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Abstract

This paper considers highly ill-posed surface recovery inverse problems, where the
sought surface in 2D or 3D is piecewise constant with several possible level values. These
levels may further be potentially unknown. Multiple level set functions are used when there
are more than two such levels, and we extend the methods and theory of our previous works
to handle such more complex situations. A rather efficient method is developed. Inverse po-
tential problems in two and three space dimensions are solved numerically, demonstrating
the method’s capabilities for several both known and unknown level values.

Key words: Inverse problem, Level set, Inverse potential, Tikhonov functional, Dynamic
regularization.

1 Introduction

Several important applications give rise to problems involving the recovery of distributed pa-
rameter functions from inverse problems with elliptic forward PDEs; see, e.g., [40, 28, 35, 12,
9, 33, 34, 23, 24, 15]. In most of these references the parameter function to be recovered, typi-
cally related to material conductivity, current, charge, or mass distribution, is assumed smooth.
This enables a reasonably stable practical reconstruction of regularized solutions using, e.g.,
Tikhonov-type functionals [43, 20, 44]. But when discontinuities arise in the distributed pa-
rameter model, which commonly occurs in practical situations, the reconstruction problem
becomes very difficult both theoretically and practically; see [29, 2] as well as the unsatisfac-
tory results reported in Section 4 upon using the popular total variation (TV) regularization.

Fortunately, it is often reasonable to assume further that the solution may take on at each
point only one of two values, thus yielding a shape recovery problem. Better results are then
obtained in a much more stable fashion using algorithms that take this a priori information
directly into account [31, 5, 7, 21, 36]. Level sets are a popular tool in this context, because they
allow description of a discontinuous unknown function in terms of a differentiable one, thus
enabling a more stable iterative process and the use of simpler and more versatile regularization
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functionals, and for their insensitivity to topological changes. Many authors have reported
rather satisfactory practical experience using this approach; see, e.g., [36, 22, 6, 10, 21, 13, 14].
For reviews on the use of level set methods for inverse problems, see [18, 41]. Some of the
algorithms described in these references can be rather inefficient, but this is not an inherent
defect of level set methods [14].

We note that at present there is want of complete theory for practical level set methods
in this context. A glimpse at the partial efforts reported in [21], where otherwise routine
tasks, such as establishing existence results for corresponding Tikhonov regularizations, become
rather delicate and mandate the addition of unlikely terms to the corresponding functionals,
provides some insight into the issues involved. Of course, the practical solution of highly ill-
posed problems with sparse data is never a completely routine task, but solution discontinuities
and corresponding level sets describing them make the analysis even more complicated. In
essence, whereas it is easy to devise a guaranteed descent method that improves a data fitting
term at each iteration step (see [36, 6] and Section 3 below), the task of choosing a level set
method that yields a reasonable shape solution in a stable way is more delicate. Nonetheless,
the methods proposed in [13, 14] provide a highly efficient and often robust approach for the
approximate solution of such problems.

Further, often situations arise where the sought model may take on at each point only one
of several values. For instance, think of l − 1 homogeneous bodies made of different materials
all buried in a homogeneous sand that serves as background. One can use n level set functions,
with n defined by

2n−1 < l ≤ 2n,

in order to describe a surface with l distinct constant values [41, 11]. If n gets large then the
additional stability that the piecewise constant modeling assumption yields evaporates [1], but
it is useful to consider cases with n = 2 or 3, say. For notational simplicity we assume until
Section 4 that l = 2n: if l < 2n then some of the 2n values can be taken the same to arrive at
l different values.

Several multiple level set approaches have been proposed in recent literature, especially in
the area of image analysis. In [42] a piecewise constant level set approach (i.e., the level set
function is assumed to be piecewise constant) using TV regularization is proposed to solve an
EIT problem with a single interior measurement. In [41] the operator P defined in (2) below
is introduced for the first time. A Tikhonov functional based on TV regularization is proposed
and minimized using gradient type methods. In [8] a multiple level set approach based on TV
regularization is proposed. Approximate solutions are obtained by minimizing a Tikhonov-TV
type functional, which is defined on a set of characteristic functions. The results of [21] have
been extended in [11] to the two level set case. It is worth noting that the multiple level set
approach used in [7, 11] to represent the solution of the inverse problem is similar to the one
considered here. However, the method proposed in this article differs from the ones introduced
in these references, and is based on the efficient level set method proposed in [13, 14].

At this point, to be more specific, we introduce some notation. A given forward operator,
F (m), predicts the data for each model argument function m = m(x), where m is defined over
a given domain Ω in 2D or 3D. In the inverse problem a model m is sought such that F (m)
matches observed data b up to the noise level in the data measurements. The forward model
is further given by

F (m) = Qu, (1a)
u = G(m), (1b)
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where Q projects the field u to data locations (e.g., along the boundary ∂Ω), and G(m) is the
inverse of an elliptic-type PDE system defined on the closure of Ω. Examples of G are given in
Section 4 and elsewhere. Importantly, we assume in addition that there are 2n values, ai1,...,in ,
ik = 0, 1, such that at each point x ∈ Ω, m(x) takes on one of these values. Then we can
describe the model m using n level set functions ψ1(x), . . . , ψn(x) as

m(x) =
∑

i1,...,in=0,1

ai1,...,inĤi1(ψ1(x)) · · · Ĥin(ψn(x)) at each x,where (2a)

Ĥi(s) =

{
H(s), i = 0,
1−H(s), i = 1,

(2b)

with H the Heaviside function. Let us write this as m = P (ψ), where ψ = (ψ1, . . . , ψn).
The so-called output least squares method would attempt to find m by fitting the data in

the least squares sense, i.e., by attempting to bring the expression

φ(ψ; 0) =
1
2
‖F (m)− b‖22 (3a)

to within the noise level. However, the Fréchet derivative (or Jacobian matrix on the discrete
level), J = F ′(m), has a nontrivial null-space in our applications and a regularization is thus
required.

