
Fast denoising of surface meshes with intrinsic texture

H Huang and U. Ascher

Department of Mathematics, University of British Columbia, Room 121, 1984
Mathematics Road, Vancouver, B.C., Canada V6T 1Z2
Department of Computer Science, University of British Columbia, 2366 Main Mall,
Vancouver, B.C., Canada V6T 1Z4

E-mail: hhzhiyan@math.ubc.ca ascher@cs.ubc.ca

Abstract. We describe a fast, dynamic, multiscale iterative method that is designed to
smooth, but not over-smooth, noisy triangle meshes. Our method not only preserves sharp
features but also retains visually meaningful fine scale components or details, referred to
as intrinsic texture. An anisotropic Laplacian (AL) operator is first developed. It is then
embedded in an iteration that gradually and adaptively increases the importance of data
fidelity, yielding a highly efficient multiscale algorithm (MSAL) that is capable of handling
both intrinsic texture and mesh sampling irregularity without any significant cost increase.

Keywords: Surface mesh, anisotropic Laplacian, multiscale denoising, intrinsic texture,

mesh irregularity, volume shrinkage.

Fast denoising of surface meshes with intrinsic texture 2

1. Introduction

The problem of denoising, or smoothing 3D meshes has received a lot of attention in recent

years due to the increasing use of 3D scanning and acquisition technology. For example,

meshes supplied by laser scanning devices often carry high-frequency noise in the position

of the vertices, so a mesh smoothing algorithm is required to rapidly remove noise while

preserving real artifacts in the acquired data.

Most techniques for 3D mesh smoothing have predecessors in the literature on the

significantly simpler image denoising problem [27, 23, 10, 28, 5, 29, 25]. However, “lifting”

image processing methods up to 3D surface meshes is not trivial or automatic, see e.g. [14].

Specifically, whereas in image processing the data as well as the sought surface consist of

scalar intensity height maps corresponding to an underlying regular grid of pixels, here the

data as well as the sought surface are defined by sets of points xi irregularly placed in 3D.

A preprocessing step constructs a triangular mesh with the data points as vertices, and this

mesh connectivity is retained throughout the smoothing process. We denote such a surface

mesh by S, with its set of vertices V (S) = x = {xi; i = 1, . . . , N} and set of directed edges

E(S). The noise in the data is therefore not only in intensity heights at known pixel values

but also in what corresponds to the location of the data. Indeed, the following inter-related

issues arise:

• Some sort of separation between the surface location of the data points and their

value in normal direction is required. Thus, it is often desired to denoise the surface

by adjusting data values at each vertex in the normal direction but not in directions

tangential to the surface. Motion of vertices in tangential directions is referred to as

vertex drifting.

• The mesh is irregular, and this gives rise to several issues addressed further below that

do not arise in the corresponding image processing problem.

• The mesh describes a volume in 3D, and it is important to ensure that this volume

does not shrink noticeably during the denoising process.

(a) (b) (c)

Figure 1. Comparing with non-iterative bilateral filtering [19]: (a) noisy Dragon head
model (100K Vertices); (b) smoothed model presented in [19] (80 sec on a 1.4Ghz Athlon);
(c) smoothed model by our multiscale algorithm (4 iters, K = 1/2, 10 sec on our laptop).

Fast denoising of surface meshes with intrinsic texture 3

(a) (b)

Figure 2. Rapid unknown noise removal while preserving fine scale details: (a) scanned
Angel model (25K Vertices); (b) smoothed by our multiscale scheme (3 iters, K = 1/2,
1.8 sec).

Several algorithms for smoothing 3D meshes were proposed in the 1990s involving

geometric diffusion [31, 16]. Later it was recognized that smoothing based on isotropic

diffusion inherently smears out important features such as edges, which correspond to

height discontinuities in image processing, so methods based on anisotropic diffusion were

introduced for various purposes such as fairing height fields and bivariate data, and

smoothing surfaces and level sets [10, 32, 7, 3, 30, 4, 26, 17, 8]. Irregularities in mesh

sampling introduce additional difficulties [15, 20, 9] that occasionally distort results and

significantly slow algorithms down.

The most recent of the above methods reconstruct large sharp edges and corners

of surfaces particularly well (see especially [17]). Also, the more elaborate surface

representation methods of [24, 13], that are designed for other purposes, generally can

handle sharp features well. However, these methods typically come with a relatively high

price tag, both in terms of cost per iteration and in the number of iterations required to

achieve satisfactory results. Moreover, they often require the user to provide unintuitive

parameter values, including a threshold value for the anisotropic diffusion process. Such

a value may highly depend on the given model, with different threshold values possibly

yielding very different fairing results. Thus, an automatic selection formula that can

adaptively determine the threshold value for different meshes is desirable.

Another approach, that of bilateral filtering (BF), has given rise to methods that more

rapidly yield results of a quality similar to anisotropic diffusion, albeit with less theoretical

justification [33, 14, 19, 35]. These methods usually require very few, cheap iterations,

and can cost but a tiny fraction of the computational effort required to carry out an

elaborate anisotropic diffusion process. In fact it can be argued that an algorithm that

terminates after what amounts to 2 or 3 forward Euler time steps does not capture the

nonlinear dynamics of a complex diffusion process, i.e. that methods based on accurately

Fast denoising of surface meshes with intrinsic texture 4

capturing such dynamics are inherently slower. However, the results generated by these

bilateral filtering variants may strongly depend on the range of a vertex neighborhood and

the manner in which tangent planes are approximated. It is not obvious, and not clearly

specified in the references, how to adaptively and automatically determine these important

algorithm components for different models.

