
THE DISCRETE ADJOINT METHOD FOR LARGE-SCALE OPTIMIZATION

PROBLEMS WITH LINEAR TIME-DEPENDENT PDE CONSTRAINTS

KAI ROTHAUGE∗, ELDAD HABER†, AND URI ASCHER‡

Abstract. We discuss the application of the discrete adjoint method to large-scale distributed parameter-
estimation and sensitivity analysis problems that are constrained by linear time-dependent PDEs. The PDEs are
solved using an arbitrary-order linear multistep or Runge-Kutta method, making the resulting procedures for the
computation of the action of the sensitivity matrix and of the Hessian well-suited to situations where the forward
problem needs to be solved to high accuracy. These procedures will depend on the time-stepping method being used
and we discuss their implementation in detail. Adjoint linear multistep methods are seen to be equivalent to the
corresponding forward schemes apart from the handling of the source terms, and for adjoint Runge-Kutta methods
we give a simple argument to show that their order of accuracy is the same as that of the corresponding forward
methods. This property is illustrated with a numerical example. The approach used here can easily be adapted to
nonlinear PDEs solved using other types of time-stepping methods.

Key words. Parameter estimation, model calibration, sensitivity analysis, inverse problems, adjoint method,
time-dependent PDE, gradient-based optimization, linear multistep methods, Runge-Kutta methods

AMS subject classifications. Partial Differential Equations, Numerical Analysis, Optimization

1. Introduction. The problem of recovering parameter functions that appear in partial

differential equations (PDEs) from a set of measurements is an important type of inverse

problem; see e.g. [4, 36, 5], and see e.g. [22] for a more general discussion of inverse

problems for PDEs. The parameter estimation problem has applications in many branches

of science and engineering, for instance geophysics [11, 16], fluid dynamics [23], computer

vision [35] and bioscience [8], to name just a few.

We are interested in recovering the discretized set of parameters p =
[
m⊤ s⊤

]⊤
, with

m ∈ R
Nm representing model parameters and s ∈ R

Ns source parameters. The standard

approach is to formulate the parameter estimation problem as a PDE-constrained optimization

problem of the form

(1.1)
argmin

p

M(d(y(p)),dobs) + βR(p)

subject to T(y(p),m) = q(s),

where R is a differentiable regularization function, β a regularization parameter and M is

a differentiable misfit function that in some way quantifies the difference between the actual

observations dobs and the simulated observations d, where we assume the number of obser-

vations to be large. The simulated measurements are obtained from the forward solution y,

which is the solution we get after solving the fully discretized PDE constraint, represented by

T(m) = q(s).
A closely related problem is that of sensitivity analysis, where the dependence of the

simulated data d on the parameters is investigated. Both of these applications require the

action1 of the sensitivity matrix

(1.2) J :=
∂ d

∂ p
=

[
∂ d

∂m

∂ d

∂ s

]

∗Department of Mathematics, University of British Columbia (rothauge@math.ubc.ca)
†Department of Earth and Ocean Science, University of British Columbia (haber@eos.ubc.ca)
‡Department of Computer Science, University of British Columbia (ascher@cs.ubc.ca)

1By the action of a matrix we mean the product of the matrix with an arbitrary appropriately-sized vector.

1

2

or its transpose, and for large-scale applications, where both the number of observations and

the number of parameters are large, it is paramount that this computation is done as efficiently

as possible.

In this paper we restrict ourselves to linear PDEs due to space constraints, but the ap-

proach used here can easily be applied to nonlinear PDEs. A common technique for numeri-

cally solving PDEs is known as the method of lines, where we semi-discretize the PDE using

some spatial discretization scheme and incorporate appropriate and known boundary condi-

tions. This leads to a large system of ODEs that can be written in generic first-order form as

(1.3)

∂ ŷ(t)

∂ t
= L(m) ŷ(t) + q̂(t; s), 0 ≤ t ≤ T

ŷ(0) = y0,

where ŷ and q̂ are discrete in space, with N unknowns, but still continuous in time. It is

assumed that the coefficients appearing in the PDE are stationary, which is not a significant

restriction since many problems of interest involve material parameter functions that vary in

space but not in time. The number of parameters Np = Nm + Ns generally depends on the

spatial resolution of the underlying grid.

To solve (1.3), we employ a potentially high-order time-stepping method and the result-

ing temporal discretization allows us to represent (1.3) by

(1.4) T(y,m) = T̂(m)y + S(m)y0 = q(s),

where the structures of T̂, S and q(s) depend on the particular time-stepping method. The

two most popular classes of time-stepping schemes are linear multistep (LM) and Runge-

Kutta (RK) methods (e.g. [12, 18, 19, 3]) and we consider both of these in this article.

We will not restrict our discussion to any particular misfit function and we only require

that it is differentiable with respect to d. There are many to choose from, the most popular

being the least squares function M = 1
2

∥∥d− dobs
∥∥2. A common example of a regulariza-

tion function is Tikhonov-type regularization [37, 10]. The derivatives of R with respect to

p are generally well-known and we do not address them here.

SinceM is assumed to be differentiable, we can apply gradient-based optimization meth-

ods ([27, 9]) to minimize (1.1), which are iterative methods that require the gradient of M
with respect to p to find a local minimum, and for some methods one might even require the

action of the Hessian of M, or (more likely in practice) the action of an approximation of the

Hessian.

To calculate the sensitivity matrix and the derivatives of M, we turn to the adjoint state

method, which is an important and efficient technique used for this purpose in many appli-

cations, see for instance [30] for a review of the method applied to geophysical problems,

[15, 26] for some uses in CFD and [7] for some other examples of applications.

As we will discuss, the adjoint method requires us to find derivatives of T(y,m) with

respect to y and m. We will also need to solve the adjoint problem T̂⊤λ = θ, where λ and θ

are known as the adjoint solution and the adjoint source, respectively. This is done by using

an adjoint time-stepping method that is solved backward in time and that corresponds to the

forward time-stepping method used to solve (1.3). Clearly both the derivatives of T(y,m)
and the adjoint time-stepping method lead to expressions that are highly dependent on the

structure of the time-stepping system (1.4).

Our goal is to systematically derive these expressions for general LM and RK schemes

so that this article can serve as a reference guide for possible readers who wish to apply the

3

adjoint method to problems that require high-order time-stepping methods, although imple-

mentations using low-order schemes can also benefit. So that a variety of practitioners may

benefit, we try to keep the discussion accessible and do not assume much background.

It is important to point out that the adjoint method is often applied directly to the semi-

discrete system (1.3), or sometimes even to a completely continuous formulation, leading to

a semi-discrete (or continuous) adjoint problem (see for instance [11, 29]) that is then solved

using some time-stepping method which may differ from the one used for solving (1.3), thus

decoupling the discretization process of the forward problem from that of its adjoint. Expres-

sions for the derivatives of M are also derived in a semi-discrete or continuous setting and

then subsequently discretized. This falls within the framework of optimize-then-discretize

(OD), which may be beneficial in some scenarios since it does not require the particular

time-stepping method used by the forward problem to be taken into account when solving

the adjoint problem. While the resulting comparative ease of implementation is useful, this

approach can lead to significant differences in the computed gradients (as illustrated in [15],

see also [25]), and the resulting inaccuracy does affect the minimization algorithm when this

happens, especially on coarse grids.

Our view is that the discretize-then-optimize (DO) framework used here is the preferable

approach to the adjoint problem in most cases. This has the drawback that one needs to

specify the adjoint problem for the fully discretized (1.4), and, since the forward solution in

this case depends directly on the time-stepping scheme being used, the adjoint method will

also depend on the time-stepping scheme, which leads to the implementation difficulties we

address in this paper.

An alternate approach to computing the gradient that falls inside the DO framework is

automatic differentiation (AD), where the exact derivatives (up to floating-point error) of

M with respect to p are computed automatically by following the sequence of arithmetic

commands used in the computation of M and successively applying basic differentiation

rules, particularly the chain rule, to determine the dependence of M on m.

This approach is a great tool in numerous applications. However, it has some drawbacks,

for instance AD in reverse mode tends to use a significant amount of memory that needs to be

carefully managed, and this can render large scale applications not feasible. This limitation

commonly arises in our applications where 4D problems are common. A second problem is

of efficiency, since AD codes are “black box” codes and do not use information about the

discrete problem that can be used in order to obtain very efficient code. Finally, computing

the action of large sensitivity matrices is also known to be particularly challenging for AD.

Industrial codes that require efficiency both in memory and computational time can therefore

do better when computing the derivatives using the adjoint method.

For these reasons we do not consider AD any further here, but see [14] for a discussion

on AD vs. the continuous adjoint method, and see [31] for a joint adjoint-AD implementation

to compute Hessian matrices. [38] addresses AD for explicit RK schemes in the context of

optimal control.

Applying the discrete adjoint method to specific, and usually lower-order, time-stepping

methods has of course been done before (see for instance [1, 24, 20] for applications to the

Crank-Nicolson method), but our discussion is not limited to any particular order of the time-

stepping method and therefore has wide applicability when the PDEs are linear. Sanz-Serna

has recently [33] discussed the adjoint method in conjunction with symplectic Runge-Kutta

methods in the context of optimal control.

The rest of the article is structured as follows. In Section 2 we introduce the necessary

notation and show how (1.3) can be written in the form of (1.4) for LM and RK methods.