A Tikhonov-type regularization then calls for the minimization with respect to ψ of

φ(ψ;α) =
1
2
‖F (P (ψ))− b‖22 + αR(ψ) , (3b)

where α is a parameter and we now consider the functional

R(ψ) =
n∑
i=1

∫
Ω

1
2
|∇ψ̂i|2 +

1
2
β1|ψ̂i|2 + β2|∇H(ψi)| . (3c)

Here ψ̂ = ψ − ψ0, with ψ0 a given reference function. This function as well as the parameters
βj ≥ 0 are to be determined in the sequel. Notice that the last integral in (3c) corresponds to
|H(ψi)|BV , the BV-seminorm of H(ψi), which is formally defined by

|v|BV (Ω) = sup{
∫

Ω
v divw dx; w ∈ C1

c (Ω)} ,

where C1
c (Ω) is the set of C1 functions with compact support in Ω. The various terms in (3c)

are all familiar, having appeared and been justified in the literature before. However, in the
sequel we will find occasions for dropping several of them (i.e., setting some of β1, β2 and ψ0

to 0).
In Section 2 we recall key points from the theory developed in [11, 21] for such a regular-

ization. For this we must choose βi > 0, i = 1, 2, and we set β1 = 1. We further extend this
theory for the case of unknown contrasts, i.e., where some of the values ai1,...,in (for a given n)
are unknown.

Of course, to practically find an approximate minimizer for (3) one must discretize the
equations, and we consider a finite volume or finite element discretization of the PDE problem
that defines the forward operator F . This involves a discrete mesh implying a certain resolution,
or mesh width h (even for nonuniform meshes), so we also consider m as a mesh function, cf.
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[25]. We further smooth the projector P , replacing the Heaviside function H in a standard
way by a differentiable function Hh whose derivative is proportional to h−1 over a segment of
length O(h) [21, 13]. The theory of Section 2 assures us at least of some regular passage to the
limit h → 0. But for a finite, positive resolution h additional approximations can be usefully
considered. In Section 3 we extend the fast methods of [13, 14] to the cases of multiple level
sets with known and unknown levels ai1,...,in , and we provide a framework that includes also
the method of [21, 11]. Our method does not employ a Tikhonov regularization, though it is
closely related to one. As was shown in [13] for the electrical impedance tomography (EIT)
problem in two dimensions, the Tikhonov-type regularization method often performs poorly in
practice, requiring in particular a delicate adjustment of the various parameters. On the other
hand, the dynamic regularization method, further extended for large scale problems in [14],
allows us to drop the Tikhonov term (i.e., set α = 0 in (3b)), and rely on a finite number of
outer and inner iterations in our scheme to regularize the problem. The only remnant of (3c)
is then a preconditioner, or smoother, which is essential for its stability.

This paper can be seen as gradually developing a more efficient and more stable method
for a family of difficult inverse problems. Curiously, the more efficient and more stable the
multiple level set method gets, the further it seems to be from our theoretical base. In Section 4
we demonstrate the efficacy of our method for an inverse potential problem [28, 21, 13, 11, 29]
in 2D and 3D. Conclusions are offered in Section 5.

2 Tikhonov-type functionals in continuous spaces

In this section we present a convergence analysis for the Tikhonov-type approach introduced
in Section 1.

2.1 Results for known level values

Here we consider the case where the level values ai1,...,in in (2a) are known. Under this assump-
tion, the operator P defined by (2) does not depend on the values ai1,...,in , i.e., P = P (ψ).

Let φ be the Tikhonov functional in (3b), where R is the H1–TV penalization term defined
in (3c) and βi > 0 i = 1, 2, are chosen as above. Since the Heaviside function H used in (2)
is discontinuous, the operator P is discontinuous as well. Thus, one cannot prove that the
Tikhonov functional in (3b) attains a minimizer on the set in (H1(Ω))n of level set functions
ψ (see [20]).

In order to guarantee existence of a minimizer of the Tikhonov functional φ, we introduced
the concept of generalized minimizers in [11]. According to this concept, φ(ψ;α) is no longer
considered as a functional on (H1(Ω))n, but as a functional defined on the w-closure of the
graph of P , contained in (H1(Ω))n × (L∞(Ω))n. This requires the introduction of a smooth
approximation to the Heaviside function H used in (2b). For ε > 0, let Hε be the function
defined by

Hε(s) =
1
2

(tanh(s/ε) + 1) . (4)

Both operators H and Hε are considered as mappings from H1 into L∞. More precisely, we
have:
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Definition 1. A generalized minimizer of the Tikhonov functional φ(ψ;α) in (3b) is defined
as a minimizer of the functional

φ̃(z, ψ;α) =
1
2
‖F (P (ψ))− b‖22 + αR(z, ψ) , (5)

on the set of admissible parameters

Ad = {(z, ψ) = (z1, . . . , zn, ψ1, . . . , ψn) ∈ (L∞(Ω))n × (H1(Ω))n ;
∃ {ψ1

k}, . . . , {ψnk} ∈ H1 and {εk} ∈ R+ with lim
k→∞

εk = 0, s.t.

lim
k→∞

‖ψjk − ψ
j‖L2 = 0 and lim

k→∞
‖Hεk

(ψjk)− z
j‖L1 = 0 for j = 1, 2, . . . , n} ,

where the penalization functional R is defined by

R(z, ψ) = inf
{ψj

k},{εk}
lim inf
k→∞

n∑
j=1

{
‖ψjk − ψ

j
0‖

2
H1 + |Hεk

(ψk)|BV
}
. (6)

Notice that the infimum in (6) is taken over all sequences {ψ1
k}, . . . , {ψnk} and {εk}, char-

acterizing (z, ψ) as an element of the set of admissible parameters Ad. In the above definition
the functional R : Ad→ R+ corresponds to a relaxation of the penalization term R in (3c).

