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Fig. 1. We propose a new time integrator for elastodynamic simulations that can efficiently handle very stiff and nonlinear constitutive material models while
maintaining good stability and avoiding unwanted visual artifacts. No solution of nonlinear algebraic equations is needed. A stiff bridge (a) modeled with
nearly 100K tetrahedra exhibits both slow oscillations that are visually very important and a huge number of high frequency oscillations. The semi-implicit
backward Euler (SI) integrator can excessively damp out the important scale motions. Our method, SIERE, can integrate such systems effectively. (b) SIERE
(cyan) also has better damping behavior than SI (pink) upon collision. (c) SIERE can capture salient features of complex objects efficiently.

Physics-based simulation methods for deformable objects suffer limitations

due to the conflicting requirements that are placed on them. The work horse

semi-implicit backward Euler method (SI) is very stable and inexpensive, but

it is also a blunt instrument. It applies heavy damping, that depends on the

time step, to all solution modes and not just to high frequency ones, and as

such makes simulations less lively, potentially missing important animation

details. At the other end of the scale, exponential methods (ERE) are known

to deliver good approximations to all modes, but they get prohibitively

expensive and less stable for very stiff material. In this paper we devise a

hybrid, semi-implicit method called SIERE that allows the previous methods

SI and ERE to each perform what they are good at. To do this we employ at

each time step a partial spectral decompositionwhich picks the lower, leading

modes, applying ERE in the corresponding subspace. The rest is handled (i.e.,

effectively damped out) by SI. No solution of nonlinear algebraic equations

is required throughout the algorithm. We show that the resulting method

produces simulations that are visually as good as those of the exponential

method at a computational price that does not increase with stiffness, while
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displaying stability and damping with respect to the high frequency modes.
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1 INTRODUCTION
Physics-based simulations of deformable objects are ubiquitous in

computer graphics today. They arise in various applications includ-

ing animation, robotics, control and fabrication. For almost two

decades the semi-implicit backward-Euler (SI) method of Baraff

and Witkin [1998], has been widely employed. This method al-

lows for stable simulations even when large time steps are used

for efficiency reasons, and it is very stable when incorporating con-

tacts and collisions due to its heavy damping and error localization

properties. Moreover, numerical damping is in agreement with the

observation that our visual system does not detect high frequency

vibrations, even when objects with large Young’s modulus are simu-

lated. However, recent years have also seen growing concerns that

heavy numerical damping may be unsuitable for many purposes,

because it can only be controlled via the time step size, so it does not

distinguish phenomena related to material heterogeneity and more

complex damping forces [Chen et al. 2018; Chung and Hulbert 1993].

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 • Yu Ju (Edwin) Chen, Seung Heon Sheen, Uri M. Ascher, and Dinesh K. Pai

Use of the SI method in applications such as control and fabrication

has also been considered debatable [Chen et al. 2017]. A further con-

cern is that SI has long been known to occasionally diverge wildly

where the fully implicit backward Euler (BE) still yields acceptable

results. This phenomenon, demonstrated in Sections 4.1 and 4.2, is

due to divergence in low frequency modes.

Exponential time integration methods have been introduced rel-

atively recently. These methods are attractive because, although

non-conservative, they produce only little damping and approxi-

mate the entire modal spectrum acceptably well. These methods,

like SI and unlike the full BE and various conservative methods,

avoid the need of solving nonlinear algebraic equations at each

time step [Chen et al. 2018; Michels et al. 2017]. However, their

performance cost becomes prohibitive when the simulated system

of differential equations in time is stiff, which happens for large

Young’s modulus values or upon using a fine spatial discretization.

See Figure 2 and Table 2.

In this paper we combine the exponential Rosenbrock Euler (ERE)

integrator described in [Chen et al. 2018] with the SI method in

a manner that allows each to concentrate on what it is good at

and improve upon the other method’s deficiencies. The result is

a semi-implicit integrator that outperforms both its predecessors,

especially for stiff problems: it produces animations that are similar

to the exponential integrator’s at a computational cost that does not

increase as the simulated object gets stiffer.

The key idea is to consider, at each time step, the appropriately

transformed assembly of forces in the equations of motion as a

weighted sum of many high frequency modes that are dealt with

well by the heavily damping SI method, and a few low-to-medium

frequency modes (which are the ones that contribute most to our

visual perception [Chen et al. 2019]) that are dealt with efficiently

by ERE. No nonlinear algebraic equations arise, even in the presence

of nonlinear elastic forces. To do this we employ at each time step a

partial spectral decomposition which computes the lower, leading

modes, and apply ERE in the corresponding subspace. The rest is

handled (i.e., damped out) by SI. We call the resulting method SIERE.
To summarize, the advantages of the new method are:

• It produces lively animations of a similar quality to that of

the exponential method ERE; the results are better than SI

both in staying closer to the simulated energy manifold and

in avoiding over-smoothing of artifacts such as material het-

erogeneity and secondary motion.

• It handles contacts and collisions, inheriting this property

from SI.

• The computational cost of SIERE, unlike that of ERE, remains

a small multiple of SI cost as the stiffness increases.

• As the exponential part of the method is performed only in a

small spectrally-decomposed subspace, the significant cost of

exponentiating a large matrix is avoided altogether.

• Potential wild divergence of SI (which arises mostly when

relatively soft material stiffens under large deformation) is

avoided by SIERE.