Section 3 reviews the adjoint method and illustrates how it is used in the computation the

4

action of sensitivity matrix and its transpose, with an application to the computation of the

gradient of M. We also include a brief discussion on the computation of the action of the

Hessian, and a derivation of the required expression for this is given in the appendix. In

Section 4 we concern ourselves with the adjoint LM and RK time-stepping methods, and we

also talk about the convergence properties of the adjoint RK schemes. The order of accuracy

for adjoint RK methods has already been discussed in [17] for nonlinear problems in the

context of optimal control, but we give a much simpler explanation as to why the adjoint

RK schemes for linear problems must have the same order of accuracy as the corresponding

forward methods. In Section 5 we find the relevant derivatives of T and in Section 6 we

perform a simple numerical experiment using the acoustic wave equation. Some final remarks

and avenues for future work are given in Section 7.

2. Time-Stepping Methods. In this section we show how to represent LM and RK

methods by large linear systems in the form of (1.4), which is based on the approach used

in [2]. The matrices T̂ and S are purely conceptual and are never formed in practice, but as

we will see in Section 3, they are a powerful tool when used in conjunction with the adjoint

method. It is important in later sections to be aware of the fact that y depends on m and

s indirectly through T̂, S and q, although for notational simplicity we will suppress this

dependence in this section. The initial condition y0 is assumed to be known and independent

of m and s.

The time-stepping schemes we consider here include implicit methods, which require the

solution of a linear system at each time step. For large-scale problems the cost of solving a

linear system might be prohibitive and therefore these methods are rarely used, but we include

them here to keep the discussion general.

2.1. Multistep Methods. Given a linear ODE system in the form (1.3), the general

linear s-step method [3, 18, 19] at time step k is written as

(2.1)

s∑

j=0

α
(s)
j ŷ(tk+1−j) = τ

s∑

j=0

β
(s)
j L ŷ(tk+1−j) + τ

s∑

j=0

β
(s)
j q̂(tk+1−j)

where s ≤ k < K and τ is a uniform step size. Here α
(s)
j and β

(s)
j are weights that determine

the s-step method, with α
(s)
0 = 1 (always). There are two main classes of multistep methods

in active use: backward differentiation formulas (BDFs) for which β
(s)
1 = · · · = β

(s)
s = 0,

and Adams-type methods for which α1 = −1 and α2 = · · · = αs = 0. Further, Adams-

Bashforth methods are explicit (β
(s)
0 = 0) and Adams-Moulton methods are implicit (β

(s)
0 6=

0).

An s-step method needs to have the solution at s previous time steps available, which

is not the case at the start of the integration, i.e., when k < s. There are various options to

handle this, of which we mention one: use lower-order LM methods to gradually build up a

solution for the first s− 1 time steps. One can use methods with increasingly higher orders of

accuracy, for instance employ a first-order method to integrate up to τ , then a second-order

method to integrate up to 2τ (using the previously computed solution at τ), etc. If necessary,

the lower-order schemes can have time steps that are smaller than τ , thereby ensuring that the

solution at kτ is sufficiently accurate.

In order to represent the time-stepping scheme in the form of (1.4), we introduce the

KN ×KN block template matrix

× =×(s) ⊗ IN ,

5

where×(s)
is the placeholder of a K ×K matrix of the form

×(s)
=




×(1:s)

×s−1 · · · ×1 ×0

×s ×s−1 · · · ×1 ×0

. . .
. . .

. . .
. . .

×s ×s−1 · · · ×1 ×0

. . .
. . .

. . .
. . .

×s ×s−1 · · · ×1 ×0




.

Using this template, A(s), A(1:s) and A are simply ×(s)
, ×(1:s)

and× when we set ×j =

α
(s)
j , and likewise setting ×j = β

(s)
j gives B(s), B(1:s) and B.

The transition blocks A(1:s) and B(1:s) in As and Bs are introduced to allow for the

approach of handling the initialization mentioned above.

For simplicity assume that each of the lower-order methods uses the same time step τ as

the higher-order method. In this case the transition blocks are

×(1:s)
=




×(1)
0

×(2)
1 ×(2)

0
...

. . .
. . .

×(s−1)
s−2 . . . ×(s−1)

1 ×(s−1)
0



,

with the superscripts (σ) indicating the number of steps required by the method used at that

time step (for 0 < k < s), with α
(σ)
j and β

(σ)
j being the corresponding weights of the σ-step

method.

Getting back to a compact representation of the time-stepping system, we also define the

KN ×N block matrices

α⊤ =
[
α
(1)
1 α

(2)
2 . . . α

(s)
s 01×(K−s)

]
⊗ IN

β⊤ =
[
β
(1)
1 β

(2)
2 . . . β

(s)
s 01×(K−s)

]
⊗ IN .

Then (2.1) can be written as

(2.2) Ay = τ B diag(L)y + τ βLy0 −αy0 + q,

with diag(L) = IK⊗L, y =
[
y⊤
1 . . . y⊤

K

]⊤
, where yk = ŷ(tk), and q =

[
q⊤
1 . . . q⊤

K

]⊤
,

where qk = τ
∑s

j=0 β
min(k,s)
j q̂(tk+1−j).

Setting T̂ = A − τ B diag(L) and S = α − τ βL, (2.2) can be written as (1.4). The

transition blocks A(1:s) and B(1:s), solution y and source term q can be modified in an obvi-

ous way if lower-order methods at the start of the integration use time steps that are smaller

than τ . We will not consider this more general formulation here due to space constraints.

6

Examples

The Adams-Bashforth methods with s = 1, 2, 3 are

s = 1 : yk+1 = yk + τ Lyk + qk+1, where qk+1 = τ q̂(tk),

s = 2 : yk+2 = yk+1 + τ L

(
3

2
yk+1 −

1

2
yk

)
+ qk+2

where qk+2 = τ

(
3

2
q̂(tk+1)−

1

2
q̂(tk)

)
,

s = 3 : yk+3 = yk+2 + τ L

(
23

12
yk+2 −

4

3
yk+1 +

5

12
yk

)
+ qk+3

where qk+3 = τ

(
23

12
q̂(tk+2)−

4

3
q̂(tk+1) +

5

12
q̂(tk)

)
,

so if using a three-step Adams-Bashforth method we have

α⊤ =
[
−1 01×(K−1)

]
⊗ IN β⊤ =

[
1 − 1

2
5
12 01×(K−3)

]
⊗ IN

A =




1
−1 1

−1 1
. . .

−1 1



⊗ IN , B =




0
3
2 0

− 4
3

23
12 0

5
12 − 4

3
23
12 0
. . .
5
12 − 4

3
23
12 0




⊗ IN .

The backward differentiation formulas of orders s = 1, 2, 3 are

s = 1 : yk+1 − yk = τ Lyk+1 + qk+1

where qk+1 = τ q̂(tk+1),

s = 2 : yk+2 −
4

3
yk+1 +

1

3
yk = τ

2

3
Lyk+2 + qk+2

where qk+2 = τ
2

3
q̂(tk+2),

s = 3 : yk+3 −
18

11
yk+2 +

9

11
yk+1 −

2

11
yk = τ

6

11
Lyk+3 + qk+3

where qk+3 = τ
6

11
q̂(tk+3),

and therefore the three-step BDF can be represented in matrix form using

α⊤ =
[
−1 1

3 − 2
11 01×(K−3)

]
⊗ IN , β⊤ = 01×K ⊗ IN

A =




1
− 4

3 1
9
11 − 18

11 1
− 2

11
9
11 − 18

11 1
. . .

− 2
11

9
11 − 18

11 1




⊗ IN , B =




1
2
3

6
11

. . .
6
11



⊗ IN .

7

2.2. Runge-Kutta Methods. The family of s-stage Runge-Kutta methods for linear

problems is given by

(2.3a) yk = yk−1 + τk

s∑

σ=1

bσ Yk,σ,

where yk = y(tk) and the internal stages are, for the ODE system (1.3) and σ = 1, . . . , s,

(2.3b) Yk,σ = Lyk−1 + τk

s∑

i=1

aσi LYk,i + q̂(tk−1 + cστk).

The procedure starts from a known initial condition y0. Here a particular method is deter-

mined by setting the number of stages and the corresponding coefficients aσi, weights bσ and

nodes cσ , which are commonly summarized in a Butcher tableau:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

=
cs As

b⊤
s

.

The method is said to be explicit if aσi = 0 for σ ≤ i and diagonally-implicit if aσi = 0 for

σ < i. It is implicit otherwise. Note that we allow for variable time steps τk here, although

we will not be able to actually address embedded Runge-Kutta methods with adaptive time

steps in this paper due to space constraints.

(2.3a) and(2.3b) can be written in matrix form as

(2.4)




IN
D Ak

−IN B⊤
k IN





yk−1

Yk

yk


 =



yk−1

qk

0N×1


 ,

with

(2.5)

D = −1s ⊗ L, Ak = IsN − τkAs ⊗ L, Bk = −τkbs ⊗ IN

Yk =



Yk,1

...

Yk,s


 and qk =



q̂(tk−1 + c1τk)

...

q̂(tk−1 + csτk)


 .

Here 1s is a vector of 1’s of length s. The above system constitutes a single time step in the

solution procedure, so the RK procedure as a whole can be represented by (1.4) with

(2.6)

T̂ =




A1

B⊤
1 IN

D A2

−IN B⊤
2 IN

. . .
. . .

. . .

D AK

−IN B⊤
K IN




, S =




D

−IN
0sN×N

0N×N

...

0sN×N

0N×N




,

y =
[
Y⊤

1 y⊤
1 · · · Y⊤

K y⊤
K

]⊤

q =
[
q⊤
1 01×N · · · q⊤

K 01×N

]⊤
.

8

Here y,q ∈ R
(s+1)KN , S ∈ R

(s+1)KN×N and T̂ ∈ R
(s+1)KN×(s+1)KN .