In order to prove existence of a minimizer of φ̃(z, φ;α) in Ad, two properties of R are
required, namely, coerciveness and weak lower semi-continuity. For the proof of these properties
the assumption that F is a continuous operator w.r.t. the L1–topology is crucial [11].

In the next lemma we recall relevant properties of the generalized minimizers of φ, as well
as the above mentioned regularity properties of the functional R in (6):

Lemma 1 (Properties of generalized minimizers and relaxed penalization functional).

(a) The set of admissible parameters Ad is sequentially closed with respect to the (L1(Ω))n×
(L2(Ω))n topology.

(b) For each (z, ψ) = (z1, . . . , zn, ψ1, . . . , ψn) ∈ Ad we have
∑n

j=1

(
|zj |BV +‖ψj−ψj0‖2H1(Ω)

)
≤

R(z, ψ).

(c) If {(zk, ψk) = (z1
k, . . . , z

n
k , ψ

1
k, . . . , ψ

n
k )}k∈N is a sequence in Ad with zjk → zj in L1(Ω)

and ψjk ⇀ ψj in H1(Ω) for some (z1, . . . , zn, ψ1, . . . , ψn) = (z, ψ) ∈ Ad, then R(z, ψ) ≤
lim inf
k→∞

R(zk, ψk).

Proof. These results are straightforward generalizations of proofs given in [11], Section 3.

Once the regularity properties of R in Lemma 1 are verified, the classical analysis of
Tikhonov-type regularization methods [20, Chapter 10] applies to the functional φ, as we see
next:

Theorem 1 (Convergence analysis).

(a) (Well-Posedness) The functional φ(ψ;α) in (3b) attains generalized minimizers on Ad.

(b) (Stability) Given α > 0, the problem of minimizing φ(ψ;α) over ψ is stable in the sense
of continuous dependence of the solutions on the data b.
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In the sequel, for every α > 0, denote by (zα, ψα) a generalized minimizer of φ(ψ;α) on Ad.

(c) (Convergence for exact data) Suppose that there exists noiseless data b0 such that
F (m∗) = b0 for some “ground truth”, or “true solution”, m∗. Let b = b0 and βi > 0.
Then, for every sequence of positive numbers {αk}k∈N converging to zero there exists
a subsequence, denoted again by {αk}l∈N, such that (zαk

, ψαk
) is strongly convergent in

(L1(Ω))n×(L2(Ω))n. Moreover, the limit (z, ψ) is an element of Ad satisfying F (P (z)) =
b0.

(d) (Convergence for noisy data) Let α = α(δ) be a function satisfying α(δ) δ→0−→ 0 and
δ2α(δ)−1 δ→0−→ 0. Moreover, let {δk}k∈N be a sequence of positive numbers converging
to zero, and let bδk ∈ Y be corresponding noisy data satisfying ‖bδk − b0‖ ≤ δk. Then
there exists a subsequence, denoted again by {δk}, and a sequence {αk = α(δk)} such that
(zαk

, ψαk
) converges in (L1(Ω))2×(L2(Ω))2 to some (z, ψ) = (z1, . . . , zn, ψ1, . . . , ψn) that

satisfies F (m) = b0 for m = m(z) = P (z1, . . . , zn).

Proof. These results are straightforward generalizations of proofs given in [11], Section 4.

In [11] the generalized minimizers of φ(ψ;α) are approximated by minimizers of smoothed
functionals φε(ψ;α), ε > 0. Then the first order optimality conditions for a minimizer of these
smoothed functionals are used as motivation for the derivation of a level set type method.

2.2 Results for unknown level values

Here we consider the case where not all level values ai1,...,in in (2a) are known. Assume
that ai1,...,in are determined by lu ≤ l unknown model parameters. Let us parameterize the
unknown levels in terms of the variables m1, . . . ,mlu which are to be recovered, i.e., ai1,...,in =
ai1,...,in(m1, . . . ,mlu) with prescribed (model) functions ai1,...,in . We now proceed as before,
treating the additional degrees of freedom m1, . . . ,mlu on par with the level set functions.
Notice that the operator P defined by (2) can be written as P = P (ψ,m1, . . . ,mlu), or in
shorthand notation, P = P (ψ,mu).

Analogous to (3), we define the Tikhonov functional

Φ(ψ,mu;α) =
1
2
‖F (P (ψ,mu))− b‖22 + αS(ψ,mu) , (7)

where S(ψ,mu) = R(ψ)+ β3

2

lu∑
i=1
|mi−mi,0|2, and mi,0 are given initial guesses for the unknown

values mi, i = 1, . . . , lu.
Notice that the functional Φ has lu more degrees of freedom than the functional φ in (3b).

Definition 2. A generalized minimizer of the Tikhonov functional Φ(ψ,mu;α) is defined as a
minimizer of the functional

Φ̃(z, ψ,mu;α) =
1
2
‖F (P (ψ,mu))− b‖22 + αS(z, ψ,mu) , (8)

on the set of admissible parameters Ãd = Ad × Rlu, where the penalization term S is defined

by S(z, ψ,mu) = R(z, ψ) + β3

2

lu∑
i=1
|mi −mi,0|2.

Analogous to Lemma 1 we have the following:
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Corollary 1. (a) The set Ãd is sequentially closed with respect to the (L1(Ω))n×(L2(Ω))n×
Rlu topology.

(b) The functional S(z, ψ,mu) is coercive and weak lower semi-continuous on the set of
admissible parameters Ãd.

Sketch of the proof. The proof of item (a) follows from Lemma 1(a) and the fact that Rlu is
a metric space. To prove item (b), notice that up to a multiplicative constant the functional

S(z, ψ,mu) is obtained by adding the term
lu∑
i=1
|mi−mi,0|2 toR(z, ψ). Then, using Lemma 1(b)

and (c), together with the fact that the Rlu-norm is coercive and weak lower semi-continuous,
the assertion in item (b) follows. �

Once the regularity properties of S in Corollary 1(b) are established, the classical analysis
of Tikhonov type regularization methods applies to the functional Φ(ψ,mu;α):

Theorem 2 (Convergence Analysis).

