
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Exponential Rosenbrock-Euler Integrators for
Elastodynamic Simulation

Yu Ju Chen, Uri M. Ascher, Dinesh K. Pai
Department of Computer Science, University of British Columbia, Vancouver, Canada

Abstract—High quality simulations of the dynamics of soft flexible objects can be rather costly, because the assembly of internal forces
through an often nonlinear stiffness at each time step is expensive. Many standard implicit integrators introduce significant, time-step
dependent artificial damping. Here we propose and demonstrate the effectiveness of an exponential Rosenbrock-Euler (ERE) method
which avoids discretization-dependent artificial damping. The method is relatively inexpensive and works well with the large time steps
used in computer graphics. It retains correct qualitative behaviour even in challenging circumstances involving non-convex elastic
energies. Our integrator is designed to handle and perform well even in the important cases where the symmetric stiffness matrix is not
positive definite at all times. Thus we are able to address a wider range of practical situations than other related solvers. We show that
our system performs efficiently for a wide range of soft materials.

Index Terms—computer graphics, physically based animation, deformable models, time integration, exponential integrators
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1 INTRODUCTION

Simulating the motion of soft objects is ubiquitous in computer
graphics and robotics, and industrial applications abound. Exam-
ples include simulating the dynamics of cloth, skin, and other soft
tissues of the human body, especially of the face.

Such simulations often require fine scale discretization and com-
plex nonlinear materials to capture detailed qualitative behaviors.
In a traditional scientific computing setting, such problems may be
tackled using small and adapatively selected time steps to obtain
high accuracy, but applications in computer graphics have their
own unique constraints. For instance, the output is required only
at large fixed time steps (typically at frequencies of 33-90 Hz).
Qualitative behaviors are more important than pointwise accuracy,
since the underlying material properties are highly uncertain and
often set by artists. Stability and efficiency of simulation are
paramount, being essential for productivity in most applications.

In computer graphics, stability is typically achieved using implicit
or semi-implicit integrators, following the influential work of [4].
However, this comes at the cost of excessive numerical damping
that depends on the discretization step size; examples of such
methods include backward Euler, semi-implicit methods [4], and
projective dynamics [6], [30]. Fully implicit methods also require
expensive solution of nonlinear equations.

We opt instead for a carefully chosen exponential integrator
for simulating general elastodynamics systems. Our integrator
is designed to perform well even in cases where the symmetric
stiffness matrix is not positive definite at every time point of
interest. Thus, we are able to address a wide range of physical
phenomena, including some that are not covered by other recent
work on exponential integrators, for instance, in [21], [34], [36].

Following a (potentially co-rotated) finite element discretization in
space, a system of ODEs in time is described in Section 3, where
we allow the nonlinear stiffness matrix to not always be positive
definite (corresponding to a non-convex energy). We then derive

a mathematical expression for the artificial numerical damping
of several implicit and semi-implicit methods by relating their
solution to that of a “ghost ODE” that is highly damped in the
case that a large step size is used. In Section 4 we then derive
our exponential Rosenbrock-Euler (ERE) algorithm and discuss
its implementation and stability in the general highly oscillatory
case. Performance comparisons follow in Section 5 in which the
robustness and superiority of our method against explicit Runge-
Kutta, implicit Euler and midpoint, and semi-implicit methods is
demonstrated. Our results are obtained in the context of simulation
and animation of soft elastodynamics motion. In particular, the
ERE algorithm shines because the cost of assembling the stiffness
matrix (or force differential) at a point in time is far larger than
that of evaluating the action of a matrix exponential.

In summary, the highlights in this paper are:

• We extend the use of exponential integrators to general
elastodynamics. More specifically, our method can handle
any nonlinear elasticity model with non-convex potential
energy. As with previous work, stability is not theoretically
guaranteed in all cases, but it performs well for a range of
practical applications.

• We apply a simple analysis to study the artificial damping
behaviour of some popular simulation methods.

• Our algorithm recovers the dynamical response of soft
material more faithfully than the semi-implicit Euler and
other methods that introduce artificial damping.