Moreover, none of these algorithms perform very well for problems with significant fine

scale features. For instance, the hair and scales of the famous Stanford dragon typically

disappear when applying a fast bilateral filtering type method, see Figs. 1(b), 7(d) and 7(e)

as well as the relevant examples in [30, 19, 35]. We refer to such visually meaningful fine

scale components or details as intrinsic texture. Such texture, which may appear either

regularly or irregularly, is harder to deal with because its separation from noise depends

on the local mesh resolution. (A different notion of texture is considered in [8].) And yet,

this is where the simpler and faster methods often are most visibly unsatisfactory.

The goal of this paper is to design a fast, robust denoising method that performs well

also in the presence of significant intrinsic texture. A basic anisotropic Laplacian (AL)

iteration is developed first that costs essentially half that of the basic bilateral filtering

iteration and requires no user-specified parameters. Then, since intrinsic texture crucially

depends on the local scale on which it noticeably varies, an adaptive procedure is developed

in which the AL operator is repeatedly applied while the local fidelity to the data is

gradually increased. The resulting multiscale anisotropic Laplacian (MSAL) algorithm

produces significantly better results than AL or bilateral filtering type methods at a fraction

of the cost of sophisticated methods such as [17, 8, 24]. See Figs. 1, 2, 6, 7 and 8, where

important fine scale features are well-preserved. All our final results are achieved using

very few mesh sweeps of the simplest and most directly parallelizable sort. Thus, the entire

cost of the linear algebra portion of our algorithm is lower than, for instance, one V-cycle

in a multigrid preconditioner for solving a linear system arising when carrying out just one

time step of an implicit scheme such as used in [7, 8, 17].

To distinguish the two components of smoothing and data fidelity, we first revisit

anisotropic geometric diffusion in Section 2, starting with the continuous model given in

(1). We then proceed to develop an AL operator that can be viewed as applying image

processing techniques in local coordinates at each mesh vertex, yielding a procedure that

adaptively determines the filter parameters. The resulting quality of reconstruction of this

AL operator is much better than that of isotropic Laplacian operators [31, 16, 15, 20, 9, 32]

while the cost remains low. In Section 3 we then build our multiscale iterative scheme, which

has a distinct advantage when intrinsic texture is important. The MSAL method is also

advantageous in cases where an approximated vertex normal near a boundary erroneously

points to an averaged direction, which may lead to a rounded edge or to a significant volume

shrinkage. Implementation details, results, discussion and conclusions follow.

Fast denoising of surface meshes with intrinsic texture 5

2. Geometric Laplacian operators

2.1. Continuous and discrete diffusion models

Starting from a continuous geometric diffusion model, one seeks a one-parameter family of

embedded manifolds {M(t)0≤t≤T} in IR3 and corresponding parameterizations x(t), such

that for 0 < t ≤ T

∂tx(t)− divM(G gradM x(t)) = λ(x(0)− x(t)), (1)

M(x(0)) = M0.

HereM0 is the given, noisy data and G is usually a diffusion tensor acting on the tangent

space ofM to enhance large sharp edges. A detailed discussion on choosing this diffusion

tensor for surface meshes can be found in [7, 4, 8]. For isotropic diffusion on surfaces

(where G is an identity), the counterpart of the Laplacian is the Laplace-Beltrami operator

∆M = divM gradM, and −∆Mx = 2κ(x)n(x), where κ is the mean curvature and n

is the normal direction (see [11, 7] for details). The final integration time T controls the

amount of diffusion administered. The nonnegative parameter function λ(x(t)) controls

data fidelity. This equation can be viewed as describing a composition of mean curvature

normal motion caused by κ(x), smoothing out noise, and a retrieving force toward the

original surface caused by (x(0)− x(t)), recapturing fine scale texture. The magnitude of

λ determines the weights in this composition, see [34].

Next, a manifoldM is replaced by a triangular surface mesh S with its sets of vertices

xi and directed edges ei,k as defined before. If two distinct vertices xi and xk are linked by

an edge ei,k = xk − xi then we denote k ∈ N (i) and the edge length li,k = |ei,k|. The given

data is a noisy mesh of this sort, and we denote its vertices x(0) = v = {vi; i = 1, . . . , N}.
For all methods considered in this article an iteration can be written as updating each

vertex i by

xi ←− xi + τ∆xi + λi(vi − xi), (2)

in obvious analogy to (1). The first iteration starts with the given data. Unless otherwise

noted we set τ = 1. Moreover, for all calculations of this section we set λ ≡ 0, the model

thus becoming comparable to [27, 10, 14, 19]. The rest of this section describes various

possibilities for defining ∆xi in (2).

Note that in general ∆xi is not intended to be simply an approximation to a Laplacian,

but we find this notation convenient nonetheless. Moreover, it is important to realize that

(1) is artificial and must be regarded as providing a guidance, rather than describing a true

continuous physical process for denoising, unlike e.g. the Navier-Stokes equations which

are indeed widely believed to describe physical fluid flow. The iteration (2) on the surface

mesh S does not necessarily derive its validity as an approximation of (1) [2].

Fast denoising of surface meshes with intrinsic texture 6

2.2. Time discretization and discrete isotropic Laplacian

Recall next three discrete isotropic Laplacian operators. The first is the umbrella operator

[31]

∆xi =
1

mi

∑
k∈N (i)

ei,k, (3)

where mi = |N (i)|, the cardinal number of one-ring neighbor set N (i). This is a linear

form implying the assumption that all neighboring edge lengths are equal to one. Hence

it can serve as an effective smoother if the targeted mesh is close enough to being regular.