(a) The Tikhonov functional Φ(ψ,mu;α) in (7) attains generalized minimizers on Ãd.

(b) Given α > 0, the problem of minimizing Φ(ψ,mu;α) is stable in the sense of continuous
dependence of the solutions on the data b.

For every α > 0, denote by (zα, ψα,mu,α) a generalized minimizer of Φ(ψ,mu;α) on Ãd.

(c) Suppose that there exists noiseless data b0 such that F (m∗) = b0 for some ground
truth m∗. Let b = b0 and βi > 0. Then, for every sequence of positive numbers
{αk}k∈N converging to zero there exists a subsequence, denoted again by {αk}l∈N, such
that (zαk

, ψαk
,mu,αk

) is strongly convergent in (L1(Ω))n× (L2(Ω))n×Rlu. Moreover, the
limit (z, ψ,mu) is an element of Ãd satisfying F (P (z,mu)) = b0.

(d) Let α = α(δ) be a function satisfying α(δ) δ→0−→ 0 and δ2α(δ)−1 δ→0−→ 0. Moreover, let
{δk}k∈N be a sequence of positive numbers converging to zero and bδk ∈ Y be corre-
sponding noisy data satisfying ‖bδk − b0‖ ≤ δk. Then, there exist a subsequence, denoted
again by {δk}, and a sequence {αk = α(δk)} such that (zαk

, ψαk
,mu,αk

) converges in
(L1(Ω))2×(L2(Ω))2×Rlu to some (z, ψ,mu) = (z1, . . . , zn, ψ1, . . . , ψn,m1, . . . ,mlu) such
that F (m) = b0 for m = m(z,mu) = P (z1, . . . , zn,m1, . . . ,mlu).

Sketch of the proof. Since (0, 0, 0) ∈ Ãd, the set of admissible parameters is not empty.
Then, given a minimizing sequence {(zk, ψk,mu,k)} for Φ̃, it follows from the boundedness of
the sequence {Φ̃(zk, ψk,mu,k;α)} that {(zk, ψk,mu,k)} is bounded in BV (Ω)n×H1(Ω)n×Rlu .
Thus, the Sobolev compact embedding theorem together with the Bolzano-Weierstrass theorem
guarantee the existence of a subsequence converging to some (z, ψ,mu) ∈ L1(Ω)n ×H1(Ω)n ×
Rlu . Now, Corollary 1(a) guarantees that (z, ψ,mu) ∈ Ãd. Arguing aided by Corollary 1(b)
and the weak continuity of F and P , we deduce that (z, ψ,mu) is a generalized minimizer of
Φ, proving item (a).
The proof of assertion (b) follows the lines of the proof of [20, Theorem 10.2] (notice that
Corollary 1(b) is essential to this proof).
If the data is exact, then the sequence of real numbers {Φ̃(zαk

, ψαk
,mu,αk

;αk)} is bounded.
Thus, the sequences {zαk

}, {ψαk
} and {mu,αk

} are bounded in BV (Ω)n, H1(Ω)n and Rlu ,
respectively. Arguing as in (a), one can extract subsequences (denoted by the same indexes)
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converging to some limit (z, ψ,mu) in the topology of (L1(Ω))n × (L2(Ω))n × Rlu . Moreover,
(z, ψ,mu) ∈ Ãd. Now, arguing aided by the continuity of F and the lower semi-continuity of
S, one concludes that F (P (z,mu)) = b0, proving (c).
The existence of (z∗, ψ∗,m∗u) ∈ Ãd with F (P (z∗,m∗u)) = b0 follows from the assumptions in
item (d). Thus, Φ̃(zαk

, ψαk
,mu,αk

;αk) ≤ δ2
k + αkS(zαk

, ψαk
,mu,αk

). Taking the limit k →∞,
it follows from the assumptions that ‖F (P (zαk

,mu,αk
)) − bδk‖ → 0 as k → ∞. Therefore,

limk→∞ F (P (zαk
,mu,αk

)) = b0. On the other hand, it follows from the definition of Φ̃ that
S(zαk

, ψαk
,mu,αk

) ≤ δ2
kα
−1
k + S(z∗, ψ∗,m∗u). Thus, we conclude from the assumptions that

lim supk→∞ S(zαk
, ψαk

,mu,αk
) ≤ S(z∗, ψ∗,m∗u). The proof of assertion (d) follows similarly to

the proof of assertion (c). �

3 Numerical algorithms

As mentioned in Section 1, our first step for designing numerical algorithms is to discretize
the PDE problem that gets inverted in (1b) using a finite volume or finite element method.
This implies a mesh with finite resolution h and we correspondingly discretize also m, ψ, and
H. There is also a finite number of data values in b. Abusing notation in an obvious way
and reshaping mesh functions into vectors, we can write the discretized forward problem again
as (1), where m and u are now vectors and Q becomes a matrix with typically many more
columns than rows. Also define the Jacobian matrices

J =
∂F

∂m
and Ĵ =

∂F

∂ψ
, (9)

see, e.g., [24]. Finally, defining

P ′ =
∂P (ψ)
∂ψ

and P ′i =
∂P (ψ)
∂ψi

we obtain
Ĵ = JP ′ .

Note that P ′ is block diagonal, since P ′i is diagonal.