Notice that we have included to internal stages (2.3b) in y. We do this because they are

required when computing derivatives, specifically when we compute the derivatives of T̂ y

with respect to the model parameters, which leads to a significant increase in storage over-

head for high-order Runge-Kutta schemes. This can be mitigated by the use of checkpointing,

where the solution is stored only for some time steps and the solution at other time steps is

then recomputed using these stored solutions as needed, although note that this effectively

means that the forward solution has to be calculated twice for every adjoint computation.

Examples

The popular fourth-order Runge-Kutta (RK4) method is given by

As =




0
1
2 0

1
2 0

1 0


 bs =




1
6
1
3
1
3
1
6


 and cs =




0
1
2
1
2

1


 ,

so that at some time step k we have

Ak =




IN

− τk
2 L IN

− τk
2 L IN

−τkL IN


 and Bk = −




τk
6 IN
τk
3 IN
τk
3 IN
τk
6 IN


 .

A fourth order 2-stage implicit RK method is given by

As =

[
1
4

1
24 (6− 4

√
3)

1
24 (6 + 4

√
3) 1

4

]
bs =

[
1
2
1
2

]
and cs =

[
1
6 (3−

√
3)

1
6 (3 +

√
3)

]
,

and hence at some time step k we have

Ak =

[
IN − τk

4 L − τk
24

(
6− 4

√
3
)
L

− τk
24

(
6 + 4

√
3
)
L IN − τk

4 L

]
and Bk = −

[
τk
2 IN
τk
2 IN

]
.

3. The Discrete Adjoint Method. The abstract representation of a generic linear time-

stepping scheme (1.4) is now used in conjunction with the adjoint method to systematically

find the procedures for computing the action of the sensitivity matrix, as well as the action

of the Hessian (and its approximations) of the misfit function M = M(d;p) with respect to

the model parameters p =
[
m⊤ s⊤

]⊤
.

The sensitivity matrix is given by J = ∂ d
∂ p

= ∂ d
∂ y

[
∂ y

∂ m

∂ y

∂ s

]
(see (1.2)), where we have

used the chain rule, so we need to find expressions for the terms ∂ y

∂ m
and ∂ y

∂ s
.

• To find ∂y
∂m

, we start by differentiating (1.4) with respect to m on both sides, where the

implicit dependence of y on m is now included. Then

∂

∂m

(
T̂(m)y(m) + S(m)y0

)
= 0N×Nm

⇒
∂
(
T̂(m)y

)

∂m
+ T̂

∂ y

∂m
+

∂ (S(m)y0)

∂m
= 0N×Nm

.

9

We applied the chain and product rules, and the lack of explicit dependence of y on m in

the first term should be interpreted as y being fixed with respect to m. It follows that

∂ y

∂m
= −T̂−1 ∂T

∂m
,

where T = T(y,m).
• Similarly, suppressing dependence on the field parametersm and taking the derivative with

respect to the source parameters s on both sides of (1.4) leads to

∂ y

∂ s
= T̂−1 ∂ q(s)

∂ s
.

Hence

J =
∂ d

∂ y
T̂−1

[
− ∂T

∂m

∂ q(s)

∂ s

]
,

and therefore

J⊤ =



− ∂T

∂m

⊤

∂ q(s)

∂ s

⊤


 T̂−⊤

∂ d

∂ y

⊤

.

It is neither desirable nor necessary to compute the Jacobian J explicitly, what one really

needs is to be able to quickly compute the action of J and its transpose with appropriately-

sized arbitrary vectors w. To illustrate how the adjoint solution and the derivatives of T are

used, we summarize the computation of the action of J in Algorithm 3.1, and that of its trans-

pose in Algorithm 3.2. These algorithms are meant to provide the context for our work in

Sections 4 and 5.

ALGORITHM 3.1. Computing the Action of J

Let w =
[
w⊤

m w⊤
s

]⊤
be an arbitrary vector of length Nm +Ns. The product u = Jw is

computed as follows:

1. If the forward solution y is not available already, solve for and store y = T̂−1 (q− Sy0).

2. For k = 1, · · · ,K:

(a) Compute θk =
∂ qk

∂ s
ws −

∂Tk

∂m
wm.

(b) Solve for vk using one step of the forward time-stepping method, with θk acting as

the source term and v0 = 0N×1.

(c) Compute uk =
∂ dk

∂ yk

vk.

3. Set u =
[
u⊤
1 · · · u⊤

K

]⊤
.

�

In order to compute J⊤ w, we will need to perform the adjoint time-stepping method to get

the adjoint solution λ = T̂−⊤
∂ d

∂ y

⊤

w. As we saw in Section 2, T̂ is lower block-diagonal

and this corresponds to forward integration in time, so T̂⊤ is block upper triangular and there-

fore corresponds to backward integration in time.

ALGORITHM 3.2. Computing the Action of J⊤

10

Let w =
[
w⊤

1 · · · w⊤
K

]⊤
be an arbitrary vector of length Nd =

∑K

k=1 Ndk
. The product

u = J⊤ w is computed as follows:

1. Set um = 0Nm×1 and us = 0Ns×1. These will store u.

2. If the forward solutiony is not available already, solve for and store y = T̂−1 (q− Sy0).

3. For k = K, · · · , 1:

(a) Compute θk =
∂ dk

∂ yk

⊤

wk.

(b) Solve for λk using one step of the adjoint time-stepping method, with θk acting as the

adjoint source term and λK+1 = 0N×1. See Algorithm 4.1 if using an LM method

and Algorithm 4.2 if using an RK method.

(c) Compute um = um − ∂Tk

∂m

⊤

λk using (5.1) if using LM and (5.3) if using RK.

(d) Compute us = us +
∂ qk

∂ s

⊤

λk.

4. Set u =
[
u⊤
m u⊤

s

]⊤
.

�

Note the following:

• The forward solution y is required to compute both the action of J and its transpose. In the

case of RK methods the forward solution y includes the internal stages.

• We will need to perform the forward time-stepping method in the computation of Jw.

This is in addition to the computation of y (if y is not already available).

• For RK methods we have slightly abused notation, as θk, vk and λk are assumed to also

include the internal stages for that time step, therefore these vectors are of length (s+1)N .

This does not apply to the initial condition v0 and the final conditionλK+1, which are both

only of length N .

• In the given algorithms we have assumed that the observation dk depends only on yk, i.e.

the data at a given point in time depends on the solution only at that time. In case the data

depends on the solution over a longer time period, for instance if the data is actually the

average of the solution over some time interval, one naturally needs to adapt the computa-

tion of uk in Algorithm 3.1 and the computation of θk in Algorithm 3.2, although this will

be straightforward to do in most cases.

Now, to compute the gradient of the objective function, we use the chain rule to immediately

get

∇pM =
∂ d

∂ p

⊤

∇dM = J⊤∇dM.

The gradient ∇pM is therefore easily obtained using Algorithm 3.2 with w = ∇dM.

The gradient is used by all gradient-based optimization methods. Newton-type methods

are a subset of these methods that additionally require either the action of the full Hessian

HMw :=
∂2M
∂ p ∂ p

w = ∇p

(
∇pM⊤ w

)
,

where w =
[
w⊤

m w⊤
s

]⊤
is an arbitrary vector of length Nm + Ns, or the action of an

approximation of the Hessian that is easier to compute.

11

The adjoint method can be used to write the action of the full Hessian as

(3.1a) HMw =



− ∂T

∂m

⊤

∂ q

∂ s

⊤


µ−




(
∂

∂m

(
∂T

∂m
wm

))⊤

+
∂ T̂v

∂m

⊤

−
(

∂

∂ s

(
∂ q

∂ s
ws

))⊤


λ

with λ = T̂−⊤
∂ d

∂ y

⊤

∇dM, v = T̂−1

(
∂ q

∂ s
ws −

∂T

∂m
wm

)
and

(3.1b)

µ = T̂−⊤

(
∂ d

∂ y

⊤ ∂2M
∂ d ∂ d

∂ d

∂ y
v +

(
∂

∂ y

(
∂ d

∂ y
v

))⊤

∇dM−
(

∂

∂ y

(
∂T

∂m
wm

))⊤

λ

)
.

The dependence of M on both field and source parameters makes the expression more

complicated than usual. We are not aware of a derivation of it in the literature, so we have

included a detailed derivation in the appendix, but see e.g. [31] for a derivation of the Hessian

with respect to only m. Note that the presence of an extra set of parameters s leads to cross-

terms ∂2
M

∂ s ∂ m
and ∂2

M

∂ m ∂ s
in the Hessian.

Discussing the implementation details of (3.1) lies outside the scope of this paper, but

notice that we require the second derivatives of T. We will discuss how to compute these at

a given time step for the time-stepping methods under consideration in Section 5, in case the

interested reader might want to attempt the implementation of (3.1).

The full Hessian is actually rarely used in practice though, in large part because of the

added expense of computing the second derivatives and the difficulty in coding them. It will

also generally not lead to improved convergence rates in numerical minimization procedures

unless one is fairly close to the minimum already, so using the full Hessian might not always

be beneficial even if an efficient implementation is already available.

As a result, the action of the Hessian is often approximated, for instance in the case of

the Gauss-Newton method where we use the symmetric positive semi-definite approximation

HMw ≈ HGN
M w = J⊤

∂2M
∂ d ∂ d

Jw,

which is obtained by omitting all the second derivatives of T and d. A related method is

the Levenberg-Marquardt method, where we add a damping term β > 0 to get a symmetric

positive definite approximation

HMw ≈ HLM
M w =

(
J⊤

∂2M
∂ d ∂ d

J+ β I

)
w.

Both of these approximations are computed using Algorithm 3.1 followed by Algorithm

3.2, so that in addition to y we will have to compute one forward solution and one adjoint

solution.