However, when the model has different discretization rates, significant local distortions are

introduced by this umbrella operator, and a better choice is the scale-dependent version

[15].

Still, this weighting scheme does not solve problems arising from unequal face angles.

Also, the method tends to equalize the lengths of the edges, which may or may not be

desirable. Based on a better approximation to the mean curvature normal, a third scheme

was proposed in [9, 22] that doesn’t produce vertex tangential drifting when surfaces are

relatively flat and compensates both for unequal edge lengths and for unequal face angles.

All three schemes are based on isotropic diffusion, though, and may easily smear sharp

features.

The basic iterative process of (2) is related to (1) using the forward Euler method

in “time”. This, however, may work much less effectively on irregular meshes, requiring

significantly more computational effort because of the larger number of time steps (or

iterations) as well as additional cost per iteration for the mean curvature method. One

could think of implicit time integration methods, such as backward Euler, that do not have

similar stability restrictions on their time step. However, our multiscale algorithm below

requires such a small amount of computational work as to be much faster than any truly

implicit method, and its stability restriction does not give rise to stiffness issues. Moreover,

the time step that the finer part of the mesh mandates when using forward Euler may

not necessarily produce an effective smoother for coarser parts of the mesh when using

geometric diffusion, even though there is no stability problem.

Thus, it is the discrete dynamics, rather than the continuous dynamics corresponding

to (1), that counts [2]. For geometric diffusion the time step should ideally be adjusted

locally, corresponding to local edge lengths, but that is hard to do economically.

Alternatively, it is possible to view the forward Euler discretization as a steepest descent

method for the minimization of

x∗ = argmin{
∫
M
|gradMx|+ λ‖x− x(0)‖2}

in suitable norms. The “time step” is determined by a line search that somehow averages

Fast denoising of surface meshes with intrinsic texture 7

contributions of different mean curvatures, and the iteration is better conditioned hence

more effective the closer the mesh is to uniformity.

2.3. Discrete anisotropic Laplacian

To better reconstruct sharp features, consider next using an anisotropic Laplacian (AL)

operator on a surface mesh S, where updates are made at each vertex in the direction of its

normal. This is similar to bilateral filtering (BF) and different from (3) and the schemes

of [17, 32].

The idea behind the AL operator is simple. A given normal ni at a vertex xi defines

a tangent plane at this vertex. Restricting the update ∆xi to be in the direction of ni,

we can view it as updating the height intensity of a 2D image defined on this tangent

plane, i.e. in local coordinates, where the offsets of the neighboring vertices, denoted by

{hi,k = eT
i,kni, k ∈ N (i)}, act as image intensities at pixels. Let us consider one vertex xi

with its one-ring neighborhood first. Thus, we define

∆xi =
1

Ci

 ∑
k∈N (i)

g(hi,k)hi,k

ni,

where Ci =
∑

k∈N (i) g(hi,k) is a normalization factor and g is the feature indicator. In

determining g we then follow image processing sources, specifically [6, 28].

Several robust filter choices, e.g. Huber (a variant of total variation [1]), Lorentz,

Gauss and Tukey, have been discussed and compared in [6, 28, 12] for images. These

studies conclude that Gaussian or Tukey filters are more robust in the presence of outliers,

hence better preserve important features. According to our numerical experiments, this

conclusion holds also for surface meshes. So, we employ the Gaussian filter

g(hi,k) = exp(−
h2

i,k

2σ2
i

),

due to its robustness, stability and simplicity. This filter clearly reduces the influence of

neighbors that contain large discontinuities in normal space during the smoothing process.

The point from which neighboring vertices are treated as outliers depends on the parameter

σi.

The image processing literature [6, 28] uses some tools from robust statistics to

automatically estimate this robust scale σi as the mean or median absolute deviation of the

given image intensity gradient. The main idea is that σi should characterize the variance

of the majority of data within a region, so outliers would then be determined relative to

this background variation. Since hi,k is considered as height intensity of a local image, we

set

σi = 2 mean(abs(hi − mean(hi))), (4)

Fast denoising of surface meshes with intrinsic texture 8

(a) (b)

Figure 3. Fast denoising of data with unknown noise without losing significant features:
(a) scanned Lady face model (41K Vertices); (b) smoothed model by AL (3 iters, 3.0 sec).

where hi = (hi,k . . . , k ∈ N (i)) and the leading constant is derived from the fact that the

inverse of mean absolute deviation of a zero-mean normal distribution with unit variance

is near 2.

Thus, our discrete anisotropic Laplacian (AL) operator is finally defined and can be

rewritten as

∆xi =
1

Ci

 ∑
k∈N (i)

g(hi,k)n
T
i ei,k

ni =

∑
k∈N (i) exp(− |hi,k|2

2σ2
i

) hi,k∑
k∈N (i) exp(− |hi,k|2

2σ2
i

)

 ni, (5)

with σi given by (4). The normalization scales the operator such that a step size τ = 1 can

be stably used in the explicit method (2). From Figs. 3 and 4, it is clear that the above

scheme is able to rapidly remove noise while preserving significant surface features. To

connect, at least formally, between the AL operator and the anisotropic diffusion operator

divM(G gradM x), we can write (cf. [32])

∆xi =
∑

k∈N (i)

Wi,kei,k, Wi,k =
1

Ci

g(hi,k)nin
T
i ,

where the edge weights Wi,k are symmetric, semi-definite, 3×3, rank-1 matrices. However,

the validity of the AL operator is not derived from (1) directly.