3.1 Minimizing discrete Tikhonov-type functionals

Let us assume at first that the levels ai1,...,in are known. This assumption is removed towards
the end of the present section. The necessary conditions for a minimum of φ(ψ;α) in (3b) are

∇ψφ(ψ;α) ≡ ĴT (F (P (ψ))− b) + αR′(ψ) = 0. (10)

Further, on the discrete level, for all the methods described below the perimeter of the recon-
structed shapes is controlled also by other means (see the first paragraph of Section 3.2), so
we conveniently set β2 = 0 in (3c). Thus, consider

R′(ψ) =

(β1I −∆)ψ̂1

...
(β1I −∆)ψ̂n

 , (11)

with the differential terms appropriately discretized.
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A damped Gauss-Newton method for solving this minimization problem leads to the fol-
lowing update rule for ψ:

K(ψ;α) δψ = −∇ψφ(ψ;α) , δψ =

δψ
1

...
δψn

 , (12a)

ψ ← ψ + τδψ, (12b)

K(ψ;α) = ĴT Ĵ + α

β1I −∆ 0
.. .

0 β1I −∆

 = ĴT Ĵ + α diag(β1I −∆) . (12c)

The default value for the step size is τ = 1, and it gets decreased if necessary by a standard
weak line search [13] in order to obtain a sufficient decrease in φ(ψ;α).

In [11], following [21], the authors ignore the expensive first term in K(ψ;α) and set β1 = 1.
They also update the reference function ψ0 at the beginning of each iteration (or “time step”),
setting it to the current ψ and holding it fixed for the duration of the current iteration. This
yields an iterated Tikhonov method [38, 39]. We have tested this method on the problem
described in Sections 4.1–4.2. It produces qualitatively similar results to those obtained by the
method described next, thus validating both programs, and has the advantage of providing a
smooth, stable approach to the solution. However, dropping the data fitting contribution in the
Gauss-Newton matrix also slows down convergence significantly, and the methods described
below are often faster by as much as two orders of magnitude.

3.2 Fast dynamic regularization

In [13, 14] we have proposed a dynamic regularization method where we set α = 0 in the
right hand side of (12a). Note that the resulting iterative scheme can no longer be considered
as optimizing a Tikhonov functional. Instead, terminating the iteration after a finite number
of steps yields regularization [13]. Further, we observed there that using β1 = 0 or β1 = 1
produced indistinguishable results, so we simply set β1 = 0 here. Unlike the fast Tikhonov-type
methods studied in [13], this method does not require β2 > 0, i.e., we can set β2 = 0. The role
of the BV term is to penalize rough boundaries, to arrive at a smooth reconstruction, and in
practice we have found that the discretized Laplacian ∆ used in the dynamic regularization
scheme already takes care of this smoothing. All of this has the combined effect of replacing
the iteration (12a) by(

ĴT Ĵ − α diag(∆)
)
δψ = −ĴT (F (P (ψ))− b) . (13)

Note that since the matrices in (13) are nonsingular for α > 0 (we ensure this in a standard
way) the obtained direction δψ is a descent direction with respect to the output least squares
function φ(ψ; 0) defined in (3a). With a careful line search we obtain a monotonic decrease in
φ(ψ; 0) as the iteration proceeds, and we use the discrepancy principle directly on this function
to stop the iteration. This process is therefore more direct than the corresponding one using
continuation with Tikhonov functionals. Indeed, the method is best considered as directly
attempting to minimize φ(ψ; 0) until noise takes over, with the α-term in (13) stabilizing the
matrix to keep it away from singularity.

Note that due to the smoothing role of ∆ one cannot simply replace it by the identity, as the
Levenberg-Marquardt method would have it. In fact, for Tikhonov-type regularization, even
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the discretized Laplacian operator with natural boundary conditions does not always suffice to
produce a desirable level set function. We refer to [13] for another regularization term, called
R4n there, which occasionally does a better job in this respect.

For larger problems, including almost anything in 3D, the explicit calculation and storage
of the sensitivity matrix J quickly become prohibitive. A preconditioned conjugate gradient
(PCG) inner iteration using the Laplacian as a preconditioner is thus employed instead. The
preconditioner acts as a smoothing operator on the iterative solution, rather than as a means
to speed up convergence. Indeed, without the preconditioner we can also obtain convergence
in not too many more iterations, but the solution is undesirably rough, with many fragmented
regions. We thus view the preconditioner as a smoothing operator.

A single inner PCG iteration requires only two evaluations of F for a matrix-vector multi-
plication in (13). Furthermore, instead of solving the system (13) to high accuracy using PCG
we can apply only a few inner iterations, say 3 or 5, which has a regularizing effect, cf. [26],
and this allows not only a very cheap overall iteration but also the reduction of α to (almost)
0. A highly efficient algorithm is thus obtained, as demonstrated in Section 4 and in [14].

Unknown levels

With a small variation of the above method we can also solve problems where not all values
ai1,...,in are known. We consider the most general case where they are determined by lu un-
known model parameters. As in Section 2.2 these are parameterized in terms of the variables
m1, . . . ,mlu .

We proceed as before, treating the additional degrees of freedom m1, . . . ,mlu on par with
the level set functions. This leads again to the iteration (13), where the vector δψ is replaced
by (δψ, δm1, . . . δmlu)T and the modified Jacobian Ĵ is now defined as

Ĵ =
∂F

∂(ψ,m1, . . . ,mlu)
,

which can be written as

Ĵ = J

P ′, ∑
i1,...,in=0,1

Ĥi1 · · · Ĥin

∂ai1,...,in
∂(m1, . . . ,mlu)

 .

The matrix forms of these equations are clarified in Fig. 1.

4 Numerical experiments

In this section we consider several examples with lu < l specified and n = dlog2(l)e.
The cost of one iteration, or step, of our algorithm depends mainly on the cost of solving

the PDEs involved. There are two types of such PDEs. The first is the system (1b) that gets
solved for the forward problem. This is also the essential effort in carrying out one matrix-
vector multiplication involving Ji or JTi [24, 14]. Let us denote this cost by CF . The other PDE
inversion involves the discrete Laplacian equipped with natural boundary conditions (and made
nonsingular in a standard fashion), and we denote this cost by CP . For the inverse potential
problem discussed in Section 4.1, CF ≈ CP , whereas for EIT or DC resistivity problems
considered in [14] the forward solution cost CF dominates CP .