We demonstrate the performance and utility of SIERE on several

challenging examples.

2 CONTEXT AND RELATED WORK
Equations of motion: A common approach for discretizing an

elastodynamic system is to first apply a finite element method (FEM)

in space, already at the variational level. This spatial discretization

results in a large ODE system in time t , written in standard notation

as

M Üq = ftot(q, v), (1a)

where the unknowns q = q(t) are nodal displacements in the FEM

mesh with corresponding nodal velocities v(t) = Ûq(t). The mass

matrixM is symmetric positive definite and sparse. The total force

is further written as

ftot = f
els
(q) + f

dmp
(q, v) + fext(q). (1b)

A similar-looking problem arises upon using a mass-spring sys-

tem [Baraff and Witkin 1998; Boxerman and Ascher 2004], though

the spectrum of the corresponding stiffness matrix is less challeng-

ing to split in that case.

The elastic and damping forces are written as

f
els
(q(t)) = −

∂

∂q
W (q(t)), f

dmp
(v(t)) = −Dv(t),

whereW (q(t)) is the elastic potential of the corresponding hyper-
elasticity model. We further define the tangent stiffness matrix

K = − ∂
∂q fels(q(t)). This matrix is constant and symmetric positive

definite if f
els

is linear, but for nonlinear elastic forces it depends

on the unknown q(t) and may occasionally become indefinite. The

damping matrixD = D(q(t), v(t)) is symmetric nonnegative definite

at all times. See, for instance, [Barbic and James 2005; Chen et al.

2017, 2018; Ciarlet 1988; Sifakis and Barbic 2012].

The ODE system in Eq. (1) can be written as a first-order system

Ûu(t) ≡
[
Ûq
Ûv

]
=

[
0 I

−M−1K −M−1D

] [
q
v

]
+

[
0
g

]
≡ F(u). (2)

Let us denote the (often large) length of u by n.

Numerical damping: Eq. (2) must be discretized before simulation,

but as stated above, the popular SI method and even fully implicit

integrators such as BE and higher order backward differentiation

formulae (BDF) introduce significant, step-size dependent, artificial

damping. All BDF methods collocate the ODE system only at the

unknown time level [Ascher 2008]. This typically yields a poten-

tially heavy damping of high frequency modes that has often been

observed in practice.

To get an indication of this we extend in an Appendix the artificial

damping analysis of [Chen et al. 2018] that was applied to the

backward Euler (BE) method, which is the one-step BDF, to the

two-step method BDF2. In particular, see Figures 18 and 19.

For linear problems, the methods SI and BE coincide. Further,

in the stiff context a semi-implicit method such as SI cannot have

an order of accuracy higher than 1. Replacing a nonlinear solver

by such a linearization in BDF2 therefore reduces the resulting

method’s order of accuracy from 2 to 1.

Exponential integrators: Several exponential integration schemes

have been proposed in the computer graphics literature [Chen et al.

2018; Michels et al. 2017; Michels and Mueller 2016; Michels et al.
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2015, 2014]. In principle they all involve calculations of the action of

the matrix exponential ofM−1K on various vectors. If the tangent

stiffness matrix is known to be always positive definite, especially

in case it is constant, then efficient methods using its square root

matrix may be devised. However, for nonlinear forces that appear

in practice there is the need to exponentiate at every time step,

since K depends on q(t), and there is no such guarantee of positive

definiteness. The ERE method of [Chen et al. 2018] is particularly

suitable for nonlinear forces in such challenging situations, and its

nominal order is commensurate with that of the BE method, so we

proceed with it.

Stepping from time t , where the approximate solutionu is known,

to the next time t+ = t + h, the ERE method for the ODE Eq. (2) at

each time step is given by

u+ = u + hϕ1(hJ )F(u),

where J is the Jacobian matrix of F, and ϕ1(Z ) = Z−1(exp(Z ) − I )
for a given square matrix Z (with I the identity of the same size).

The explicit formation of the exponential matrix appearing in

ϕ1 is out of the question for large matrices J such as we have for

Eq. (2), as this matrix is full even though K ,M and D are all sparse.

Researchers resort instead to Krylov subspace methods for approxi-

mating the product of exp(hJ )with vectors F [Al-Mohy and Higham

2011; Moler and Van Loan 2003; Niesen and Wright 2012]. However,

as shown in Figure 2 and Table 2, these methods become expensive

for stiff problems, thus limiting the utility of exponential integrators

in the context of deformable object simulations [Chen et al. 2018;

Michels et al. 2017]. The root of this problem is in the fact that the

required number of Krylov vectors needed in order to fully resolve

the error for a stiff system as in Eq. (2) with a wide spectrum matrix

and large F(u) can be very large. One might consider choosing a

smaller time step to assist the matrix function evaluation for stiff

objects; however, in physics-based simulations to stay competitive

we expect to be able to keep employing large time steps indepen-

dent of the material parameters. The method described in Section 3

alleviates this difficulty by applying the exponential integrator only

in a suitable subspace, and the exponential matrix evaluation at

each time step is simplified due to diagonalization.

Additive methods: If F(u) can be written for each time instance t
as a sum of two parts

F(u) = H(u) + G(u), (3)

then it is possible to write u(t) = x(t) + y(t), where x and y satisfy

Ûx = H(u) = H(x + y), (4a)

Ûy = G(u) = G(x + y). (4b)

We can therefore apply one integration scheme to Eq. (4a) and an-

other one to Eq. (4b), add them up and obtain a combined integration

scheme for Eq. (2) [Ascher 2008; Luan et al. 2017].