The full Hessian also requires a forward solution v in addition to y, and v will have

to be stored. Two adjoint solutions are needed, neither of which need to be stored in full,

although LM methods will need access to the s previous steps. Note that a Newton-type

method generally will also require the computation of the gradient and consequently λ will

already have been computed, so if using the full Hessian and if enough storage space is

available one can store λ and thereby reduce the cost of the overall computation. Computing

the full Hessian in this case requires as many forward and adjoint solves as the approximations

discussed above. The cost of storing one extra forward solution can be prohibitive in many

circumstances though.

12

4. Solving the Adjoint Problem. One major ingredient of the adjoint method is the

solution of the adjoint problem,

λ = T̂−⊤ θ,

where T̂ = T̂(m)2 is either the LM or the RK time-stepping matrix (defined in Sections 2.1

and 2.2, respectively),λ =
[
λ⊤

1 . . . λ⊤

K

]
is the adjoint solution, and θ =

[
θ⊤

1 . . . θ⊤

K

]

is taken in this section to be some arbitrary adjoint source. For RK methods we implicitly

include the intermediate stages in λk and θk. The time-stepping matrices are lower block-

triangular and therefore the forward problem can conceptually be seen as being solved by

forward substitution, which corresponds to solving the problem forward in time. The adjoint

of T̂, i.e. its transpose in the finite-dimensional setting we are in, will thus be upper block-

triangular and is therefore solved by backward substitution, which corresponds to solving the

adjoint problem backward in time.

4.1. Multistep Methods. Since T̂ = A−τ B diag(L), we have T̂⊤ = A⊤−τ diag(L⊤)B⊤.

See Section 2.1 for the definitions of A and B, and also keep the structure of the template

matrices defined in that section in mind. Setting C
(σ)
j = α

(σ)
j I− τ β

(σ)
j L, Cj = C

(s)
j , and

T̂(1:s) =




C
(1)
0
...

. . .

C
(s−1)
s−2 . . . C

(s−1)
0


 ,

the adjoint problem has the following structure:





T̂
(1:s)⊤

C
⊤
s−1 C

⊤
s

...
. . .

. . .

C
⊤
1

. . .
. . .

C
⊤
0 C

⊤
1 · · · C

⊤
s−1 C

⊤
s

. . .
. . .

. . .
. . .

. . .
. . .

. . . C
⊤
s

. . .
. . . C

⊤
s−1

. . .
. . .

...

C
⊤
0 C

⊤
1

C
⊤
0





︸ ︷︷ ︸
T̂⊤





λ1

λ2

...

λs−1

λs

λs+1

...

...

λK−1

λK





︸ ︷︷ ︸
λ

=





θ1

θ2

...

θs−1

θs

θs+1

...

...

θK−1

θK





︸ ︷︷ ︸
θ

.

In iterative form the backward substitution becomes

for s ≤ k ≤ K : C⊤

0 λk = θk −
min(s,K−k)∑

j=1

C⊤

j λk+j

for 1 ≤ k < s : C
(k)⊤
0 λk = θk −

s−k−1∑

j=1

C
(k+j)⊤
j λk+j −

min(s,K−k)∑

j=s−k

C⊤
j λk+j .

2In this section the explicit dependence on m is again omitted to make the notation less cumbersome.

13

From this the procedure for finding the adjoint solution is found and is summarized in Algo-

rithm 4.1.

ALGORITHM 4.1. The Adjoint Linear Multistep Time-Stepping Method

The method is explicit if β
(σ)
0 = 0, implicit if β

(σ)
0 6= 0.

1. For k = K, · · · , s solve

(I− τ β
(s)
0 L⊤)λk = θk −

min(s,K−k)∑

j=1

(α
(s)
j I− τ β

(s)
j L⊤)λk+j .

2. For k = s− 1, · · · , 1, solve

(I− τ β
(k)
0 L⊤)λk = θk −

s−k−1∑

j=1

(α
(k+j)
j I− τ β

(k+j)
j L⊤)λk+j

−
min(s,K−k)∑

j=s−k

(α
(s)
j I− τ β

(s)
j L⊤)λk+j . �

We make the following observations:

• For explicit methods λK = θK .

• While the adjoint LM method may look like it is essentially the same as its corresponding

forward method, the source terms are actually handled differently. For the forward method

the source terms are a linear combination of q at different times (with the particular LM

method determining the coefficients of this combination), whereas this is not the case in

the adjoint method, where the θk are used as they are.

• Apart from the source terms, the first few steps of the adjoint s-step method are essentially

the same as the usual s-step method with λk = 0N for all k > K .

• Finally, while the adjoint method is practically the same as the forward LM method (apart

from the source terms), the last few steps k = 1, · · · , s− 1 introduce a mix of coefficients

from the s-step method and the lower order methods that were used during the initializa-

tion steps of the forward method, possibly making the final couple of steps of the adjoint

method unstable or inconsistent. While the initialization steps are important for the for-

ward problem, they are more likely to do more harm than good in the adjoint method. It

might therefore be sensible in practice to just use the s-step method all the way through,

although it should not make a difference either way since these steps are few in number

and occur at the end of the integration.

Example

The first couple of iterations of the adjoint three-step Adams-Bashforth method are

λK = θK

λK−1 = θK−1 + (I+ τ 23
12 L

⊤)λK

λK−2 = θK−2 + (I+ τ 23
12 L

⊤)λK−1 − τ 16
12 L

⊤λK

λK−3 = θK−3 + (I+ τ 23
12 L

⊤)λK−2 − τ 16
12 L

⊤λK−1 + τ 5
12 L

⊤λK .

For k = K − 3, · · · , 2:

λk = θk + (I+ τ 23
12 L

⊤)λk+1 − τ 16
12 L

⊤λk+2 + τ 5
12 L

⊤λk+3.

14

For k = 1:

λ1 = θ1 + (I+ τ 3
2 L

⊤)λ2 − τ 16
12 L

⊤λ3 + τ 5
12 L

⊤λ4.

4.2. Runge-Kutta Methods. The RK time-stepping system is given in (2.6). From this

it follows that the general adjoint problem λ = T̂−1θ has, for RK methods, the following

structure:



A⊤
1 B1

IN D⊤ −IN
A⊤

2 B2

. . .
. . .

. . .

IN D⊤ −IN
A⊤

K BK

IN







Λ1

λ1

Λ2

...

λK−1

ΛK

λK




=




Θ1

θ1

Θ2

...

θK−1

ΘK

θK




where λk is the adjoint solution and Λk =
[
Λ⊤

k,1 · · · Λ⊤

k,s

]⊤
are the associated inter-

nal stages, and θk is the adjoint source at the kth time step with internal stages Θk =[
Θ⊤

k,1 · · · Θ⊤

k,s

]⊤
. The internal stages Θk,σ of the adjoint source term will be 0 in prac-

tice (cf. Algorithm 3.2 and use the fact that the data will not directly depend on the internal

stages of the numerical method), so we will ignore them from now on.

Recall that D = −Is ⊗ L, A = IsN − τkAs ⊗ L and B = −τkbs ⊗ IN (see Section

2.2) and that As is the s × s matrix containing the RK coefficients and bs is the vector of

length s containing the weights.

The upper block-triangular structure means that we solve this system using backsubsti-

tution, implying that the adjoint solution is solved backward in time. For a given time step

1 ≤ k ≤ K we start with the update formula

λk = θk+1 + λk+1 −D⊤Λk+1,

with λK+1 = θK+1 = 0N×1. This is followed by the internal adjoint stages

A⊤ Λk = −Bλk

⇒
(
IsN − τkA

⊤

s ⊗ L⊤
)
Λk = τk (bs ⊗ IN)λk.

The cases of explicit, diagonally implicit and fully implicit RK schemes are summarized in

Algorithm 4.2.

ALGORITHM 4.2. The Adjoint Runge-Kutta Time-Stepping Method

For k = K, · · · , 1, compute

λk = θk + λk+1 + L⊤

s∑

σ=1

Λk+1,σ.

with λK+1 = ΛK+1,σ = 0N×1, then for σ = s, · · · , 1 compute

Λk,σ = τkbσλk + τkL
⊤

s∑

i=1

aiσΛk,i.

�

15

Notice that the formula forλk is independent of the RK coefficients and weights, and that

the adjoint source appears only in the update for λk and not in the internal stages. How the

internal stages are computed depends on if the method itself is explicit, diagonally implicit or

fully implicit:

• if the method is explicit, for σ = s, · · · , 1 compute:

Λk,σ = τkbσλk + τkL
⊤

s∑

i=σ+1

aiσΛk,i

• if the method is diagonally implicit, for i = s, · · · , 1 solve:

(
IN − τkaσσL

⊤
)
Λk,σ = τkbσλk + τkL

⊤

s∑

i=σ+1

aiσΛk,i

• if the method is fully implicit, solve:

(
IsN − τkA

⊤
s ⊗ L⊤

)
Λk = τkbs ⊗ λk.

Examples

The adjoint RK4 method is, for k = K, · · · , 1:

λk = θk + λk+1 + L⊤ (Λk+1,1 +Λk+1,2 +Λk+1,3 +Λk+1,4)

followed by

Λk,4 =
τk
6
λk

Λk,3 =
τk
3
λk + τkL

⊤ Λk,4

Λk,2 =
τk
3
λk +

τk
2
L⊤Λk,3

Λk,1 =
τk
6
λk +

τk
2
L⊤Λk,2

λk should of course be updated as soon as each product L⊤Λk+1,σ has been computed.

The adjoint method corresponding to the 2-stage implicit RK method given in Section

2.2 is

λk = θk + λk+1 + L⊤ (Λk+1,1 +Λk+1,2)

with internal stages

Λk,2 =
τk
2
λk +

τk
24

(6 − 4
√
3)L⊤Λk,1 +

τk
4
L⊤Λk,2

Λk,1 =
τk
2
λk +

τk
4
L⊤Λk,1 +

τk
24

(6 + 4
√
3)L⊤Λk,2.