• The integrator does not require nonlinear iterations, al-
though a product of a matrix exponential and a vector is
calculated at each time step; furthermore, for a wide array
of soft materials the computational cost is comparable to
the semi-implicit Euler method in large scale simulations.
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2 RELATED WORK

Integrators for stiff elastodynamics: The equations of elastody-
namics describe the traveling elastic waves inside a deforming
object. This class of problems is said to be stiff because oscillating
waves with speeds on different and widely varying time scales
arise. Such problems are numerically challenging because an
appropriate algorithm must handle highly oscillating waves, even
though the deforming motion of a soft object such as cloth appears
visibly smooth due to damping. To be efficient, an algorithm must
be able to stably use large steps, commensurate with the visible
motion but not with the internal high frequency modes.

Currently, the most popular integrator for elastodynamics simula-
tion in computer graphics is a semi-implicit (SI) method proposed
for cloth simulation in [4]. This method (which is equivalent to
backward Euler (BE) employing only one Newton iteration at each
time step [3]) requires the solution of one linear system per step. In
addition to being fast, the SI method also exhibits reasonable large
step stability (see also [43]). However, this stability comes from
the numerical damping inherent to the method, making it hard to
capture the correct dynamic response. Such numerical damping
depends on the step size rather than on material properties, and it
does not act uniformly on all waves: this is discussed further in
Section 3.2 below.

Other implicit time integrators have also been used for elasto-
dynamics, including BDF2 [18], implicit/explicit methods [8],
[12] and variational integrators [25]. Unlike the SI method, these
methods require the solution of a system of nonlinear equations
at every time step, which is typically solved by some inexact
Newton’s method employing a Krylov subspace method for the
sub-iterations. If the nonlinear equations are solved at each time
step to sufficient accuracy, then these implicit Newton-Krylov
methods are often more robust and accurate. Hence they are
typically used when the cost of time stepping is not the major
concern [26].

A branch of implicit integrators commonly used in the graphics
community can be derived from the discretization for the La-
grangian corresponding to an IMEX method (e.g., backward Euler
for elastic forces and forward Euler for external forces) [6], [14],
[30], [31], [33], [38]. While being implicit, all these algorithms
avoid the expensive Newton-Krylov methods and accelerate the
nonlinear solve by using superior optimization techniques. This
series of methods also applies to more general and complicated
material models. However, as material stiffness increases, the
performance level of all the techniques mentioned above drops sig-
nificantly. Specifically, as material stiffens, these methods require
many iterations, and the simulated material will appear softer if
the optimization process stops prematurely.

Exponential integrators: Exponential integrators offer an attrac-
tive alternative to the methods mentioned above for the class of
problems considered in this paper. This is because they allow
taking much larger steps than explicit Runge-Kutta (RK) without
introducing artificial damping that depends on the step size. More-
over, they can be tuned to perform effectively for a stiffness range
that includes many practically important applications. A review
of such methods can be found in [21]. In [20], [32] exponential
integrators are compared to Newton-Krylov methods for various
stiff systems. In the computer graphics context, such methods were
applied to elastodynamics in [34], [35], [36].

The technique that the above mentioned articles use requires that
the stiffness matrix be symmetric positive definite (SPD) at all
relevant times. This enables usage of a corresponding square root
of the stiffness matrix, and efficient methods for highly oscillatory
ODEs based on this have been developed and improved over
several decades [13], [15], [17], [19]. However, practical situations
in which the energy is not convex are common in flexible body
simulations [11]. In this paper, we extend the use of exponential
integrators to a general hyperelasticity model of soft materials,
without the convexity restriction. This is further discussed in the
next two sections.

3 ELASTODYNAMICS

In this section we briefly describe the ODE system for elasto-
dynamics that arises from a spatial discretization of the partial
differential equations in time and space, often considered in vari-
ational form, that describe hyperelastic material models. For more
details, please see [5], [7], [42]. We then derive for the simplest
scalar case an explicit expression for the damping effect of the
semi-implicit (SI), backward Euler (BE), and other discretizations
when a large step size is employed.

3.1 The system of ODEs

Upon discretization of spatial variables, typically using a finite
element method (FEM) with appropriate mass lumping, an elasto-
dynamic system can be written as a second-order ODE system in
time t, expressing Newton’s second law of motion:

M q̈(t) = ftot(q,v)

≡ fels(q) + fdmp(q,v) + fext(q).
(1)

The unknowns q = q(t) are nodal displacements in a spatial FEM
discretization or a mass-spring system, and the corresponding
velocities are v(t) = q̇(t). The elastic and damping forces are
written as

fels(q) = − ∂

∂q
W (q(t)), fdmp(v) = −Dv(t),

where W (q(t)) is the elastic potential of the corresponding
hyperelasticity model. For example, W (q(t)) is quadratic in the
linear elasticity model, and it is quartic in the linear FEM model
with StVK material. In other models such as co-rotated FEM
with linear material, neo-Hookean material, or artificially designed
material [45], nonlinear potentials are required to describe the
desired physical behavior.