A popular class of additive methods is the IMEX class, where an

implicit discretization scheme is applied to Eq. (4a) and an explicit

one to Eq. (4b) [Ascher et al. 1995; Boxerman and Ascher 2004; Eber-

hardt et al. 2000]. This makes sense if the first term in Eq. (3) is stiff,

while the second is not. Our additive method is similar in spirit to

IMEX, although strictly speaking neither of its components is a fully

implicit solver and both rely on solving a system of linear equations

R
u
n
T
i
m
e
(
s
e
c
o
n
d
s
)

Fig. 2. Exponential integrators (e.g., ERE) can better preserve the oscillations,
but at a prohibitive cost as stiffness parameter and/or system size increases.
By contrast, the cost of our method (SIERE) does not grow significantly
with stiffness.

at each time step. The key is in determining a suitable splitting G
and H, described in the next section. Our spectral splitting allows

us to achieve results in the graphics context that in general cannot

be realized by the other additive methods cited above.
1

If a fully implicit method is employed, as is required for large-step

conservative methods (see, e.g., [Chen et al. 2017; Kharevych et al.

2006]) and for higher order BDF methods such as BDF2, then a non-

trivial nonlinear system of algebraic equations must be solved at

each time step; see [Bouaziz et al. 2014; Dinev et al. 2018a,b; Li et al.

2019; Su et al. 2013] and further references therein. The difficulty

in solving such algebraic equations can increase when simulating

objects with very stiff components, as in several of our examples;

some of the efforts to design robust nonlinear solvers give rise to

rather elaborate schemes and packages. Note further that in general

energy projection methods cannot be symplectic or even reversible.

None of these methods are claimed to be faster or simpler than SI

per step. SIERE elegantly avoids this significant and time consuming

issue by using an inexpensive semi-implicit method throughout,

resulting in a practical, fast and powerful method that is derived

from solid, clear principles and can be easily incorporated to fit

one’s specific needs and code.

3 METHOD
An additive method: Assuming that we can write the equations

of motion in the form Eq. (3), we consider first the additive method

u+ = u + hH(u+) + hϕ1(hJG )G(u),

1
It is noteworthy that in the larger context of highly oscillatory dynamical systems

in science there are significant challenges that remain unresolved even after decades

of intense work. A famous example is the general molecular dynamics setting. In fact,

researchers in that context appear to have stopped designing large-step integration

methods. Any general additive method is highly unlikely to measure up to such a chal-

lenge, because no adequate separation of scales is automatically implied. Fortunately,

in the graphics context of simulating deformable objects there is a very large class of

problems where the observed motion is determined by the first few modes, and this is

what we capitalize upon here.
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where JG is the Jacobian of the yet unspecified G(u). This combines

the ERE method with the backward Euler (BE) method. One advan-

tage of this is that calculating the ERE term first provides a “warm

start” for the ensuing solution of the BE part.

Furthermore, if wewant to avoid solving nonlinear equations then

we can perform a single Newton iteration for H at each time step,

replacing BE by SI. Thus, approximatingH(u+) ≈ H(u)+ JH (u+−u),
we obtain our proposed SIERE method as

u+ = u + (I − hJH )−1(hH(u) + hϕ1(hJG )G(u)). (5)

Let us note in passing that, since this stable additive method

consists of a combination of two first order methods, it converges

like O(h) as the step sizeh shrinks to 0. Our practical focus, however,

remains on large time steps.

3.1 Model reduction and subspace splitting
Next, we define the splitting G and H, crucial to the success of our

method. The idea is to apply ERE in the subspace of the first s modes

(s ≪ n: typically, 5 ≤ s ≤ 20) and project it back to the original full

space. In the bridge example of Figure 1, n ≈ 100, 000, so this is a

rather large reduction.

Then we use SI on the remaining unevaluated part, as per Eq. (5).

We use mass-PCA to find our reduced space. That is, considering at

the beginning of each time step a solution mode of the form q(t) =
w exp(ı

√
λt) for the ODE M Üq + Kq = 0, we solve the generalized

eigenvalue problem

Kw = λMw

for the s smallest eigenvalues λ and their corresponding eigen-

vectors w (dominant modes). In Matlab, for instance, this can be

achieved by calling the function eigs. In our implementation, we

use the C++ Spectra library [Qiu 2019]. Denote this partial spectral

decomposition by

KUs = MUsΛs , (6)

where the “long and skinny”Us is n × s , has the first s eigenvectors
w as its columns, and the small Λs is a diagonal s × s matrix with

the eigenvalues λ1, ..., λs on the diagonal. Notice that both K and

M are large sparse symmetric matrices. In addition, M is positive

definite, soUs hasM-orthogonal columns:

UT
s MUs = Is , UT

s KUs = Λs . (7)

Next, we write Eq. (2) in the split form Eq. (3), with the splitting

H and G defined based on the partial spectral decomposition Eq. (6).

We define at each time step

G(u) =
[

vG
M−1fG

]
, H(u) =

[
vH

M−1fH

]
,

vG = UsUT
s Mv, vH = v − vG ,

fG = MUsU
T
s f , fH = f − fG . (8)

We also need the Jacobian matrices

JG =

[
0 UsU

T
s M

−UsU
T
s KUsU

T
s M 0

]
, and (9a)

JH =

[
0 I

−M−1K 0

]
− JG . (9b)

Notice that the ERE expression, hϕ1(hJG )G(u), can be evaluated

in the subspace first, and then projected back to the original space.