Using this, the cost of evaluating the right hand side in (13) is estimated by (n + 1)CF ,
where n is the number of level set functions. For the iteration of [11] the cost is therefore
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(a) Pictorial representation of matrices and vectors (b) ĴT (F (P (ψ))− b)

(c) ĴT Ĵ(δψ, δm1, . . . , δmlu)T

Figure 1: The matrix structure of terms of (13) in a picture. For a grid with N points,
boundary data on NB points, lu unknown values mj and n level sets, the P ′i are N × N
diagonal matrices, J is NB ×N , and ∂P

∂(m1,...,mlu ) is N × lu.

nCP + (n+ 1)CF . This is not much more than the cost of a simple gradient descent iteration.
The iteration in (13) can be more expensive, though. If a fixed number Nin of PCG inner
iterations is used then the cost of one outer iteration is estimated by n(2CF +CP )Nin + (n+
1)CF .

4.1 Inverse potential problem

Our generic test problem in this paper is similar to the one considered in [11, 21, 13, 28]. The
forward problem F (m) consists of solving on a domain Ω, for a given source function m(x),
the Poisson problem

−∆u = m, in Ω, (14)
u = 0, on ∂Ω,

and obtaining predicted data Qu as the values of the derivative of u on the boundary ∂Ω. The
inverse problem then consists of the recovery of m(x) from the boundary data. We thus have
for G(m) in (1b) the solution of a simple Poisson problem.
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Note that this inverse problem has no unique solution even under idealized conditions [27,
29, 28], unlike the EIT problem. A generalization of this inverse problem, with the Laplacian
in (14) replaced by a generalized Poisson operator with a complicated conductivity structure,
has applications in inverse gravimetry [4, 30], EEG [32], ECG [3], and EMG [16, 15].

In those applications the solution studied is often the minimum norm solution. Another
favourite regularization method is the “smooth solution”, obtained from a Tikhonov penalty
function discretizing

∫
Ω |∇m|2. However, the minimum norm solution method has a tendency

to place the sources as close as possible to the boundary, whereas the smooth solution method
introduces excessive smearing of sharp features. In recent years much attention has been
devoted to total variation (TV) regularization, which involves a Tikhonov penalty functional
discretizing a standard modification of

∫
Ω |∇m| in an attempt to preserve jumps in m; see,

e.g., [44, 2, 30]. In the present context, however, this method does not perform well either, as
we shall see.

In the sequel, m is assumed to be piecewise constant with three possible values m1, m2, and
m3, i.e., l = 3. Without loss of generality we can set the background m3 value to 0, as it can
always be reset by a redefinition of variables in (14). Even under these restrictions, though,
the solution is not unique, and with our method the selection between possible solutions is
made by the choice of initial guess.

The resulting number of level set functions is n = 2, and in (2a) we set a00 = a11 = 0,
a01 = m1, and a10 = m2. Unlike [11] where finite elements were used, we discretize (14) using
the standard finite difference scheme on a uniform mesh with spacing h. The model m is
discretized as a piecewise constant function on the dual mesh. In approximating (2) we use
(4) with ε = h.

4.2 Numerical experiments in 2D

In this section we follow [11] in the experimental setup, selecting the unit square for Ω and ob-
taining predicted data Qu as the outward normal derivative of u on the mesh points discretizing
the entire boundary ∂Ω.

We have selected a 64×64 discretization mesh, i.e., h = 2−6. (Similar results were obtained
upon using h = 2−7.) At first we experiment with known values mi. The “true solution” de-
picted in Fig. 2(a) was used on a mesh with width h/2 to generate artificial “exact data” on the
entire boundary mesh, to which we added 3% Gaussian noise to create the data used in the fol-
lowing experiment. For comparison with our level set based reconstructions we computed the
minimum norm solution, the “smooth solution” and the TV solution, depicted in Figs. 2(b-c).
The latter two reconstructions were computed by minimizing the standard Tikhonov regu-
larized least-squares data fitting error function, and selecting the regularization parameter α
using the discrepancy principle [20], to obtain a misfit (defined in (15) below) of about 5%.

The minimum norm solution is concentrated near the boundary, as predicted, and as such is
the worst. The smooth solution and the TV regularized solution are visually indistinguishable!
The reason why the TV regularization fails to sharpen the edges, as it is reputed to do in image
processing applications such as denoising and deblurring, is that there is no information present
in the surface data to indicate sharp edges in the reconstructed solution. Note that even though
the TV regularization allows for sharp edges, it still discourages them. The penalty on jumps
in m can be further reduced by other functionals such as Tukey’s [37], but this introduces non-
convexity and thus potentially spurious solutions into the nonlinear Tikhonov minimization
process. Note that our results contrast the findings in [4], where TV regularization was claimed
to lead to reconstructions with sharp edges. Knowledge about edge existence and location was
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(d) Level set initial guess

 

 

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

(e) Nout = 150, Nin = 1
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(f) Nout = 10, Nin = 3
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(g) Nout = 6, Nin = 5
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(h) Nout = 5, Nin = 50
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(i) Data fit (red is recon-
structed)

Figure 2: Model reconstruction for the inverse potential problem in 2D with known mi-levels.
The minimum norm, smooth solution and TV reconstructions all yield poor results. The level
set reconstructions are much more pleasing. The choices Nin = 3 or 5 yield particularly efficient
computations.

introduced there through their initial guess, constituting a restriction which we avoid here.
Turning to the level set based method, we initialized the level set functions as depicted in

Fig. 2(d). Resulting reconstructions are shown in Figs. 2(e–h) based on various choices for the
number of inner iterations. The process is terminated in each case after the misfit value falls
below 5%. The misfit is defined as

||F (P (ψ))− b||2/||b||2 . (15)

Employing Nin = 3 or 5 for (13) with α = 0 yields a very stable and fast process, despite
the topological change from initial guess to final shapes. With this, the iteration terminates
after Nout = 10 or 6 approximate Gauss-Newton iterations, respectively, with misfit ≈ 3%. If
we take Nin = 50, corresponding to an attempt to solve the outer iteration (13) exactly, then
of course we must select α > 0 or else we would be attempting to solve a singular system.
The choice α = 10−3 yields results of a similar quality at about 10 times the price, compare
Figs. 2(g) and 2(h). If we set Nin = 1 then we are doing preconditioned steepest descent
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[14, 17], and the iteration terminates at Nout = 150. Note the excellent data fitting depicted
in Fig. 2(i), which is common to all level set method variants.