The method obtained by employing the AL (5) in (2) with τ = 1 may be viewed

as a variant of BF where the domain filter used to measure closeness there is defined

as the identity here. We refer to the resulting BF variant as our BF. Straightforward

operation count shows that our BF iteration is basically twice as expensive as AL. Our

Fast denoising of surface meshes with intrinsic texture 9

(a) (b) (c) (d) (e)

Figure 4. Removing heavy Gaussian noise from a corrupted model: (a) original Max
Planck model (50K Vertices); (b) model is corrupted by about 20% noise (1/5 of the mean
edge length) in the normal direction; (c) smoothed by explicit mean curvature flow (20
iters, 128 sec); (d) smoothed by AL without normal mollification; (e) smoothed by AL
with normal mollification (4 iters, 5.1 sec).

BF, in turn, is a variant of the BF method presented in [14]. In numerical experiments

carried out for all examples reported in this article, our BF does not generate significantly

better results than AL. In order to pursue a better reconstruction by using BF, one has

to set an appropriate neighborhood radius ρ and then get the neighboring set of vertices,

i.e. N (i) is defined by the set of points xk that satisfy ||xk − xi|| < ρ. So the included

neighbors in [14] depend on Euclidean distance, approximating geodesic distance, rather

than on connectivity. Unfortunately, the questions of how to automatically choose ρ for

different models and how to better approximate geodesic distances between vertices are far

from clear and may easily result in heavy computation, even if there is no problem with

recapturing intrinsic texture.

The description of the AL operator is not complete until we specify how to approximate

the normal ni at vertex xi. Since we want to work on a smooth but not over-smooth vertex

normal field, we estimate the vertex normal ni as the average of the adjacent face normals,

leaving it unchanged during the fairing process

ni = normalize

 ∑
k∈N (i)

ei,k × ei,k+1

|ei,k × ei,k+1|

 .

Another possible choice is to weigh adjacent face normals by their face areas, but there

has been no visible improvement in our numerical experiments upon introducing this.

More importantly, we must be aware that very noisy given data may lead to an unstable

computation of initial vertex normals, since the normals are first-order properties of the

mesh. Thus, for extremely noisy data, such as in the Max Planck example of Fig. 4, we

apply a mollification step, employing the normalized average of neighboring vertex normals

Fast denoising of surface meshes with intrinsic texture 10

as initial n = {ni; i = 1, . . . , N}, i.e. running the umbrella operator on the normal

field. Compare Fig. 4(d) vs Fig. 4(e). This guarantees enough smoothing over relatively

large non-feature surfaces and requires much less computation than using the two-ring or

a larger neighborhood as in [14]. For common scanned models without very heavy noise,

such mollification turns out not to be necessary.

3. Handling intrinsic texture

Although AL is very efficient for smoothing some models as demonstrated in Figs. 3 and

4, it cannot avoid over-smoothing in the presence of essential intrinsic texture, especially

when using λ = 0 in (2). The same holds for various BF variants, see Figs. 1(b), 7(e) and

7(f). A simple first step toward a better solution is then to use λ > 0, thus increasing the

influence of the given data during the denoising process at all iterates [34]. This also helps

to reduce the effect of volume shrinkage over several iterations [31, 9] so as to be essentially

unnoticeable in the method developed below.

Rewriting (2) as

xi ←− (1− λi)xi + τ∆xi + λivi,

we may view ∆xi as the smoothing contribution of the current iteration. It is clear that

for stability we must require 0 < λi < 2. However, here we require nonnegativity as well,

which means 0 < λi ≤ 1 at all vertices. This ensures that the smoothing contributions

are accumulated monotonically, preventing undesirable mesh deformation. Moreover, when

τ is relatively smaller, the influence of the mesh smoothing modification gets smaller too,

hence finer scale components are recaptured from the given mesh. Thus, we keep 0 < λ ≤ 1

and reduce τ gradually by setting at the jth iteration

τ = Kj, (6)

where K is a parameter, 0 < K < 1.

To see how the iteration progresses, let us denote x = x(j) at the jth iteration, with

x(0) = v. We then unroll the recursion, obtaining

x
(j+1)
i − vi = (1− λ

(j)
i)(x

(j)
i − vi) + Kj∆x

(j)
i

= (1− λ
(j)
i)

[
(1− λ

(j−1)
i)(x

(j−1)
i − vi) + Kj−1∆x

(j−1)
i

]
+ Kj∆x

(j)
i

=

j∑
k=0

c
(j−k)
i Kj−k∆x

(j−k)
i ,

where cj
i = 1, k = 0 and c

(j−k)
i =

∏k−1
m=0(1 − λ

(j−m)
i), k > 0. Note that with

0 < λ ≤ 1 everywhere we have nonnegative weights c(j−k) for the smoothing contributions.

Moreover, these weights shrink as k increases. Furthermore, for K < 1 the later smoothing

Fast denoising of surface meshes with intrinsic texture 11

(a) (b)

Figure 5. Illustrating the function λ at each vertex of the Monk model (see also Fig. 9):
(a) magnitude of λi at vertex xi in the first smoothing run; (b) the values of λ specify the
colors of the vertices as RGB values.

contributions weigh less than the earlier ones in the sum, and more strongly so the smaller

K is. Our default value is K = 1/2, and this often works well, as evident in the numerical

examples.