The additive method defined by inserting Eqs. (8) and (9) into Eq.

(5) has three advantages:

(1) At each time step, the majority of the update comes from ERE

in the dominating modes. Thus it is less affected by artificial

damping from SI.

(2) The computation load of ERE is greatly reduced, because the

stiff part is handled by SI (or BE for that matter). Furthermore,

the evaluation of the exponential function in the subspace

has only marginal cost since the crucial matrix involved has

been diagonalized.

(3) The “warm start” for SI makes its result closer to that of BE.

ERE update in the subspace: To evaluate the update in the subspace
of dimension s we rewrite Eq. (5) as

u+ = u + (I − hJH )−1 (hH(u)

+ h

[
Us 0

0 Us

]
ϕ1(hJ

r
G )G

r (u)
)
, (10)

where

J rG =

[
0 I

−UT
s KUs 0

]
=

[
0 I
−Λs 0

]
,

Gr (u) =
[
UT
s Mv
UT
s f

]
. (11)

The evaluation of the action of the matrix function ϕ1 involves only
matrices of size 2s × 2s . Furthermore, the matrix function ϕ1 can be

evaluated directly through the eigenpairs of J rG{
ı
√
λl ,

[
el

ı
√
λl el

]}
,

{
−ı
√
λl ,

[
−el

ı
√
λl el

]}
, l = 1, ..., s, (12)

with el being the lth column of the identity matrix.

The large n×n linear system solved in Eq. (10) is not sparse due to

the fill-in introduced by the small subspace projection. Specifically,

the off-diagonal blocks of the Jacobian matrix JG defined in Eq. (9a)

are not sparse. If not treated carefully, solving the linear system

in Eq. (5) and Eq. (10) can be prohibitively costly. Fortunately, this

modification matrix has the low rank s . We can write

JG = Y1Z
T
1
+ Y2Z

T
2
,

where

Y1 =

[
Us
0

]
, Z1 =

[
0

MUs

]
,

Y2 =

[
0

−UsU
T
s KUs

]
, Z2 =

[
MUs
0

]
.

The linear system in Eq. (10) becomes

I − hJH = (I − hJ ) + hY1Z1
T + hY2Z

T
2
, (13)

where the four matrices Yi and Zi are all “long and skinny” like

Us , while the matrix J is square and large, but very sparse. Figure 3

illustrates this situation. For the linear system to be solved in Eq. (10)

we may employ an iterative method such as conjugate gradient,

whereby the matrix-vector products involving J or YiZ
T
i are all

straightforward to carry out efficiently. However, we have often

found out that a direct solution method is more appropriate for
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[ ] 


(a) I − hJ (b) Yi and ZTi (c) I − hJH

Fig. 3. The matrix I − hJH in the linear system eq. (10) is not sparse (c).
Fortunately, by Eq. (13) the fill-in to the original sparse matrix I − hJ (a)
has low rank (b) allowing us to use the SMW formula Eq. (14).

these linear equations in our context. In our implementation we use

pardiso [De Coninck et al. 2016; Kourounis et al. 2018; Verbosio et al.
2017]. For this we can employ the formula of Sherman, Morrison

and Woodbury (SMW) [Nocedal and Wright 2006], given by

(A + YZT )−1 = A−1 −A−1Y (I + ZTA−1Y )−1ZTA−1, (14)

to solve the linear system in Eq. (10). In our specific notation we

set at each time step A = I − hJH in Eq. (14), and apply the formula

twice: once for Y = Y1, Z = Z1, and once for Y = Y2, Z = Z2.
Note that the matrices I + ZTA−1Y in Eq. (14) are only 2s × 2s , and
this results in an efficient implementation, so long as the subspace

dimension s remains small.

3.2 Time stepping cost vs subspace dimension
How does performance deteriorate as the subspace dimension s
is increased for a fixed system size n? To enable discussion, let

us restrict consideration to the range 0 < s <
√
n, because our

method as described makes no sense for larger s , and not just in

terms of sparsity.
2
In this range, it is not difficult to see theoretically,

by examining the various algebraic operations just described per

time step, that the computation time for carrying out Eqs. (8)-(14)

increases at worst linearly with s .
The theoretical cost of the partial spectral decomposition Eq. (6)

involving a generalized eigenvalue problem is amore delicatematter;

see [Saad 2011]. For our range of s it can grow slightly faster than

linearly: see Figure 4. However, in our setting the cost of other tasks

dominates. Indeed, the two major expenses at a given time step

are the assembly of the sparse stiffness matrix K (hence J ), and the

solution of linear algebraic systems involving I − hJ , both of which

are independent of s . In fact, by Eqs. (13)-(14) the latter is required

2s + 4 times.

Beyond the general trend, precise runtimes depend heavily on

the problem’s characteristics. Figure 4 displays performance of the

partial spectral decomposition using Matlab’s sparse linear algebra

packages for a very simple stiffness matrix in 2D. The results agree

with the theoretical expectation. For a more quantitative feeling re-

garding the entire algorithm, we have observed for some of the very

stiff examples described in the next section, which give a nonlinear

solver much grief, that for s = 50 there is roughly a runtime cost

increase by a factor of 5 compared to that of SI.