4.3. Stability,Convergence, and Order of Accuracy. Let us briefly discuss some prop-

erties of interest of the adjoint RK methods. A much more detailed analysis of the order of

accuracy of these methods (up to order 4) has been given for nonlinear problems in [17], but

16

we find that for linear problems the simple argument given here should suffice, which we

summarize in the following theorem:

THEOREM 4.3. For linear PDEs, the adjoint RK method inherits the convergence and

stability properties from the corresponding forward method. It also has the same order of

accuracy.

Proof. A single step of any RK method applied to a homogeneous problem can be written

as

(4.1) yk = Ψ(τkL)y
k−1,

and it is not too hard to show that for explicit methods we have

Ψ(τkL) = I+

s∑

σ=1

bσCk,σ (τkL)

with

Ck,σ (τkL) = τkL

(
IN + τk

σ−1∑

σ1=1

aσσ1
L+ τ2k

σ−1∑

σ1=2

σ1−1∑

σ2=1

aσσ1
aσ1σ2

L2+

+τ3k

σ−1∑

σ1=3

σ1−1∑

σ2=2

σ2−1∑

σ3=1

aσσ1
aσ1σ2

aσ2σ3
L3 + · · ·+ τσ−1

k

σ∏

i=2

(ai,i−1L)

)
.

It is possible to find an expression similar to this for implicit methods.

Consequently, letting Ψk = Ψ(τkL), the homogeneous forward problem can be written

as



IN
−Ψ2 IN

−Ψ3 IN
. . .

. . .

−ΨK IN







y1

y2

y3

...

yK



= Sy0,

and therefore the homogeneous adjoint system is



IN −Ψ⊤
2

IN −Ψ⊤
3

. . .
. . .

IN −Ψ⊤
K

IN







λ1

λ2

...

λK−1

λK



= 0.

Hence λk−1 = Ψ⊤
k (L)λk. It is fairly straightforward, albeit tedious, to show that this

condition holds for the adjoint RK method we found above. Note that Ψ⊤
k (L) = Ψk

(
L⊤
)
.

By the Lax equivalence theorem, a consistent linear method in the form (4.1) is conver-

gent if and only if it is Lax-Richtmyer stable. Letting τk = τ for simplicity, Lax-Richtmyer

stability means that for each time T , there is a constant CT > 0 such that
∥∥∥Ψ(τL)

K
∥∥∥ ≤ CT

for all τ > 0 and integers K for which τK < T . We know that this must hold for Ψ(τL)
(because the forward method is stable), and hence the adjoint time-stepping method is Lax-

Richtmyer stable as well since matrix transposition is invariant under, e.g., the 2-norm.

17

Now consider an arbitrary RK method applied to the scalar test problem ẏ(t) = µ y(t),
where µ is some scalar (it represents one of the eigenvalues of L). Then we have that over a

single time step yk = Ψ(z) yk−1, where z = τkµ, and if the method is pth order accurate we

must have that

Ψ(z)− ez = O(zp+1).

Since the same Ψ applies to the corresponding scalar adjoint scheme, it follows that for a

single time step the same condition must hold and therefore the adjoint RK method must

have the same order of accuracy as the forward method.

We will not discuss here the order reduction phenomenon [6, 28, 34] that can happen

close to the boundary when RK methods are applied to nonhomogeneous problems, but it is

possible that the absence of source terms in the internal stages of the adjoint RK methods

would lessen this effect. At the least it seems reasonable to assume that the reduction of order

suffered by the adjoint RK method would not be worse than that of the RK method, but a

more careful analysis needs to be done to support this statement.

Incidentally, it is not hard to show that for the RK4 method we have Ψ(z) = 1 + z +

z2/2+z3/6+z4/24 and for the 2-stage implicit method we have Ψ(z) =
1 + z/2 + z2/12

1− z/2 + z2/12
,

the latter being a fourth order Padé approximation of the exponential function.

We can apply a similar analysis to LM methods, although in this case it is immediate

from the adjoint time-stepping method that, ignoring the source terms and the initialization

steps, it is equivalent to the corresponding forward time-stepping method (just relabel λk and

λk−1 with yk and yk+1 respectively).

5. The derivatives of T. We now focus on the derivatives of T(y,m) with respect to

m and y for a given time step k. We will make reference throughout this section to the

derivatives of the products of L(m) with some arbitrary vectors of length N . Not much can

be said about these derivatives in general since L depends on the PDE, but in the next section

we show how to compute the derivatives for the acoustic wave equation.

Since we are actually interested in the action of these derivatives and their transposes,

we will give formulas for computing the products of the derivatives with some appropriately-

sized arbitrary vectors.

5.1. Linear Multistep Methods. From Section 2.1 we know that the kth time step for

LM methods can be represented by Tk(y,m). Recalling the way we constructed T and

letting C
(σ)
j = C

(σ)
j (m) = α

(σ)
j I− τ β

(σ)
j L(m), Cj = C

(s)
j and s∗ = min(k, s), we have

Tk(y,m) =

s∗∑

j=0

C
(s∗)
j (m)yk−j =

s∗∑

j=0

α
(s∗)
j yk−j − τ

s∗∑

j=0

β
(s∗)
j L(m)yk−j .

In what follows we let wm denote an arbitrary vector of length Nm, w =
[
w⊤

1 · · · w⊤
K

]⊤
an arbitrary vector of length KN . The derivatives of this term are trivial.

Taking the derivative of Tk with respect to m gives

(5.1)
∂Tk

∂m
= −τ

s∗∑

j=0

β
(s∗)
j

∂ (Lyk−j)

∂m
,

18

then multiplying this by wm and taking the derivative with respect to m gives

∂2 Tk

∂m ∂m
wm = −τ

s∗∑

j=0

β
(s∗)
j

∂2 (Lyk−j)

∂m ∂m
wk.

Differentiating
∂Tk

∂m
wm with respect to y instead gives

∂2 Tk

∂ y ∂m
wm =

[
∂2 Tk

∂ y1 ∂m
wm · · · ∂2Tk

∂ yK ∂m
wm

]

where

∂2Tk

∂ yi ∂m
wm =




−τ β

(s∗)
k+i

∂2 (Lyi)

∂ yi ∂m
wk if max(1, k − s∗) ≤ i ≤ k

0N×N otherwise.

Finally,

v = T̂(m)w =

min(k−1,s)∑

j=0

α
(s∗)
j wk−j − τ

min(k−1,s)∑

j=0

β
(s∗)
j L(m)wk−j .

Then the derivative with respect to m of the kth step of this product is just

∂ vk

∂m
= −τ

min(k−1,s)∑

j=0

β
(s∗)
j

∂ (Lwk−j)

∂m
.

The products of all of these derivatives with appropriately-size arbitrary vectors are clear.

5.2. Runge-Kutta Methods. The derivatives arising from RK methods are more inter-

esting than the ones for LM methods, although still easy to arrive at. As is clear from Section

2.2, a single time step k of a general Runge-Kutta time-stepping method can be represented

by, for 1 ≤ k ≤ K ,

Tk =

[
Dyk−1 +Ak Yk

−yk−1 +B⊤
k Yk + yk

]

so that Tk,σ is

Tk,σ =

{
yk − L(m)y

k,σ
+Yk,σ if 1 ≤ σ ≤ s

yk − yk−1 − τk
∑s

σ=1 bσ Yk,σ if σ = s,

where we have let y
k,σ

= yk−1 + τk
s∑

i=1

aσ,iYk,i. In what follows we let wm denote an

arbitrary vector of length Nm and w =
[
ŵ⊤

1 · · · ŵ⊤
K

]⊤
an arbitrary vector of length

(s+ 1)NK , where ŵk =
[
W⊤

k,1 · · · W⊤
k,s w⊤

k

]⊤
are each of length (s+ 1)N . Notice

that we require access to the internal stages of the forward solution, so these will have to be

stored. Although also notice that in the case of explicit RK methods we do not need the final

internal stage.

19

• ∂T

∂m
:

Taking the derivative of Tk,σ with respect to m:

∂Tk,σ

∂m
=




−
∂ Ly

k,σ

∂m
if 1 ≤ σ ≤ s

0N×Nm
if σ = s.

Hence

(5.2)
∂Tk

∂m
wm =




−
∂ Ly

k,1

∂m
wm

...

−
∂ Ly

k,s

∂m
wm

0N×1




and

(5.3)
∂Tk

∂m

⊤

ŵk = −
s∑

σ=1

∂ Ly
k,σ

∂m

⊤

Wk,σ.

• ∂2 T

∂m ∂m
wm:

Taking the derivative of (5.2) with respect to m immediately gives

∂2 Tk

∂m ∂m
wm =




−
∂2 Ly

k,1

∂m ∂m
wm

...

−
∂2Ly

k,s

∂m ∂m
wm

0N×1




.

The products of this (s+ 1)N ×Nm matrix and its transpose are obvious.

• ∂2 T

∂ y ∂m
wm:

Differentiating (5.2) with respect to y gives

(5.4)
∂2Tk

∂ y ∂m
wm =

[
∂2 Tk

∂ ŷ1 ∂m
wm · · · ∂2Tk

∂ ŷK ∂m
wm

]
.

The jth (s+ 1)N × (s+ 1)N block of
∂2 Tk

∂ y ∂m
w is

∂2 Tk

∂ ŷj ∂m
wm = −




∂2Ly
k,1

∂ ŷj ∂m
wm

...
∂2Ly

k,s

∂ ŷj ∂m
wm

0N×(s+1)N




.