Next we want to determine the mesh function λ. In image processing, it can be

estimated if some statistical information on the noise is known, especially if we keep λ

constant. On a surface, since noise is carried in the position of vertices and changes all the

neighboring height intensities hi,k, we expect that λi should depend on this noise effect. In

other words, we want to apply enough smoothing over domains where the surface varies

little on the scale of the mesh while preserving more original information over surfaces with

fine scale features. Fortunately, we already have a robust estimator on local mesh features

at hand, namely, the Guassian parameter σi adaptively determined by (4). Recall that

σi is larger over surface patches containing intrinsic features and smaller over non-feature

regions, due to the dependence on local height intensity. This naturally gives rise to the

formula

λi = σi/σ̄, where σ̄ = max{σi; i = 1, . . . , N}, (7)

and all quantities are evaluated at the current mesh j. Fig. 5(a) illustrates the magnitude

of λ at each vertex with j = 0. Note how rather far from constant the function λ is. In

Fig. 5(b), we apply darker color the larger the value of λi is. This figure clearly shows that

λ specified by (7) does roughly indicate the feature properties of the mesh surface.

The combination of the normalized formula for λ and the geometric decrease of τ yields

a multiscale algorithm. In fact, the iteration (2) with (6) can be viewed as a forward Euler

Fast denoising of surface meshes with intrinsic texture 12

discretization of the ordinary differential equation

dx

dt
= Kt∆x + λ(v − x), t ≥ 0,

applied at each vertex i starting from t = 0 with step size equal to 1. Thus, at the start

of the jth iteration, t = j. Clearly, as t→∞ the process converges at steady state to the

original data. More importantly, the same holds also for the discrete dynamics. In practice

of course we stay well away from this limit by taking only a few iterations. Moreover,

an attempt to take a step with large λ, applying say a backward Euler discretization to

this differential equation, would reintroduce the noise without significant smoothing, thus

missing the goal. Hence, our gradual multiscale approach is necessary.

4. Implementation, numerical results and discussion

4.1. Implementation details

Algorithm 1 Multiscale Anisotropic Laplacian (MSAL) :

Data: vertices {vi; i = 1, . . . , N} and normals {ni; i = 1, . . . , N};
Initialize: x = v, neighborhood {xk, k ∈ N (i)}, mi = |N (i)|;
Input parameters: Niter and K;

for j = 0 : Niter − 1 do

for i = 1 : N do

for k = 1 : mi do

hi,k = (xk − xi) · ni;

end for

end for

Compute array σ by Equation (4);

Compute array λ by Equation (7);

gk = exp(−h2
k./(2σ

2));

d =
∑

k∈N (i)

(gk. ∗ hk)./
∑

k∈N (i)

gk;

x = x + Kjd. ∗ n + λ. ∗ (v − x);

end for

The complete multiscale anisotropic Laplacian process is given in Algorithm 1. We

have implemented it in a set of Matlab routines. Run times are reported on a laptop

with a 2.0Ghz Pentium M CPU, except for those in Figs. 1(b) and 8(b).

The instructions following the nested loops in Algorithm 1 involve array operations,

i = 1, . . . , N , and we follow Matlab convention in distinguishing element-wise array

products from more general loops. The inner iteration is based on our AL operator

Fast denoising of surface meshes with intrinsic texture 13

defined by (2) and (5), although a BF variant could easily be employed instead. Clearly,

the number of floating point operations needed for one AL iteration is O(mN), where

m = max{mi, i = 1, . . . , N}. Note that m� N .

There are two input parameters in our algorithm. As mentioned earlier, after a

few iterations the relative importance of later smoothing contributions decreases, more

aggressively the smaller K is. The scale of K must depend on the application. It should

be tuned to be small enough to capture intrinsic texture and large enough not to recapture

noise too quickly. In practice the default value often works very well. See Fig. 9 below for

more on this issue.

Regarding the choice of the total number of iterations Niter, the figures displayed

generally represent our best results using the “eye norm” and occasionally knowing the

ground truth (i.e. the true model). See Fig. 6 below for more on this issue. This approach

is of course common; however, it is important to note that the sensitivity to the choice, as

for the choice of K, is low here. For most cases we have found that Niter ≤ 4 is adequate,

and Niter = 4 is a stable default value. If we allow Niter to get larger then the results

generated by MSAL get noisier, as explained in the previous section.

We emphasize that our algorithm is completely specified and easily programmable. All

our results are reproducible by the reader in a straightforward manner.

4.2. Comparative results

Comparing results to those of others in the literature is a delicate task, not only because

this involves different platforms and programming levels but also because typically not all

algorithm details and relevant data are available. Here, fortunately, in addition to the

fact that it only requires two stable input parameters K and Niter, the computational

complexity of AL is obviously significantly lower than that of leading anisotropic diffusion

schemes [3, 4, 8, 17] in terms of computation (assembly) at each node at each iteration,

and in either the linear algebra cost per iteration or the number of iterations required.

Comparing against the BF alternatives, a basic AL step costs roughly half that of a BF

method if the same neighborhood range is defined, and less more generally. Moreover, the

multiscale scheme built on AL does not result in any significant extra cost. Hence we are

essentially left to demonstrate the quality improvements obtained by the introduction of

MSAL.