2
Indeed, let us explicitly discourage usage of our method for problems that require the

subspace dimension s to be comparable in size to the ODE system size n. Fortunately,
there are many deformable objects where s can be rather small, as demonstrated in

Section 4.

Fig. 4. Illustrating the cost of the partial spectral decomposition for a very
simple stiffness matrix with n = 20,000 as s grows.

In Algorithm 1 we collect the pieces just derived.

ALGORITHM 1: SIERE step from t to t + h

Input: u =
[
q
v

]
, f , K , M , h, s

; ▷ K, M symmetric, M positive definite

begin
Solve (6) for Us , Λs
Construct H ; ▷ (8)

Construct J rG , G
r
; ▷ (11)

Evaluate matrix function ϕ1(hJ rG ) ; ▷ use (12)

δ ← hH + h
[
Us 0

0 Us

]
ϕ1(hJ rG )G

r

Construct Y1, Z1, Y2, Z2 ; ▷ (13)

x0 ← (I − hJ )−1δ
x1 ← x0 updated with Y1, Z1 ; ▷ first (14)

x2 ← x1 updated with Y2, Z2 ; ▷ second (14)

u+ ← u + x2 ; ▷ (10)

end

Output:
[
q+
v+

]
= u+

4 RESULTS
Here we compare the performance of the newmethod SIERE against

SI and ERE on several examples. Our purpose is to show that SIERE

produces simulation results that are similar to those of ERE (and

thus do not suffer from the excessive damping of SI), with an imple-

mentation cost that does not increase when the stiffness increases

(unlike that of ERE). Furthermore, we show examples where SIERE

overcomes occasional divergence and instability phenomena arising

in SI and ERE, as well as the fully implicit BE. Below in Sections 4.1

and 4.2 we begin with the latter, as the examples used also allow

us to investigate the effect of selecting the dimension s of the ERE
update subspace. Later on we fix s and concentrate on the other

aspects, comparing SIERE and SI simulation quality on larger and

more geometrically complex objects where ERE performance is

inadequate.

A list of meshes used and their sizes are summarized in Table 1. In

Table 2 we list the CPU time for using the integrator for 100 frames.

In our simulations we used a wide range of Young’s moduli Ŷ and a

uniform Poisson’s ratio ν = 0.45. We also profiled the cost of the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2020.
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Table 1. List of meshes used in representative experiments.

Mesh ID #Vertices #Tetrahedrons

Ball 1,018 4,637

Cuboid 1,245 4,624

Honeycomb 3,642 9,850

Moebius Ball 5,829 16,857

Rope 12,791 47,279

Eiffel Tower 16,027 69,271

Tree 24,533 79,217

Bridge 30,133 99,455

Human Body 40,540 189,021

Table 2. CPU Times (in seconds) for different methods, run on a core i7
machine with our C++ implementation. The reported stiffness is the peak
stiffness of the object in Pa. The symbol ⊗ indicates unstable simulation, or
divergence, the relevant method’s timing becoming irrelevant. The symbol ×
indicates that the simulation took far more than 20 times that of SIERE and
thus we stopped the program before the simulation ended. All the SIERE
results are for s = 5, except the rope example where s = 1 and the human
body example where s = 6.

Mesh Stiffness SI SIERE ERE

Ball 1e8 44 97 36

1e10 42 96 112

Cuboid 1e5 ⊗ 110 ⊗

Honeycomb 1e8 85 154 537

1e10 84 156 5,840

Moebius Ball 1e8 162 223 5,780

1e10 154 260 ×

Rope 1e6 ⊗ 651 ×

Eiffel Tower 3e7 631 2,315 ×

Tree 5e7 ⊗ 2,690 ×

Bridge 1e10 1,375 4,585 ×

Human Body 1.6e4 5,209 9,672 79,367

linear algebra calculations for SIERE, and found that under 20% of

the runtime was due to partial eigendecomposition in Eq. (6), while

the rest came from solving the linear system with low-rank update

in Eq. (10). Notice that after the eigendecomposition, the exponential

matrix evaluation is automatically completed from Eq. (12) at no

extra cost.

For the backward Euler (BE) nonlinear solver we simply employed

Newton’s method at each time step, declaring convergence when

the residual’s norm was below 10
−6
. Failure was declared if there

was no convergence after 20 iterations. In our code we also have

the option of cutting the step size by 2 and repeating, which is a

form of numerical continuation [Deuflhard 2011], but we opted not

to use this or any other more sophisticated techniques, as such is

not our focus here.

(a) SIERE, s = 1

(b) SI

Fig. 5. An uncoiling rope modelled with soft neo-Hookean material Ŷ =
1e6 Pa. (a) SIERE (with subspace dimension s = 1) stays stable throughout
the simulation, whereas (b) SI becomes unstable (diverges) when the rope
stiffens at the end of the uncoiling process. This demonstrates the superior
stability of SIERE.
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Fig. 6. Energy curves comparing SIERE and BE over 400 frames for the
uncoiling rope.

4.1 Uncoiling rope
We start with an example to demonstrate the superior stability

of SIERE arising from the “warm start” provided by ERE. In this

example we simulate the process of uncoiling a soft homogeneous

neo-Hookean rope (12,791 vertices and 47,279 tetrahedrons) with

Young’s modulus Ŷ = 1e6 Pa and using h = 0.01s for the time step

size in seconds. The magnitude of deformation increases as the rope

uncoils, and so does the stiffness.

