), pp. 2481-2504.

H. W. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse Problems, Kluwer, 1996.

J. P. GOLLUB AND J. S. LANGER, Pattern formation in nonequilibrium physics, Revisions of Modern
Physics, 71 (1999), pp. S396-5403.

A. GRIEWANK AND A. WALTHER, Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation, vol. 105 of Other Titles in Applied Mathematics, SIAM, 2nd ed., 2008.

M. D. GUNZBURGER, Perspectives in Flow Control and Optimization, SIAM, 2002.

S. GUTTEL, Rational krylov approximation of matrix functions: Numerical methods and optimal pole selec-
tion, GAMM Mitteilungen, 36 (2013), pp. 8-31.

M. HOCHBRUCK AND C. LUBICH, On krylov subspace approximations to the matrix exponential operator,
SIAM Journal of Numerical Analysis, 34 (1997), pp. 1911-1925.

M. HOCHBRUCK AND A. OSTERMANN, Explicit exponential Runge Kutta methods for semilinear parabolic
problems, SIAM Journal of Numerical Analysis, 43 (2005), pp. 1069-1090.

, Exponential Integrators, Acta Numerica, 19 (2010), pp. 209-286.

M. HOCHBRUCK, A. OSTERMANN, AND J. SCHWEITZER, Exponential Rosenbrocktype methods, SIAM
Journal of Numerical Analysis, 47 (2009), pp. 786-803.

M. HOCHBRUCK AND J. VAN DEN ESHOF, Explicit integrators of Rosenbrock-type, Oberwolfach Reports, 3
(2006), pp. 1107-1110.

A.-K. KASSAM AND L. N. TREFETHEN, Fourth-order time-stepping for stiff PDEs, SIAM Journal of Scien-
tific Computing, 26 (2005), pp. 1214-1233.

S. KROGSTAD, Generalized integrating factor methods for stiff PDEs, Journal of Computational Physics, 203
(2005), pp. 72-88.

V. T. LUAN AND A. OSTERMANN, Exponential B-series: The stiff case, SIAM Journal of Numerical Analy-
sis, 51 (2013), pp. 3431-3445.

, Explicit exponential Runge-Kutta methods of high order for parabolic problems, Journal of Compu-

tational and Applied Mathematics, 256 (2014), pp. 168-179.

, Exponential Rosenbrock methods of order five construction, analysis and numerical comparisons,

Journal of Computational and Applied Mathematics, 255 (2014), pp. 417-431.

, Stiff order conditions for exponential Runge-Kutta methods of order five, in Modeling, Simulation

and Optimization of Complex Processes - HPSC 2012, H. G. B. et al., ed., Springer, 2014.

, Parallel exponential Rosenbrock methods, Computers and mathematics with Applications, 71 (2016),
pp. 1137-1150.

P. K. MAINI, K. J. PAINTER, AND H. N. P. CHAU, Spatial pattern formation in chemical and biological
systems, Faraday Transactions, 93 (1997), pp. 3601-3610.

R. NEIDINGER, Introduction to Automatic Differentiation and MATLAB Object-Oriented programming,
SIAM Review, 52 (2010), pp. 545-563.

J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, 2 ed., 2006.

F.-E. PLESSIX, A review of the adjoint-state method for computing the gradient of a functional with geophys-
ical applications, Geophys. J. Int., 167 (2006), pp. 495-503.

D. A. POPE, An exponential method of numerical integration of ordinary differential equations, Communica-
tions of the Association for Computing Machinery, 6 (1963), pp. 491-493.

Y. SAAD, Iterative Methods for Sparse Linear Systems, SIAM, 2nd ed., 2003.

T. SCHMELZER AND L. N. TREFETHEN, Evaluating matrix functions for exponential integrators via
Carathéodory-Fejér approximation and contour integral, Electronic Transactions on Numerical Anal-
ysis, 29 (2007), pp. 1-18.

J. SWIFT AND P. HOHENBERG, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A., 15
(1977), pp. 319-328.

M. TOKMAN, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI)
methods, Journal of Computational Physics, 213 (2005), pp. 748-776.

, A new class of exponential propagation iterative methods of RungeKutta type (EPIRK), Journal of

28

Computational Physics, 230 (2011), pp. 8762-8778.

[33] L. N. TREFETHEN, J. A. C. WEIDEMAN, AND T. SCHMELZER, Talbot Quadratures and Rational Approxi-
mations, BIT, 46 (2006), pp. 653-670.

[34] K. VAN DEN DOEL, U. ASCHER, AND E. HABER, The lost honour of £2-based regularization, Radon Series

in Computational and Applied Math, (2013). M. Cullen, M. Freitag, S. Kindermann and R. Scheinchl
(Eds).

[35] C.R. VOGEL, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.