In the first sets of results presented in Section 1, Fig. 1 compares our method with

the non-iterative bilateral filtering method proposed in [19]. Clearly, MSAL recaptures

significantly more intrinsic texture with less computational effort. Fig. 2 shows that three

multiscale steps can preserve most fine scale features such as the eyelids and the grids on

the angel’s wings, while sufficiently smoothing flat regions such as the face and arms. The

second set of results displayed in Figs. 3 and 4 shows how powerful and efficient our AL

operator is for models that do not possess much noticeable fine scale features.

Fast denoising of surface meshes with intrinsic texture 14

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Comparing AL with MSAL (each run 3 iters, AL - 2.3 sec, MSAL - 2.6 sec): (a)
corrupted Bunny model (35K Vertices); (b) smoothed model after one iteration of AL; (c)
smoothed model after two iterations of AL; (d) smoothed model after three iterations of
AL; (e) smoothed model after one iteration of MSAL with K = 1/2; (f) smoothed model
after two iterations of MSAL; (g) smoothed model after three iterations of MSAL; (h)
original clean Bunny model with fine scales.

In Fig. 6, we investigate and compare denoising results of AL and MSAL step by step.

Observe that AL is able to quickly remove noise, but it also blurs visually distinguished

intrinsic texture on the bunny’s fur, while MSAL is capable of recapturing fine scales and

simultaneously maintaining necessary smoothing with almost the same computational cost,

compare Figs. 6(d) vs 6(g).

Fig. 7 compares MSAL against bilateral filtering (BF), both for our BF and as in [14].

Obviously, BF does not produce better results than AL for models with intrinsic texture,

while MSAL yields significantly better results than all three variants without a data fidelity

term.

Fig. 8 compares smoothing results for a fine Igea model by nonlinear anisotropic

diffusion in [17] and by MSAL. Observe the better details of face and hair of the model in

Fig. 8(c) obtained using much fewer iterations by our multiscale algorithm. We hasten to

say, however, that comparing MSAL to anisotropic diffusion is trickier than comparing BF

to AL and MSAL. On one hand our algorithm is not capable of reproducing the results

displayed in [17] for CAD-type models on coarse meshes, and on the other hand the choice

Fast denoising of surface meshes with intrinsic texture 15

(a) (b) (c)

(d) (e) (f)

Figure 7. Comparing with bilateral filtering: (a) original Dragon model (50K Vertices);
(b) noisy model corrupted by about 10% random tangential and normal noise; (c) smoothed
model by the multiscale algorithm MSAL (3 iters, K = 1/5, 3.8 sec); (d) smoothed model
by AL where intrinsic texture has been removed (3 iters, 3.4 sec); (e) smoothed model
by our version bilateral filtering with one-ring neighborhood and similarity σs determined
by the standard deviation of local height intensities (3 iters, 5.9 sec); (f) smoothed model
by bilateral filtering as in [14] with smooth region radius ρ = 8.8 and closeness σc = 4.4
selected by trial and error and similarity σs determined automatically (3 iters, 8.4 sec).

of methods and parameters within an anisotropic diffusion family required to produce a

result such as Fig. 8(b) is far more complex and delicate than what is required to produce

or reproduce Fig. 8(c).

Different applications may well yield different requirements for retaining intrinsic

texture. By simply adjusting the scalar K we can get different flavors. For example,

in Fig. 9 one may want to keep wrinkles or other details on the monk’s face for a more

natural look. For this, we simply decrease K, e.g. Figs. 9(b) or 9(c). But caution must be

exercised because too small a K may bring back unwanted noise too quickly. On the other

hand, a larger value of K yields a smoother model, see e.g. Fig. 9(d). In brief, under the

same total number of MSAL iterations we can very easily get different results suited for

different goals.

Fast denoising of surface meshes with intrinsic texture 16

(a) (b) (c)

Figure 8. Comparing with nonlinear anisotropic diffusion [17]: (a) fine Igea model
(135K vertices) with intrinsic texture corrupted by noise; (b) smoothed by the nonlinear
anisotropic diffusion method in [17], (25 itns, 33 secs on the 1.7 GHz Centrino laptop;
result courtesy of K. Hilderbrandt); (c) smoothed by MSAL, (K = 1/2, 4 itns, 13 secs).

(a) (b) (c) (d) (e) (f) (g)

Figure 9. Controlling retained amount of intrinsic texture using MSAL (each run 4 iters,
1.8 sec): (a) scanned Monk model (19K Vertices) contains unknown noise; (b) smoothed
model with K = 1/4; (c) smoothed model with K = 1/2; (d) smoothed model with K = 1;
subfigures (e)-(g) are mean curvature visualizations of (b)-(d), respectively.

4.3. Handing mesh sampling irregularity and volume shrinkage

Since our discrete anisotropic Laplacian operator (5) is not scaled by the local Voronoi

area [9, 22], during the flow the velocity of vertices strongly depends on the geometric

discretization. Points adjacent to large triangles move faster than points adjacent to small

triangles. For regular meshes such as most real scanned data sets, this is not an issue

because one can relate (2) and (1) by a constant rescaling of “time”. For highly nonuniform

meshes, however, this may deform the surface in an undesirable way, see e.g. Fig. 10(c).