20

Using the chain rule,

∂2 Ly
k,σ

∂ ŷj ∂m
wm =





τk
∂2
(
Ly

k,σ

)

∂ y
k,σ

∂m
wm

([
aσ,1:s 0

]
⊗ IN

)
if j = k

∂2
(
Ly

k,σ

)

∂ y
k,σ

∂m
wm

([
01×s 1

]
⊗ IN

)
if j = k − 1

0N×(s+1)N otherwise.

Letting wk,σ = wk−1 + τ
s∑

i=1

aσ,iWk,i, we see that

(
∂2 Tk

∂ y ∂m
wm

)
w =






∂2
(
Ly

k,1

)

∂ y
k,1

∂m
wm


wk,1

...

∂2
(
Ly

k,s

)

∂ y
k,s

∂m
wm


wk,s

0N×1




and

(
∂2 Tk

∂ ŷk ∂m
wm

)⊤

ŵk =




τk
s∑

σ=1

aσ,1



∂2
(
Ly

k,σ

)

∂ y
k,σ

∂m
wm




⊤

Wk,σ

...

τk
s∑

σ=1
aσ,s



∂2
(
Ly

k,σ

)

∂ y
k,σ

∂m
wm




⊤

Wk,σ

0N×1




(
∂2 Tk

∂ ŷk−1 ∂m
wm

)⊤

ŵk =




0sN×1

s∑
σ=1



∂2
(
Ly

k,σ

)

∂ y
k,σ

∂m
wm




⊤

Wk,σ




and

(
∂2 Tk

∂ ŷj ∂m
wm

)⊤

ŵk = 0(s+1)N×1 for other values of j.

• ∂ T̂w

∂m
:

Finally, we take the derivative of T̂v with respect to m, where v is some arbitrary vector

defined analogously to y and w. The σ-th stage of the kth time step is

T̂k,σv =

{
vk − L(m)vk,σ +Vk,σ if 1 ≤ σ ≤ s

wk −wk−1 − τk
∑s

σ=1 bσ Wk,σ if σ = s,

21

with vk,σ = vk−1 + τ
s∑

i=1

aσ,iVk,i. Taking the derivative of T̂k,σv with respect to m:

∂ T̂k,σv

∂m
=




−
∂ Lvk,σ

∂m
if 1 ≤ σ ≤ s

0N×Nm
if σ = s.

and therefore (cf. (5.2) and (5.3))

∂ T̂k v

∂m
wm =




−
∂ Lvk,1

∂m
wm

...

−
∂ Lvk,s

∂m
wm

0N×1




and
∂ T̂k v

∂m

⊤

ŵk = −
s∑

σ=1

∂ Lvk,σ

∂m

⊤

Wk,σ.

6. Example. The semi-discretized acoustic wave equation on a domain Ω ⊂ R
d in

first-order form is

ṗ = −κ∇ · v + qp(s)

v̇ = −µ∇ p+ qv(s),
⇒

[
ṗ
v̇

]
=

[
−κ∇·

−µ∇

]

︸ ︷︷ ︸
L(m)

[
p
v

]

︸︷︷︸
y

+

[
qp(s)
qv(s)

]
.

Here p is pressure, v is particle velocity, µ(x) = 1/ρ(x) is the reciprocal of the density of

the medium and κ(x) is the bulk modulus of the medium. Let m =
[
m⊤

κ m⊤
µ

]⊤
be model

parameters so that κ = κ (mκ) and µ = µ (mµ). The source terms qp and qv depend on the

parameters s.

To give and explicit example, let us assume we use a finite difference spatial discretiza-

tion on a staggered grid with N grid points, with p living on the cell nodes (thus having N
unknowns) and v on the cell edges (with dN unknowns). Then

L(m) = −
[

0 diag (κ) D
diag (Ae

nµ) G 0

]

where D ∈ R
N×dN and G ∈ R

dN×N are the discretized versions of the divergence and

gradient operators, respectively, and Ae
n ∈ R

dN×N is an averaging operator from the grid

nodes to the cell edges. Taking some arbitrary vector v =
[
v⊤
p v⊤

v

]⊤
of length N =

Np +Nv ,

−
[

0 diag (κ) D
diag (Ae

nµ) G 0

] [
vp

vv

]
= −

[
diag (Dvv) κ

diag (Gvp) A
e
nµ

]

and hence

∂ (L(m)v)

∂m
= −

[
diag (Dvv)

∂ κ
∂ mκ

0Np×mµ

0Nv×Nmκ
diag (Gvp)A

e
n

∂ µ

∂ mµ

]
.

Letting wm =
[
w⊤

κ w⊤
µ

]⊤
be an arbitrary vector of length Nm and wy =

[
w⊤

p w⊤
v

]⊤

22

an arbitrary vector of length Np +Nv = (d+ 1)N ,

∂ (L(m)v)

∂m
wm = −

[
diag (Dvv)

∂ κ
∂ mκ

wκ

diag (Gvp)A
e
n

∂ µ

∂ mµ

wµ

]
,

∂ (L(m)v)

∂m

⊤

wy = −
[

∂ κ
∂ mκ

⊤
diag (Dvv)wp

∂ µ

∂ mµ

⊤

Ae⊤
n diag (Gvp)wv

]
,

∂2(L(m)v)

∂m ∂m
wm = −

[
diag (Dvv)

∂2 κ
∂ mκ ∂ mκ

wκ 0N×Nmµ

0dN×Nmκ
diag (Gvp)A

e
n

∂2 µ

∂ mµ ∂ mµ

wµ

]
,

∂2(L(m)v)

∂ v ∂m
wm = −


 0N×N diag

(
∂ κ

∂ mκ

wκ

)
D

diag
(
Ae

n
∂ µ
∂ mµ

wµ

)
G 0dN×dN




The first two products are needed when computing the action of the sensitivity matrix and

its transpose, and the last two are additionally needed when computing the action of the full

Hessian. Notice that
∂2(L(m)v)

∂ v ∂m
wm is just L once we replace κ and µ by ∂ κ

∂ mκ

wκ and

∂ µ

∂ mµ

wµ respectively.

We now consider a simple toy problem to illustrate that the order of accuracy of the

adjoint RK method is the same of the corresponding forward RK method, and the gradient

computations of the misfit function therefore retain the same order of accuracy. An investiga-

tion of the effect that higher-order time-stepping schemes have on the quality of the recovered

parameters is beyond the scope of this paper and will be considered at a later point for a more

realistic problem than the one presented here.

The test case we consider is the one-dimensional acoustic wave equation on a domain

Ω = [0, 5]m with periodic boundary conditions. The grid is spatially staggered, with the

pressure variables located at the nodes and the velocity terms located at the interval midpoints.

To minimize the effect of numerical dispersion we partition the domain into 1000 equally-

sized intervals and use 8th-order spatial derivative operators.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m

N

(a) Pressure

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−1.5

−1

−0.5

0

0.5

1

1.5

m

m/s

(b) Velocity

Fig. 1: Initial condition y0

The integration is performed from 0s to 4s and the initial condition is given by the pres-

23

sure p and velocity v shown in Figure 1; when starting from this initial condition the left

pressure wavelet is moving to the left and the right wavelet is moving to the right. There is

no active source term for the forward problem.

For us to focus solely on the order of accuracy, we use the following misfit functional

M =
1

2

∥∥d− dobs
∥∥2 =

1

2

∥∥Qy− dobs
∥∥2 .

Here Q = diag(Qk) and Qk are projection operators that simply extract the solution at

0 0.5 1 1.5 2 2.5 3 3.5 4

1.5

2

2.5

3

3.5

4

4.5

5

s

lo
g
2

 

ǫ
y
(2

n
τ
)

ǫ
y
(2

n
−
1 τ
) 

ǫy (2τ)/ǫy (τ)
ǫy (4τ)/ǫy (2τ)
ǫy (8τ)/ǫy (4τ)

 RK4

 RK3

 RK2
integration

Fig. 2: Order of accuracy of the forward solution with τ = 10−4s.

certain observation times corresponding to a subset of the time steps 1, . . . ,K and we assume

a complete and noise-free observation of the solution at those time steps; therefore Qk is the

identity matrix at these time steps and the zero matrix at all other time steps. The observed

data dobs consists simply of the initial condition y0 at these observation times, so this misfit

is unrealistic but it allows us to concentrate on the task at hand. It’s clear that in this case

∇dM = d − dobs (the data residual) and ∂d
∂y

= Q. The data residual forms the adjoint

source term for this problem and is simply yk − y0 at observation times and 0 otherwise.

We let the bulk modulus be κ = 2N and the density be ρ = 1
2
kg
m uniformly onΩ, resulting

in a wave velocity of 2m
s , and solve the forward problem to high precision using RK4 with

a very small time step τfine = 10−6s, which we subsequently take to be the true solution

ytrue. We then compute the corresponding adjoint solution λtrue and gradient ∇Mtrue using

Algorithm 3.2. Observations are taken every 0.1s.

The forward solutions are then computed using explicit RK methods of orders 2, 3
and 4 and time steps τ = 10−5s, 2τ , 4τ and 8τ , which we denote by yRKs(2nτ), where

s = 2, 3, 4 and n = 0, 1, 2, 3. The corresponding adjoint solutions λRKs(2nτ) and misfit

gradients ∇MRKs(2nτ) are then computed with Algorithm 3.2. To determine the order of

accuracy, the absolute errors ǫsy,k(2
nτ) = ‖ys

k(2
nτ) − ytrue

k ‖, ǫsλ,k(2
nτ) = ‖λs

k(2
nτ) −

λtrue
k ‖ and ǫs

∇M,k(2
nτ) = ‖∇Ms

k(2
nτ) − ∇Mtrue

k ‖ are computed at each time step k
that is common to all of the above time-stepping schemes. The binary logarithms of the

ratios ǫsy,k(2
nτ)/ǫsy,k(2

n−1τ) are plotted in Figure 2 and the binary logarithms of the ra-

tios ǫsλ,k(2
nτ)/ǫsλ,k(2

n−1τ) and ǫs
∇M,k(2

nτ)/ǫRKs
∇M,k(2

n−1τ) are shown in Figure 3. The

second-order RK method is unstable for time steps larger than 2τ , so only the ratio ǫ2
∇M

(2τ)/ǫ2
∇M

(τ)
is shown.