When the rope is fully uncoiled, the deformation is localized at

the very tip of the rope, leading to a challenging numerical system.

BE performed adequately here. However, SI quickly became unstable

since one Newton iteration for BE could not adequately reduce the

residual for the system, and this iteration divergence gave rise to a

blowup. On the other hand, the semi-implicit system arising from

SIERE is stable. To emphasize the point that the selection of s is
based on geometry rather than stiffness considerations, we chose the

smallest subspace dimension s = 1 for this example: the exponential

integrator still provides enough input to stabilize the simulation;

see Figure 5.

In addition, we also observed that SIERE is able to uncoil each

loop independently. This means that SIERE can simulate local de-

formation very well, unlike traditional linear subspace methods

where global deformation artifacts appear for small subspace dimen-

sions [James and Pai 2002]. SIERE does not have this issue because

higher energy modes are not discarded.

Our BE implementation required 1257s for 400 frames, roughly

double SIERE’s runtime. The resulting energy curves are plotted in

Figure 6. Notice that SIERE is not only faster, but also more dynamic.

It can regain the elastic potential energy after each oscillation.

4.2 Untwisting cuboid
In this example we simulate the untwisting of a relatively soft elastic

cuboid for a homogeneous neo-Hookean material with Ŷ = 1e5 Pa.
See Figure 7. We have used the time step size h = 0.01s .

Note that the starting configuration here is challenging, since we

begin the simulation where the stiffness matrix K is not positive

definite and with the cuboid under large deformation.

Both SI (see Figure 7(a)) and ERE became unstable after a few

steps, if for different reasons (namely, SI because of divergence of

the BE approximation, and ERE because of insufficient smoothing),

while SIERE stayed stable.

Importantly, this example further demonstrates that it is unnec-

essary to employ a large subspace dimension s for SIERE to capture

a complex deformation. We changed the subspace dimension s for
SIERE and plotted the elastic potential energy for s = 5, 6 and 10; see

Figures 7(b-d). Figure 7(e) shows that choosing a larger dimension s

can improve the energy behaviour. However, a small s = 6 suffices to

capture this rather complex twisting simulation, and the difference

in potential energy between s = 6 and s = 20 is small. Notice also

that s = 5 already makes for a lively simulation, although s = 6

visibly improves upon it. Please watch our supplementary video for

a better grasp of this demonstration as well as the following one.

ARAP energy. To demonstrate the versatility of our method, we

applied SIERE to the same cuboid example with ARAP energy [Chao

et al. 2010; Sorkine and Alexa 2007] instead of neo-Hookean. Using

the same setup and simulating for 150 frames, SIERE required 87

CPU seconds and BE cost 129 seconds. SI failed here. Figure 8 shows

the corresponding energy curves comparing SIERE and BE. Again,

we see that SIERE is superior to BE with lower computational cost

and better energy behaviour.

4.3 Ball movement
For the present example, as well as all the following ones in Sec-

tions 4.5–4.7, we have fixed the subspace dimension at s = 5, having

verified for each example that the results using s = 10 and s = 20 are

not significantly different visually. This allows us to concentrate on

other issues and show cost comparisons in Table 2 as the problem

size gets larger.

4.3.1 Hanging ball. In the present simulation ERE still performs

well, simulating a stiff elastic ball under a uniform force field, with

a fixed top. We use the neo-Hookean material and time step size

h = 0.005s . The ball has radius 10cm with a hard shell of thickness

2cm with peak Young’s modulus Ŷ = 1e8 Pa and inner core with

Ŷ = 1e6 Pa. This setting gives rise to a stiffness matrixK with rather

large condition numbers. At such high stiffness, the ball would not

deform under gravity, so we add a uniform downward pulling force

(20 × д) to simulate greater deformation. See Figure 9 for energy

plots of simulations with the three methods. We also experimented

with the damping behaviour of SI, SIERE, and ERE. The runtimes

are recorded in Table 2, while the mesh size is in Table 1. Notice

that SIERE has as good an energy behaviour as ERE, whereas the

uncontrolled damping of SI makes its resulting simulation look dull.

In particular, the total energy plot in Figure 9 indicates that SI damps

out gravitation potential very fast. For a small system like this one,

ERE is fast as expected. In fact, the first row of Table 2 indicates

that the additional subspace decomposition cost in SIERE can be

higher than the additional cost of evaluating ϕ1 action in ERE. We

then increased the stiffness of the system by a factor of 1e2 and

re-simulated the scene, recording timing data in the second row of

Table 2. Notice that the cost for both SI and SIERE remained constant,

but that for ERE increased by a factor of 3. We also tried to reduce

the damping error from SI by reducing the step size by a factor

of 5; however, at such stiffness level, the uncontrolled damping

is still large and no clear damping reduction was observed upon

significantly reducing the step size.

4.3.2 Ball bouncing. In this example we drop the same ball as de-

scribed above and simulate collision with the floor using simple

penalty methods. The results are described visually in Figure 10

using both screenshots and energy plots.
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(a) SI

(b) SIERE s = 5

(c) SIERE s = 6

(d) SIERE s = 10

(e) Potential Energy

Fig. 7. Simulation of a cuboid untwisting with SI and different subspace
dimensions s for SIERE: (a) SI failed in this challenging simulation; (b-d)
SIERE results with different s values; (e) elastic potential Energy for these
SIERE simulations and more. In this example, s = 6 can already capture
the complex twisting deformation. While smaller s could not capture the
energy trajectory fully, at s = 5 the simulation already looks energetic and
lively.