One option to make up for this is to multiply the operator (5) by the inverse of a

lumped mass matrix [17] which is a diagonal matrix with elements equal to 1/3 of the one-

Fast denoising of surface meshes with intrinsic texture 17

(a) (b) (c) (d) (e) (f)

Figure 10. Scaling for mesh irregularity: (a) original Head mesh (2.5K Vertices) contains
different discretization rates; (b) mesh is corrupted by 10% Gaussian noise; (c) smoothed
by AL (3 iters, τ = 1, 0.29 sec); (d) smoothed by AL with lumped mass matrix scaling
(8 iters, τ = 0.02, 3.6 sec); (e) smoothed by edge length scaled-AL (8 iters, τ = 0.02, 1.4
sec); (f) smoothed by MSAL (3 iters, K = 1/3, 0.29 sec).

ring area of the vertices. However, the smaller step size required for stability, resulting in

the need for more iterations, and the higher computational cost of each iteration, make this

scaling method relatively expensive. A cheaper alternative is to use edge length scaling,

similar to the scale-dependent umbrella operator [15], because the edge lengths also contain

discretization information and are much easier to compute. Although this scaling does not

take angles between edges into account, it is sufficient for examples such as the one depicted

in Fig. 10. A scale-dependent AL operator for irregular meshes is given by

∆xi =

∑
k∈N (i)(exp(− |hi,k|2

2σ2
i

) hi,k/li,k)∑
k∈N (i)(exp(− |hi,k|2

2σ2
i

)li,k)

 ni.

The results in Figs. 10(d) and 10(e) produced using these two different scalings are very

similar. Although the edge scaling still suffers from a smaller step size, hence the need

for more iterations, the timing in Fig. 10 indicates that the weight computation in each

iteration is significantly cheaper than using lumped mass scaling.

Our MSAL scheme, unchanged, is cheaper than either of these scaling alternatives. In

Fig. 10(f) we can detect no significant distortion or unwanted artifacts, almost like when

lumped mass matrix or edge length scalings are used and even better at the intersection of

finer and coarser segments. We observe that the real contribution comes from the stronger

retrieving force toward the original surface on vertices adjacent to larger triangles in the

multiscale evolution. The algorithm with geometrically decreasing smoothing weight Kj

and multiscale version of data fidelity term (i.e. λ varies on vertices) acts not only for

retaining fine features but also for retaining the original structure of the mesh while still

removing noise. Of course, if the mesh is much more severely nonuniform, with very large

Fast denoising of surface meshes with intrinsic texture 18

Table 1. Volume comparison on the smoothed meshes.

Dragon Bunny Fandisk Head

Original 11175335 1550.7 20.243 215.0
Noisy 11197273 1551.9 20.246 215.3
AL 11110735 1545.1 19.984 202.8

MSAL 11156748 1547.5 20.180 210.5

local mesh ratios and highly differing angles, then the above observations may change.

In Table 1 we demonstrate the power for anti-shrinking of this multiscale scheme. The

interior volumes are calculated as in [9]. The volumes of four meshes smoothed by AL as

well as MSAL are recorded respectively. Clearly, the multiscale algorithm helps toward

restoring the original volumes.

5. Conclusions

We have methodically developed a fast adaptive multiscale algorithm that is capable

of retaining intrinsic texture as well as handling mesh irregularities while denoising 3D

triangular meshes. This approach does not rely directly on the availability of a continuous

diffusion process. In addition to the parameter specifying the very small total number of

iterations, the only user-specified parameter is K in Algorithm 1. The latter parameter

can be easily and intuitively adjusted to obtain purpose-dependent results, as described in

Sections 3 and 4.2 (see especially Fig. 9).

The basic iteration employs the anisotropic Laplacian (AL) operator with a new,

automatic, justified parameter choice. Then by gradually and locally adding roughness

scales to the admitted mesh, a multiscale anisotropic Laplacian (MSAL) smoothing scheme

is defined. The high level of efficiency, parallelizability and transparency of the MSAL

iteration are expressed in Algorithm 1, yielding a method that can almost automatically

achieve high quality fairing results at rapid rates. All our results can be readily reproduced

by the reader.

Note that the use of AL as the basic iteration in our multiscale scheme, although

usually rather satisfactory, is not mandatory. Not only bilateral filtering methods can

immediately replace AL. Also a more sophisticated method such as [17, 8] could be used

to replace AL in Algorithm 1, obtaining a deluxe version that could for instance yield

distinctively better edge sharpness reconstruction for certain models such as Fig. 11(a).

However, the clarity of parameter specification may be lost, and the computational cost of

such a combination could be much higher than that of Algorithm 1 as well.

Of course there are some applications where retaining intrinsic texture is less important

(e.g. [21]). Also, there are other aspects such as consistency in pattern by which intrinsic

texture may differ from random noise. Recovering intrinsic texture based on machine

Fast denoising of surface meshes with intrinsic texture 19

(a) (b) (c)

Figure 11. Multiscale scheme reconstructs large edge sharpness (each run 3 iters, 0.56
sec): (a) noisy Fandisk mesh (6.5K Vertices); (b) smoothing by AL smears sharp edges;
(c) MSAL restores edge sharpness with K = 1/2.

learning techniques is an interesting, separate challenge.

Besides intrinsic texture, another important surface feature is large sharp edges,

typically arising from CAD-like models. The AL algorithm with the mean absolute

deviation scaling occasionally does not preserve large edge sharpness very well, see

Fig. 11(b). Though this can be essentially improved using MSAL, see Fig. 11(c), some

noticeable noise is still brought back on large flat regions by this algorithm, and edge

sharpness, especially on the curved ridge, needs to be further enhanced. We have designed

a hybrid algorithm which is based on clustering techniques to handle this situation and

report on this under separate cover in [18] .