24

0 0.5 1 1.5 2 2.5 3 3.5 4

1.5

2

2.5

3

3.5

4

4.5

5

s

lo
g
2

 

ǫ
λ
(2

n
τ
)

ǫ
λ
(2

n
−
1 τ
) 

ǫλ (2τ)/ǫλ (τ)
ǫλ (4τ)/ǫλ (2τ)
ǫλ (8τ)/ǫλ (4τ)

 RK4

 RK3

 RK2
integration

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

1.5

2

2.5

3

3.5

4

4.5

5

s

lo
g
2

 

ǫ
∇
M
(2

n
τ
)

ǫ
∇
M
(2

n
−
1 τ
) 

ǫ∇M (2τ)/ǫ∇M (τ)
ǫ∇M (4τ)/ǫ∇M (2τ)
ǫ∇M (8τ)/ǫ∇M (4τ)

 RK4

 RK3

 RK2
integration

(b)

Fig. 3: Order of accuracy of the adjoint solution (top), the misfit gradient (bottom) for RK

methods, with τ = 10−4s. The adjoint solution is computed with observations every 0.1s.

Plotting the binary logarithms of the error ratios means that we expect to see values

of around 4 for fourth-order schemes, around 3 for third-order schemes and around 2 for

second-order schemes. This is indeed the case, with the forward solution clearly exhibiting

this expected behaviour in Figure 2, with the exception of the ratio ǫ3
∇M

(8τ)/ǫ3
∇M

(4τ)
showing some decrease in accuracy due to the time step 8τ being slightly too large for the

third-order RK method.

Figure 3 shows that this behaviour translates to the adjoint and gradient computations,

with the order of accuracy of the adjoint solution and gradient computation matching up

with that of its corresponding forward solution, as was to be expected from our discussion

in Section 4.3. There are some slight (and unexplained) deviations that can be observed for

25

the adjoint RK4 method where the order of accuracy actually seems to increase somewhat

as the integration moves along, forming a hump in the ratios. Deviations such as these are

also exhibited when using observation times other than every 0.1s, although they are usually

minor and the order of accuracy returns to its expected value after a certain amount of time.

Interestingly, deviations in the order of accuracy of the adjoint solution rarely affect the order

of accuracy of the misfit gradient, an example of which can be seen in Figure 3b, where the

hump seen for the adjoint RK4 method does not affect the misfit gradient at all. The misfit

gradient instead exhibits its own short-term, highly oscillatory deviations that peak around

the observation times, the times at which data residuals are included in the adjoint source

term.

The exception to this is the RK3 method with larger time steps, where the order of ac-

curacy is significantly less than 3 from the start. In fact this must be the case since the data

residual in the adjoint source term at 4s will have the inaccurate forward solution at this time

in it, so the inaccuracy that was present in the forward solution necessarily means that the ad-

joint solution will also be inaccurate from the start of the integration. In addition, the adjoint

RK3 method itself is inaccurate because of the larger time step, although interestingly the

loss of accuracy is not quite as pronounced as that for the forward method. The inaccuracies

in both the forward and adjoint solutions will of course also affect the accuracy of the misfit

gradient, as is clear in Figure 3b. All these deviations disappear when using smaller time

steps.

We have restricted the discussion to RK methods because, as we have seen, adjoint LM

methods are essentially the same as their corresponding forward methods, so a numerical

investigation will not reveal anything of interest.

7. Final Remarks and Future Work. We have shown that the application of the dis-

crete adjoint method to optimization problems constrained by linear time-dependent PDEs

leads to adjoint LM time-stepping schemes that have the same form as their corresponding

forward schemes, ignoring the final few steps of the adjoint scheme that correspond to the

initialization steps of the forward method. Adjoint RK methods look different than their for-

ward counterparts, but in Section 4.3 we gave a simple argument to show that they have the

same order of accuracy.

A crucial point of difference between the forward and adjoint methods is in the handling

of the source terms. In the case of Adams-type methods the source term at a given time step is

a linear combination of the source function at previous (and possibly the current) time steps,

whereas for BDF the source term is a rescaling of the source function at the current time.

In the case of adjoint methods this is not the case, one simply takes the value of the adjoint

source function at the current time step. For forward RK methods the source term enters in

the internal stages, whereas in adjoint RK methods we will actually have the source term

appearing only in the update for λk and not in the internal stages at all. The value of the

adjoint source function is hence needed only at the time tk.

We have allowed for variable time steps in the RK method, the size of which would usu-

ally be determined using some embedded RK method to provide a step size that ensures the

solution satisfies a given accuracy. These step sizes are inherited by the adjoint RK methods

and some readers might question whether this might not lead to a loss of accuracy in the

adjoint method due to some time steps possibly being too large. However, while accuracy

of the adjoint solution might be a concern when working in the OD framework, we are in-

stead interested in solving the adjoint problem corresponding to the fully-discretized forward

problem. In the DO framework it is therefore not necessarily clear what solving the adjoint

problem ”to a given accuracy” would mean. This does not apply to the order of accuracy of

course, it is desirable that the time-discretization error in the sentivity matrix computations

26

decreases at the same rate as that of the forward problem.

The internal stages of the RK method need to be stored since the derivatives of T have

to have access to them, leading to an increase in storage overhead; for explicit RK methods

the last internal stage does not need to be stored since it will not be used. LM methods have

the advantage that they do not have internal stages that need to be stored, but explicit higher-

order RK methods allow for larger time steps than Adams methods so they may still need less

required storage space overall in some situations.

Although the work in this paper is restricted to linear PDEs, it is applicable to several im-

portant problems, including the acoustic and elastic wave equations, Maxwell’s equations and

the advection-diffusion equation. For nonlinear problems solved with LM and RK schemes

the corresponding adjoint schemes will be the same as the ones found in Algorithms 4.1 and

4.2, except that L is replaced by the linearization of the PDE with respect to the forward

solution at the current time step.

The strength of the technique that we have used to study the discrete adjoint method for

linear time-dependent PDEs in this paper is that it can easily be extended to nonlinear PDEs

that are solved with more interesting integration methods, such as IMEX [32], staggered [13]

or exponential integration schemes [21]. These will be the subject of future work, and more

than anything the work done in this article, while interesting in its own right, is meant to

provide a foundation on which we can build to find the adjoint time-stepping methods for

these schemes.

Appendix A. Computing the action of the Hessian HM.

The adjoint method can also be used to find the expression for the Hessian multiplied

by some arbitrary vector w =
[
w⊤

m w⊤
s

]⊤
of length Nm + Ns. Abusing notation, we let

∂2 V
∂ x ∂ y

z = ∂
∂ x

(
∂ V
∂ y

z
)

, where V,x,y and z are placeholders for various terms that show up

in what follows. We know that

∇pM =
∂ d

∂ p

⊤

∇dM = J⊤∇dM,

so by the product rule

HM w =
∂2M
∂ p ∂ p

w = ∇p

(
∇pM⊤ w

)
= ∇p

(
∇dM⊤ Jw

)

=

1©
∂2M
∂ p ∂ d

⊤

Jw +

2©
∂ (Jw)

∂ p

⊤

∇dM .

By the chain rule, 1© is just

∂2M
∂ p ∂ d

⊤

Jw =
∂ d

∂ p

⊤ ∂2M
∂ d ∂ d

Jw = J⊤
∂2M
∂ d ∂ d

Jw.

27

Since Jw = ∂ d
∂ p

w = ∂d
∂y

x with x = x(p) = ∂y
∂ p

w, 2© becomes

(
∂

∂ p
Jw

)⊤

∇dM =

(
∂

∂ p

(
∂d

∂y
x

))⊤

∇dM

=
∂y

∂ p

⊤
(

∂

∂ y

(
∂d

∂ y
x

)∣∣∣∣
x

)⊤

∇dM+
∂ x

∂ p

⊤ ∂ d

∂ y

⊤

∇dM

=

3©
∂y

∂ p

⊤
(

∂2 d

∂ y ∂ y
x

)⊤

∇dM +

4©
∂ x

∂ p

⊤ ∂ d

∂ y

⊤

∇dM .

Consider

4© =
∂ x

∂ p

⊤ ∂ d

∂ y

⊤

∇dM =

(
∂2 y

∂ p ∂ p
w

)⊤
∂ d

∂ y

⊤

∇dM.

Each term of

∂2 y

∂ p ∂ p
w =

[
∂

∂m

(
∂y

∂m
wm +

∂y

∂ s
ws

)
∂

∂ s

(
∂y

∂m
wm +

∂y

∂ s
ws

)]

=




5©
∂2 y

∂m ∂m
wm +

6©
∂2 y

∂m ∂ s
ws

7©
∂2 y

∂ s ∂m
wm +

8©
∂2 y

∂ s ∂ s
ws




will be considered in turn. For 5© and 7©, start with
∂ T(m)
∂ m

+ T̂ ∂y
∂ m

= 0, multiply by wm

and set z = ∂ T(m)
∂ m

wm and vm = ∂y
∂ m

wm for compactness. Then:

• 5©: Differentiating z+ T̂ vm = 0 with respect to m:

∂ z

∂m

∣∣∣∣
y

+
∂ z

∂ y

∂ y

∂m
+

∂(T̂vm)

∂m

∣∣∣∣∣
vm

+ T̂
∂ vm

∂m
= 0,

and therefore

5© =
∂2 y

∂m ∂m
wm =

∂ vm

∂m
= −T̂−1

(
∂ z

∂m

∣∣∣∣
y

+
∂ z

∂ y

∂ y

∂m
+

∂(T̂vm)

∂m

∣∣∣∣∣
vm

)
.