We make two essential observations, which again are easier to

appreciate by watching the supplementary video. The first is that,

comparing to the SIERE animation (blue), in the SI animation (pur-

ple) the ball loses height faster than it should and is less dynamic.

The second important observation, is that SIERE captures secondary

Fig. 8. Energy curves comparing SIERE and BE over 150 frames for the
cuboid simulation.

Fig. 9. Energy plot from the simulation of a stiff elastic ball.While SI displays
a typical decline in energy, both ERE and SIERE are close to conserving it.

motion that SI does not. This can also be seen in the potential energy

plots in Figure 10(c).

4.4 Human body dynamics
To demonstrate the applicability of our method to more complex

real-world examples with constraints, we simulate the soft tissue

dynamics of a human body. The body is modeled using a tetrahedral

mesh of the soft tissue layer, with 40K vertices and 189K tets, which

is attached to an “inner body” surface by constraining 6.2K vertices

of the mesh. The body is initially in its rest shape and simulated with

gravity, and subjected to an initial pulse of upwards force to emulate

the body’s impact with the ground. The body is modeled employing

a neo-Hookean material with Ŷ = 1.6e4 Pa, integrated using time

step size h = 0.008s . Although the material properties were chosen

to be close to that of human soft tissues, and therefore softer than

in the other examples, we found that simulations for this model

can be very unstable, and the standard SI failed without additional

damping. To handle the unstable high-frequency modes, we added

the Rayleigh damping term .005Kv to f
dmp
(q, v) in Eq. (1b). A total

of 500 frames were simulated, where the initial force lasted for 50

frames.

When using SI, the low-frequency motion of the soft tissue is

damped out very quickly, and after around the 150th frame virtually

no dynamics is visible. However, when SIERE with s = 6 is used,

the dominating oscillation of the soft tissue is captured by the ex-

ponential part of the integrator and remains sufficiently undamped

to be visible even until the last frames. The results are shown in

Figure 11, visualized for magnitude of per-vertex velocity to more

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2020.
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(a) (b) (c)

Fig. 10. A soft ball bounces after colliding with the floor: (a) SIERE ball movement with (s = 5) can simulate the secondary motion with more dynamics; (b) SI
is more lethargic, as it does not recover the ball height after collision well and it loses the secondary motion; (c) corresponding energy plots reflect both
observations. Notice that SIERE preserves the energy level after two impacts.

clearly demonstrate the difference in dynamics between the two

methods. The runtimes are listed in Table 2: SIERE took about 85%

longer than SI, where around 29% of the runtime of SIERE was due

to the eigendecomposition. Comparing against SIERE with s = 6,

using s = 60 instead took about twice longer (19,382 CPU seconds),

and ERE took over eight times longer. The total potential energy of

the system is plotted in Figure 12, showing the clear advantage of

SIERE in terms of damping behaviour. For a better appreciation of

the soft tissue dynamics, please watch our supplementary video.

4.5 Honeycomb structure
In this example we simulate a honeycomb sheet, a popular engi-

neering structure that is strong and stiff in one direction but soft

in the other two. We hang up the sheet and observe the ensuing

oscillation. Again, we use neo-Hookean material. We experiment

with soft core at Ŷ = 1e6 Pa and stiff edge Ŷ = 1e8 Pa, and integrate
using h = 0.01s . Note the significant heterogeneous jump.

Plots of energy behaviour are recorded in Figure 13 and runtime

results are in Table 2. Notice that, even though the stiffness setting

is similar to that in Section 4.3, ERE is already much more expensive

than both SI and SIERE at this system size. When we further increase

the stiffness by factor 1e2 a similar trend can be observed more

emphatically: ERE becomes prohibitively expensive, whereas SI

and SIERE have a nearly constant cost at different stiffness levels.

Finally, observe that SIERE has very good energy behaviour for the

dominating motions: damping out only the high frequency regime

it achieves excellent stability similar to SI.

4.6 Moebius ball
Next we apply SIERE to simulate an exotic object, a Moebius ball,

to demonstrate that wild shapes of the deforming object won’t be

the limiting factor of SIERE; see Figure 14. In this example we used

nonlinear StVK material. We set a stiff Ŷ = 1e10 Pa material for the

core and Ŷ = 1e8 Pa for the thin sheet spiral, and stepped forward

withh = 0.02s . ERE is prohibitively expensive to use in this situation
and we terminated the program before its simulation ended.

4.7 Large scale structures
To further demonstrate the capacity of SIERE, we applied it to some

large scale examples. In the first of these, we simulated a toy Eif-

fel tower mesh swinging under strong wind; see Figure 15. We

used homogeneous StVK material with Ŷ = 3e7 Pa. In the second

larger scale example we simulated a multiscale system of a bridge

using ARAP energy; see Figure 16. We used stiffness parameter

Ŷ = 1e10 Pa at the stiffest part, and 1e6 at the softest part. In both

cases we simulated using a large step size h = 0.1s .
In both meshes, we observe similar features of SIERE and reach

the same conclusion: SIERE can bypass the efficiency barrier of

exponential integrators and remain cheap regardless of system size

and material stiffness. Furthermore, SIERE achieves excellent damp-

ing behaviour and stability by selectively damping out the high

frequency oscillations.