Acknowledgments

We thank Dr. Alla Sheffer for useful discussions, Dr. Shachar Fleishman for providing his

code, Ewout van den Berg for converting some 3D objects and Dan Tulpan for providing

a visualization package. We are indebted to K. Hildebrandt for providing both the data

in Fig. 8(a) and the result of Fig. 8(b). Other models presented in this paper have been

downloaded off the websites of Thouis Jones, Jean-Yves Bouguet, Mathieu Desbrun and

the Stanford 3D scanning repository.

References

[1] U. Ascher, E. Haber, and H. Huang. On effective methods for implicit piecewise smooth surface
recovery. SIAM J. Scient. Comput., 28(1):339–358, 2006.

[2] U. Ascher, H. Huang, and K. van den Doel. Artificial time integration. BIT, 47:3–25, 2007.
[3] C. Bajaj and G. Xu. Adaptive surface fairing by geometric diffusion. In Symp. Computer Aided

Geometric Design, pages 731–737. IEEE Computer Society, 2001.
[4] C. Bajaj and G. Xu. Anisotropic diffusion on surfaces and functions on surfaces. ACM Trans.

Graphics (SIGGRAPH), 22(1):4–32, 2003.

Fast denoising of surface meshes with intrinsic texture 20

[5] D. Barash. A fundamental relationship between bilateral filtering, adaptive smoothing and the
nonlinear diffusion equation. IEEE Trans. PAMI, 24(6):844–847, 2002.

[6] M.J. Black, G. Sapiro, D.H. Marimont, and D. Heeger. Robust anisotropic diffusion. IEEE trans.
image processing, 7(3):421–432, 1998.

[7] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in surface processing. In
Proceedings IEEE Visualization, pages 397–405, 2000.

[8] U. Clarenz, U. Diewald, and M. Rumpf. Processing textured surfaces via anisotropic geometric
diffusion. IEEE Transactions on Image Processing, 13(2):248–261, 2004.

[9] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregular meshes using diffusion
and curvature flow. In Proceedings SIGGRAPH, pages 317–324, 1999.

[10] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Anisotropic feature–preserving denoising of
height fields and bivariate data. Graphics Interface, pages 145–152, 2000.

[11] M. P. Do-Carmo. Riemannian Geometry. Birkhauser, Boston-Basel-Berlin, 1992.
[12] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-range images. In

SIGGRAPH, pages 257–266. ACM, 2002.
[13] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-squares fitting with sharp features.

ACM Trans. Graphics (SIGGRAPH), 24(3):544–552, 2005.
[14] S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral mesh denoising. ACM Trans. Graphics

(SIGGRAPH), 22(3):950–953, 2003.
[15] K. Fujiwara. Eigenvalues of laplacians on a closed riemannian manifold and its nets. In Proceedings

AMS, volume 123, pages 2585–2594, 1995.
[16] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for meshes. In Proceedings

SIGGRAPH, pages 325–334, 1999.
[17] K. Hildebrandt and K. Polthier. Anisotropic filtering of non-linear surface features. EUROGRAPH-

ICS, 23(3):391–400, 2004.
[18] H. Huang and U. Ascher. Fast 3d surface mesh denoising with edge preservation and mesh

regularization. Submitted, 2007.
[19] T. Jones, F. Durand, and M. Desbrun. Non-iterative, feature preserving mesh smoothing. ACM

Trans. Graphics (SIGGRAPH), 22(3):943–949, 2003.
[20] L. Kobbelt, S. Campagna, J. Vorsatz, and H. P. Seidel. Interactive multiresolution modeling on

arbitrary meshes. In SIGGRAPH Proceedings, pages 105–114, 1998.
[21] C. Lee, A. Varshney, and D. Jacobs. Mesh saliency. ACM Trans. Graphics (SIGGRAPH), 24(3):659–

666, 2005.
[22] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry operators for

triangulated 2-manifolds. In VisMath, Berlin, Germany, 2002.
[23] N. Nordstrom. Biased anisotropic diffusion - a unified regularization and diffusion approach to edge

detection. Image and Vision Computing, 8:318–327, 1990.
[24] Y. Ohtake, A. Belyaev, and M. Alexa. Sparse low-degree implicit surfaces with applications to high

quality rendering, feature extraction, and smoothing. In Proc. Symp. Geometry Processing, pages
149–158. EUROGRAPHICS Assoc., 2005.

[25] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method for total
variation based image restoration. SIAM J. multiscale model. simul., 4:460–489, 2005.

[26] J. Peng, V. Sterla, and D. Zorin. A simple algorithm for surface denoising. In Proceedings IEEE
Visualization, pages 107–112, 2001.

[27] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.

[28] G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge, 2001.
[29] E. Tadmor, S. Nezzar, and L. Vese. A multiscale image representation using hierarchical (bv,l2)

Fast denoising of surface meshes with intrinsic texture 21

decompositions. SIAM J. multiscale model. simul., 2:554–579, 2004.
[30] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface smoothing via anisotropic

diffusion of normals. In Proceedings IEEE Visualization, pages 125–132, 2002.
[31] G. Taubin. A signal processing approach to fair surface design. In Proceedings SIGGRAPH, pages

351–358, 1995.
[32] G. Taubin. Linear anisotropic mesh filters. In IBM Research Technical Report RC-22213, October

2001.
[33] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In IEEE Intl. Conf.

Computer Vision, pages 839–846, Bombay, India, 1998.
[34] J. Vollmer and R. Mencl. Improved laplacian smoothing of noisy surface meshes. EUROGRAPHICS,

18(3):131–139, 1999.
[35] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh editing with poisson-based

gradient field manipulation. ACM Trans. Graphics (SIGGRAPH), 23(3):641–648, 2004.