Turning to the method of [11, 21], we estimate costs as in the beginning of Section 4. Note
that using Nin = 5 and CF = CP the cost of one iteration of (13) is equivalent to that of
33/5 ≈ 7 artificial time steps of [11]. Thus, Nout = 6 outer iterations of (13) are equivalent
in computational cost to less than 50 simpler artificial time steps. Since simple artificial time
methods typically require thousands of steps to converge (cf. [44, 19, 7, 21]), the demonstrated
superiority of (13) is by a significant margin.

If we start the iteration with poor initial conditions, for example with m1 and m2 reversed,
the iteration can get stuck in a local minimum, as depicted in Fig. 3. In order to arrive at the
correct solution the reconstructed regions would have to change places, and in the process of
doing so would temporarily have to increase the data fitting measure. In this run, after 100
additional outer iterations the misfit did not decrease any further.
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(b) Nout = 50, Nin = 5,misfit =
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1 2 3

−0.2

−0.15

−0.1

−0.05

0

(c) Data fit (red is recon-
structed)

Figure 3: When the iteration is started with an unfortunate configuration the solution may
not converge and get stuck in a local optimum. The misfit in this case did not reduce below
5%.

Next we assume that the exact levels of m1 and m2 are unknown in the same setup as
above, i.e., lu = 2, l = 3. The reconstruction results generally depend on the quality of
the initial guesses m0

1 and m0
2, so really our procedure is effective for sharpening ball-park

estimates, not for determining the values of mi from thin air. Fig. 4 displays some relatively
successful reconstructions obtained using Nin = 5 and α = 0. Interestingly, the unfortunate
initial condition as in Fig. 3 is now easily recovered from, see Fig. 4(a). This is because the
additional degrees of freedom allow the shapes to “change identity”, by changing their mi

values.
The added flexibility with respect to the initial guess configuration afforded when the mi

levels are assumed unknown suggests a method for recovery from unfortunate initial guesses
for the problem with known mi levels. We start with a few iterations as in Fig. 4(a) and then
switch to iterating with the known mi values. If the initial choice was such that the shapes
would have had to change place or pass though each other, the effect can be approximately
achieved within the first couple of iterations by refining the parameters mi.

This is demonstrated in Fig. 5. Of course, the above is not a foolproof recipe for solving
all hard, large, nonconvex problems of the type considered here, but it is a simple idea that is
easy to program and apply, and which occasionally works well.
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2 = 1.0
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(d) m0
1 = 0.5, m0

2 = 1.0

Figure 4: Model reconstruction for the inverse potential problem with unknown m1 and m2

levels. Results: (a) m1 = 0.91, m2 = 1.48, misfit = .025, Nout = 10; (b) m1 = 1.04, m2 =
2.11, misfit = .026, Nout = 10; (c) m1 = .96, m2 = 1.71, misfit = .026, Nout = 9; (c)
m1 = .75, m2 = 1.83, misfit = .024, Nout = 9.
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1 = 2, m0

2 = 1,
i.e., same as in Fig. 3; result after
3 iterations
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(b) Starting with the result of (a)
for known levels m1 = 1, m2 = 2;
result after 6 iterations

Figure 5: Obtaining good results for the problem of Fig. 3: (a) a warm start configuration is
obtained first by pretending that the mi are unknown and applying 3 iterations; (b) using the
results of (a) as the initial configuration, good results are obtained for the known mi.
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4.3 Numerical experiments in 3D

(a) True model (b) Initial guess

(c) Nout = 6, Nin = 5, known levels (d) Nout = 8, Nin = 5, unknown levels

Figure 6: Model reconstruction in 3D for the inverse potential problem with known and un-
known mi-levels, from data on the boundary. The green (light) shapes in the true model have
m1 = 1, the red (dark) shapes have m2 = 2. The shapes defined by level set functions ψ1 and
ψ2 have the corresponding colors. The recovered m values for the experiment with unknown
levels starting at m0

i = 3 were m1 = 1.42 and m2 = 1.78.

We have tested the fast method extending [14] and described in Section 3.2 for the same
problem setup as above but in 3D, with the unit cube replacing the unit square for the domain
Ω. A uniform 323 grid was used for the inversion and a uniform 643 grid was employed for the
artificial data generation with the same amount of noise (3%) as before added. The discretiza-
tion of the forward problem is the obvious extension of the 2D method. The forward problem
is solved iteratively using PCG with an incomplete Cholesky factorization as a preconditioner.

Fig. 6 depicts typical reconstructions with known levels m1 = 1 and m2 = 2 and with
unknown levels starting at m0

1 = m0
2 = 3. As before we have chosen initial guesses such that

an iterative process converging to something near the “true model”, or “ground truth”, would
have to go through a topological change. This latter aspect of the setup often proves to be a
major stumbling block for methods that do not use level sets; see Section 4.2 as well as, e.g.,
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[14].
The resulting performance of our method is essentially similar to that recorded in the 2D

case. As such, the efficiency is more impressive in 3D because there are many more grid points
and hence each matrix-vector multiplication is more expensive. A single outer iteration on our
3Ghz desktop computer takes about 15 seconds.