4.7.1 Tree under strong wind. In our last example, we simulated a

tree swaying in strong and varying wind using homogeneous neo-

Hookean material with Ŷ = 5e7 Pa. The time step size wash = 0.01s .
The tree experiences large deformations and the branches have a

complex structure with nearly 25,000 vertices; see Figure 17. SIERE

can simulate a detailed motion for the branches and create a lively

physical simulation with a small subspace dimension (s = 5). On the

other hand, SI diverged for this simulation due to the large external

force.

5 CONCLUSION
The quest of simulating, at a fair price, deformable structures that

involve a high degree of stiffness in a manner that does not intro-

duce over-damping is ubiquitous in computer graphics applications.

Here we achieve this using an astonishingly simple approach. The

key idea in this paper is to separate at each time step high frequency

modes from the others, then employ for each regime a suitable

method, and finally combine the results in an additive method that

involves a low rank correction. Along the way we obtain a method

that requires no solution of nonlinear algebraic equations and that

is less prone to divergence and instabilities than both of its compo-

nents. We have demonstrated the efficacy of our method, and we

urge the reader to watch our supplementary video since animations

tell the story far better than stills.
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Fig. 11. A soft human body under gravity is subjected to an initial pulse of upwards force: (a) SIERE with subspace dinmension s = 6 captures the dominating
motion of the soft tissue, and visible oscillations persist long after the initial force is turned off; (b) SI damps out the dynamics very quickly and no visible
effects can be observed in the later frames. The six frames in (a) and (b) are visualized for the magnitude of per-vertex velocity and correspond to the simulation
at the initial, 40th, 80th, 120th, 160th and 200th frame.
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Fig. 12. Plot of the elastic energy potential from the human body simulation
in Figure 11. Virtually all oscillations are damped out after around the
150th frame for SI, while SIERE is able to preserve the oscillations relatively
undamped even until the last frames.

Fig. 13. Simulation of a honeycomb sheet: energy plot.

Fig. 14. Simulation of a Moebius ball: energy plot.

Limitations. Our paper does not render the SI method obsolete:

there are many situations where SI performs adequately, and in

Fig. 15. Simulation of an Eiffell Tower mesh: energy plot.

those cases it is the cheapest alternative (see also [Tournier et al.

2015]).

At the other end, we note that our method is not structure-

preserving as are suitable methods that allow no artificial damping

at all [Chen et al. 2017]. We do claim that there is a significant range

of applications in between these two extremes, however, where

SIERE outperforms both.

For SIERE to succeed, we must assume that a moderate value

of the subspace dimension s suffices. In particular, we must have

s ≪ n, where n is the ODE system size, for the method to make

computational sense. While this is the case with many visual sim-

ulations as we have shown, there are applications (such as sound)

where other methods are more suitable.

Future. Additive hybrid methods such as ours are not necessarily

limited to first order accuracy, and we believe that higher order

methods of this sort can be constructed. Their utility relative to

SIERE in difficult nonlinear scenarios would require a future project,

though. Another interesting extension is to simulations involving

mass-spring systems for stiff cloth. Yet another very interesting

project would be the extension of SIERE to constraint-based simula-

tions.
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Frame 1 - 15 Frame 240 - 255

Frame 1 - 15 Frame 240 - 255

(a) SIERE

Frame 1 - 15 Frame 240 - 255

Frame 1 - 15 Frame 240 - 255

(b) SI

(c) Potential Energy

Fig. 16. Simulation of a bridge deforming under strong wind: (a) SIERE
remains dynamic with visible oscillations after 200 frames; whereas (b) oscil-
lations under SI are heavily damped. A potential energy plot (c) underscores
this observation.

Frame 1-15 Frame 116-130

Fig. 17. Simulation of a tree swaying in strong wind.
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APPENDIX

The solution q(t) of the scalar, constant coefficient ODE

Üq + ω2q = 0

oscillates undamped with frequency ω. But applying BDF with step

size h gives a numerical solution that more closely approximates

the modified ODE

Üq + dmethod Ûq + ω2q = 0,

where the damping coefficient dmethod > 0 depends on the step size

h and on ω. Straightforward linear algebra gives a value such that

dmethod/ω depends only on the product hω [Chen et al. 2018] .

Figure 18 shows the curves obtained for BE and BDF2, which are

both popular methods for animating deformable objects. Figure 19

further depicts solution curves for particular, typical values of ω
and h. As mentioned before, such artificial damping can lead to

significant undesirable artifacts in the simulation when hω is not

small. On the other hand, the conservative implicit midpoint (IM)

method introduces no artificial damping.

Note further that SI corresponds to applying one Newton iteration

to solve the nonlinear algebraic equations arising from BE at each

time step. Hence SI is the same as BE for linear problems. Further, we

note in passing that an exponential method such as ERE reproduces

the exact solution of this simple test problem. Although this ERE

accuracy does not extend to general elastodynamics, the energy

plots presented in the figures throughout Section 4 strongly indicate

that the simple analysis in this appendix is indicative of the more

general behaviour of BE and BDF2.

Fig. 19. Solutions of the scalar test equation Üq + d Ûq + ω2q = 0 for ω =
100, d = 1, using BE, BDF2 and implicit midpoint (IM) with step size h=0.01.
Both BDF methods produce significant damping. See also Figures 6, 8-9,
13-15, and 16(c).
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