• 7©: Similarly, differentiating z+ T̂ vm = 0 with respect to s gives

7© =
∂2 y

∂ s ∂m
wm = −T̂−1 ∂ z

∂ y

∂ y

∂ s
.

For 6© and 8©, start with T̂ ∂y
∂ s

= ∂q
∂ s

, multiply by ws and set vs =
∂y
∂ s

ws for compactness.

Then:

• 8©: Differentiate T̂ vs =
∂q
∂ s

with respect to s:

8© =
∂2 y

∂ s ∂ s
ws = T̂−1 ∂2 q

∂ s ∂ s
ws.

28

• 6©: Similarly, differentiate T̂ vs =
∂q
∂ s

with respect to m:

6© =
∂2 y

∂m ∂ s
ws = −T̂−1 ∂(T̂vs)

∂m

∣∣∣∣∣
vs

.

Plugging all of this into 4© and using the fact that λ = T̂−⊤ ∂ d
∂ y

⊤ ∇dM:

4© = −




(
∂ z

∂m

∣∣∣∣
y

)⊤

+
∂ y

∂m

⊤ ∂ z

∂ y

⊤

+

(
∂(T̂vm)

∂m

∣∣∣∣∣
vm

)⊤

∂ y

∂ s

⊤ ∂ z

∂ y

⊤

−
(

∂2 q

∂ s ∂ s
ws

)⊤



λ

= −∂ y

∂ p

⊤ ∂ z

∂ y

⊤

λ−




(
∂ z

∂m

∣∣∣∣
y

)⊤

+

(
∂(T̂vm)

∂m

∣∣∣∣∣
vm

)⊤

−
(

∂2 q

∂ s ∂ s
ws

)⊤



λ.

Therefore,

∂2 M
∂ p ∂ p

w = 1©+ 2© = 1©+ 3©+ 4©

= J⊤ ∂2 M
∂d ∂d

Jw +
∂y

∂ p

⊤
(

∂2 d

∂ y ∂ y
v

)⊤

∇dM− ∂ y

∂ p

⊤ ∂ z

∂ y

⊤

λ+

−




(
∂ z

∂m

∣∣∣∣
y

)⊤

+
∂ T̂v

∂m

⊤

−
(

∂2 q

∂ s ∂ s
ws

)⊤



λ

=



− ∂T

∂m

⊤

∂ q

∂ s

⊤


µ−




(
∂2T

∂m ∂m
wm

)⊤

+
∂ T̂v

∂m

⊤

−
(

∂2 q

∂ s ∂ s
ws

)⊤


λ

with µ = T̂−⊤

(
∂ d

∂ y

⊤ ∂2M
∂ d ∂ d

∂ d

∂ y
v +

(
∂2 d

∂ y ∂ y
v

)⊤

∇dM−
(

∂2 T

∂ y ∂m
wm

)⊤

λ

)
.

REFERENCES

[1] T. APEL AND T. G. FLAIG, Crank-Nicolson schemes for optimal control problems with evolution equations,
SIAM Journal on Numerical Analysis, 50 (2012), pp. 1484–1512.

[2] U. ASCHER AND E. HABER, Preconditioned all-at-once methods for large, sparse parameter-estimation

problems, Inverse Problems, 17 (2001), pp. 1847–1864.
[3] U. ASCHER AND L. PETZOLD, Computer Methods for Ordinary Differential Equations and Differential-

Algebraic Equations, SIAM, 1998.
[4] R. C. ASTER, B. BORCHERS, AND C. H. THURBER, Parameter Estimation and Inverse Problems, Academic

Press, 2 ed., 2012.
[5] H. G. BOCK, T. CARRARO, W. JÄGER, S. KÖRKEL, R. RANNACHER, AND J. SCHLÖDER, eds., Model

Based Parameter Estimation: Theory and Applications, Springer, 2013.

29

[6] P. BRENNER, M. CROUZEIX, AND V. THOMÉE, Single step methods for inhomogeneous linear differential

equations in Banach space, RAIRO Analyse Numerique, 16 (1982), pp. 5–26.
[7] Y. CAO, S. LI, L. PETZOLD, AND R. SERBAN, Adjoint sensitivity analysis for differential-algebraic equa-

tions: the adjoint DAE system and its numerical solution, SIAM J. Scient. Comput., 24 (2003), pp. 1076–
1089.

[8] I.-C. CHOU AND E. O. VOIT, Recent developments in parameter estimation and structure identification of

biochemical and genomic systems, Mathematical Biosciences, 219 (2009), pp. 57–83.
[9] J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear

Equations, SIAM, 1996.
[10] H. W. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse Problems, Kluwer, 1996.
[11] A. FICHTNER, Full Seismic Waveform Modeling and Inversion, Springer, 2011.
[12] C. W. GEAR, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, 1971.
[13] M. GHRIST, B. FORNBERG, AND T. A. DRISCOLL, Staggered time integrators for wave equations, SIAM

Journal of Numerical Analysis, 38 (2000), pp. 718–741.
[14] R. GRIESSE AND A. WALTHER, Evaluating Gradients in Optimal Control: Continuous Adjoints versus

Automatic Differentiation, Journal of Optimization Theory and Applications, 122 (2004), pp. 63–86.
[15] M. D. GUNZBURGER, Perspectives in Flow Control and Optimization, SIAM, 2002.
[16] E. HABER, Computational Methods in Geophysical Electromagnetics, SIAM, 2014.
[17] W. HAGER, Runge-Kutta methods in optimal control and the transformed adjoint system, Numerische Math-

ematik, 87 (2000), pp. 247–282.
[18] E. HAIRER, S. P. NØRSETT, AND G. WANNER, Solving Ordinary Differential Equations I: Nonstiff Prob-

lems, Springer, 2 ed., 1993.
[19] E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic

Problems, Springer, 2 ed., 1996.
[20] M. HEINKENSCHLOSS, Numerical solution of implicitly constrained optimization problems, Tech. Report

TR08-05, Rice University, Department of Computational and Applied Mathermatics, 2013.
[21] M. HOCHBRUCK AND A. OSTERMANN, Exponential integrators, Acta Numerica, 19 (1986), pp. 209–286.
[22] V. ISAKOV, Inverse Problems for Partial Differential Equations, Springer; 2nd edition, 2006.
[23] J. B. KOOL, J. C. PARKER, AND M. T. VAN GENUCHTEN, Parameter estimation for unsaturated flow and

transport models: A review, Journal of Hydrology, 91 (1986), pp. 255–293.
[24] D. MEIDNER AND B. VEXLER, A priori error analysis of the Petrov-Galerkin Crank-Nicolson scheme for

Parabolic Optimal Control Problems, SIAM Journal on Control and Optimization, 49 (2011), pp. 2183–
2211.

[25] S. K. NADARAJAH AND A. JAMESON, A Comparison of the Continuous and Discrete Adjoint Approach

to Automatic Aerodynamic Optimization, 38th Aerospace Sciences Meeting and Exhibit, January 2000,
Reno, NV, (2000).

[26] S. K. NADARAJAH, A. JAMESON, AND J. ALONSO, An Adjoint Method for the Calculation of Remote

Sensitivities in Supersonic Flow, 40th Aerospace Sciences Meeting and Exhibit, January 2002, Reno,
NV, (2002).

[27] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, 2 ed., 2006.
[28] A. OSTERMANN AND M. ROCHE, Runge-Kutta methods for partial differential equations and fractional

orders of convergence, Mathematics of Computing, 59 (1992), pp. 403–420.
[29] D. I. PAPADIMITRIOU AND K. C. GIANNAKOGLOU, Computation of the Hessian matrix in aerodynamic

inverse design using continuous adjoint formulations, Computers and Fluids, 37 (2008), pp. 1029–1039.
[30] F.-E. PLESSIX, A review of the adjoint-state method for computing the gradient of a functional with geophys-

ical applications, Geophys. J. Int., 167 (2006), pp. 495–503.
[31] M. P. RUMPFKEIL AND D. J. MAVRIPLIS, Efficient Hessian Calculations using Automatic Differentiation

and the Adjoint Method with applications, AIAA Journal, 48 (2010), pp. 2406–2417.
[32] S. RUUTH, Implicit-explicit methods for reaction-diffusion problems in pattern-formation, Journal of Mathe-

matical Biology, 34 (1995), pp. 148–176.
[33] J. M. SANZ-SERNA, Sympletic Runge-Kutta Schemes for Adjoint Equations, Automatic Differentiation, Op-

timal Control and more, SIAM Review, 58 (2015), pp. 3–33.
[34] J. M. SANZ-SERNA, J. G. VERWER, AND W. H. HUNDSDORFER, Convergence and order reduction of

Runge-Kutta schemes applied to evolutionary problems in partial differential equations, Numerische
Mathematik, 50 (1986), pp. 405–418.

[35] C. V. STEWART, Robust parameter estimation in computer vision, SIAM Review, 41 (1999), pp. 513–537.
[36] A. TARANTOLA, Inverse Problem Theory and Methods for Model Estimation, SIAM, 2004.
[37] A. N. TIKHONOV AND V. Y. ARSENIN, Solution of Ill-posed Problems, Winston & Sons, 1977.
[38] A. WALTHER, Automatic differentiation of explicit Runge-Kutta methods for optimal control, Computational

Optimization and Applications, 36 (2007), pp. 83–108.