4.4 Partial surface data in 3D

In an attempt at a somewhat more realistic simulation resembling gravimetry, we restrict the
data to the upper surface, and test how well two distinct objects with densities 1 and 2 can
be recovered when they are placed deeper and deeper. We place two objects at eight different
depths, and reconstruct their positions (thus, there are a total of eight experiments). Again
the background density is 0. The two objects are depicted in Fig. 7(a,b), and the last two
rows of subfigures in Fig. 7 show a side view of their positions at various depths from almost
touching the upper surface (where the data is taken) to all the way at the bottom. The shapes
and locations are then reconstructed using three methods: (i) our present fast method with
two level set functions with known values, i.e., l = 3, lu = 0, n = 2, m1 = 1, m2 = 2, m3 = 0,
see Figs. 8 and 11; (ii) using TV regularization with the results thresholded, see Figs. 9 and 12;
and (iii) our method from [14] using one level set function with assumed density m1 = 1 and
background m2 = 0, see Figs. 10 and 13. The latter illustrates the robustness of the method
against modeling uncertainties. As before we injected 3% artificial noise, set Nin = 5, and
terminated the iteration at a misfit of 5%. The number of outer iterations varied between 5
for shallow objects and up to 50 for the deepest objects.

We see that beyond a certain depth the two level set method can no longer distinguish
between the two densities, and both objects are identified as having mass 2, yet the localization
of the objects remains fairly accurate. By contrast the TV regularization method cannot resolve
the depth of the objects at all, and it finds a solution with an equivalent source distribution
near the surface. The reconstruction with one level set shows significant shape distortions for
objects near the surface, but for deeper objects it tracks the depth only slightly less accurately
than the two level set method.

We have also experimented with the levels m1 and m2 taken to be unknown. However,
the results are not good enough to be reproduced here: the reconstruction favors large objects
with low density near the surface. This is not surprising as the potential field of a ball of radius
ρ and fixed total mass (or charge) µ is independent of ρ outside the ball, so the actual density
cannot be recovered for distant sources.

5 Conclusions

In this paper we have extended the methods and theory of our previous works [21, 11, 13, 14] to
handle highly ill-posed surface recovery inverse problems, where the forward problem involves
inverting elliptic PDEs, and where the sought surface in 2D or 3D is piecewise constant with
several (not just two) levels that are potentially unknown. Multiple level set functions are
used.

Currently, there is no adequate theory to support practical methods for this class of prob-
lems. The theory developed in Section 2, which extends that developed in [21, 11], helps to
highlight some of the difficulties involved: although in practice many technical difficulties are
avoided by using the smoothed Hh rather than H, the limit case as h→ 0 remains fragile.
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(a) True model (objects
near top)

(b) Top view of true
model

(c) Initial configuration
for 2 level set functions

(d) Initial configuration
for 1 level set function

(e) True model at 1/8
depth, side view

(f) True model at 1/4
depth, side view

(g) True model at 3/8
depth, side view

(h) True model at 1/2
depth, side view

(i) True model at 5/8
depth, side view

(j) True model at 3/4
depth, side view

(k) True model at 7/8
depth, side view

(l) True model at bot-
tom, side view

Figure 7: Recovery of two objects of density 1 (green/light) and 2 (red/dark) from data on the
top surface only, as described in Section 4.4. The initial configurations for the reconstruction
based on two level sets and on one level set are depicted in (c) and (d), respectively. The last
two rows depict a side view of the true model with the objects placed at various depths.

We have further placed the methods developed in the above references on a common plat-
form that allows understanding their relative logic and merit. The methods presented and
developed in Section 3 get progressively more efficient and, frustratingly, also seemingly fur-
ther away from supporting theory. The method that we end up using in practice, presented in
Section 3.2 for both cases of known and unknown levels, no longer uses a Tikhonov-type regu-
larization and relies for smoothing effects on a limited number of PCG inner iterations. This
yields efficiency that in many instances improves by an astounding amount on other methods
that have been proposed in the literature in recent years, see for example [19, 7, 18, 11], re-
ducing typical CPU run times on a laptop from several hours to a minute or two. Correctness
of this method has been verified by comparing against another method from Section 3.1.

Our fast method has been tested here on several inverse potential problems in two and
three space variables. It also applies to other problems such as EIT, DC resistivity and elec-
tromagnetic data inversion [14, 17], although we have not tested cases of unknown levels for
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Figure 8: Side views of reconstructions of two objects of density 1 (green/light) and 2
(red/dark) at different depths from data on the top surface only, using two level set func-
tions. Compare respectively with the true models in Fig. 7(e-l). The noise level was 3% and
the iteration was terminated when the misfit fell below 5%. Observe the good localization
achieved even in depths where the two nonzero densities can no longer be distinguished from
each other.

those instances. In addition to being fast, an important advantage of our method is that there
is no need to choose the regularization parameter α.

For the inverse potential problem, where the data are given only on the boundary, we
have shown that such information that is not extractable with a TV regularization can yield
successful reconstructions with a method that uses a few level set functions. A clear case has
been made for the use of our fast multiple level set method in practical applications.

For cases with unknown levels mi, reasonable recovery can often be realized from ball-park
estimates of the levels. Moreover, we have shown an example where pretending not to know
the levels has in effect improved the initial guess to a point where an impasse created by a bad
initial guess got resolved. On the other hand, the practical use of the method for gravimetry
problems in the presence of unknown mi is less clear.

Our level set functions ψi are inH1(Ω). One may argue that using instead level set functions
that are required to be only in L2(Ω) (as, e.g., in [36]) could simplify calculations. However,
we have found that using the smoother level set functions produces a more stable iterative
procedure with a more logical shape evolution. Throughout many calculations we have not
encountered any need to re-initialize, as is common in other level set implementations. The
term |∇ψ̂i|2 in (3c), which yields the Laplacian operator in (12c) or, for the case α = 0,
corresponds to the Laplacian preconditioner, is at the heart of our algorithms. With it we
obtain extremely efficient and stable methods, while replacing this Laplacian by the identity
often produces poor results.
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