We further split fels at each time instance t as:

fels(q) = −Kq + f̃els(q),

where K = ∂
∂q fels(q(t)) is the tangent stiffness matrix at time

t, and f̃els is the remaining non-linear part. We will assume, as
is often the case in practice, that M−1Kq dominates all other
forces in M−1fels and M−1fext, i.e., that the linearized elastic
force dominates.

The damping matrix D = D(q(t),v(t)) is symmetric nonnega-
tive definite at all times.
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To solve Eq. (1), we first define the state vector u = (q,v)T and
rewrite the ODE as a first-order system

u̇(t) =

[
q̇
v̇

]
=

[
v

M−1ftot(q,v)

]
def
=b(u(t)),

which we further write as

u̇(t) =

[
0 I

−M−1K −M−1D

] [
q
v

]
+

[
0
g

]
,

g = g(q(t)) = M−1(f̃els + fext).

(2)

Stiff and oscillatory ODE system: When κ = ‖M−1K(q(t))‖ �
1, the system (2) is considered stiff ; and if the real parts of the
large eigenvalues of K dominate, then the modes of the ODE (2)
may oscillate with frequencies on very different time scales.1 This
is usually the case in elastodynamics because κ becomes large
when

• the material stiffens under large deformation, and/or
• the simulation involves elastic waves traveling at speeds

on different scales.

Upon using classical explicit integrators such as explicit RK, step
sizes on the order of κ−1 are required for stability. As we further
show in Section 3.2, classical integrators such as BE or SI add
to each mode uncontrolled numerical damping depending on the
step size. Conservative implicit integrators such as the midpoint
method do not suffer from artificial damping; however, nontrivial
nonlinear systems of algebraic equations must be solved at each
large time step, which is well-known to be a potential show-
stopper because the known solution at the start of the current
step may not be a good guess for the sought solution at the next
time level. To faithfully reproduce the dynamical behaviour of
the underlying physical model while taking large time steps, we
therefore introduce in Section 4 exponential integrators in order to
numerically simulate Eq. (2).

Non-convex potential energy: The matrix function M−1K(q(t))
can be viewed as being smooth in t away from “discrete events”
(such as collisions). If M−1K is SPD everywhere, then for
each t there is a square root branch that gives an SPD matrix
function Ω(q(t)) that is smooth where M−1K is smooth and
M−1K(q(t)) = Ω(q(t))2. However, to capture realistic behav-
iors of deformable objects, such as orientation preservation and
material frame-indifference, it is essential to use non-convex elas-
tic potential functionsW (q) (see Ch. 4.8 in [11]). In fact, hypere-
lasticity models that have convexW (q) have undesirable artifacts.
This non-convexity inW (q) makes the symmetric stiffness matrix
K indefinite under some configurations, which excludes existence
of Ω(q(t)). This in turn poses numerical challenges for exponen-
tial integrators, since the underlying assumption in [21], [34] and
references therein is violated. For a non-convex potential energy
one could attempt to find a smooth scalar function µ(t) ≥ 0
such that K̂(q(t)) = M−1K(q(t)) + µ(t)I is SPD, add −µq
to M−1f̃els, and proceed to find the square root matrix function

1. More specifically, if M−1K is SPD, there is an SPD square root matrix(
M−1K

)1/2. The eigenvalues of the matrix in (2) with D = 0 are then equal
to ±ıλ for each eigenvalue λ > 0 of

(
M−1K

)1/2. If M−1K is not SPD,
then it is harder to be specific, but damping often helps to diffuse the issue in
applications.

of K̂ at each relevant t in a smooth way. This however could
be a tall order, and moreover, the shift of the eigenvalues would
also decrease accuracy of the exponential integration method since
the shift term −µq is no longer integrated exactly. In [34],
[35], [36], the authors picked the popular co-rotated spring model
fspring(q) = RK(RTq(t) − q(0)), for which the non-convex
rotational part can be separated, and the exponential treatment was
only applied to the SPD stiffness matrix K . 2 However, we want
to work with more general models where such separation is not
available. For these reasons we avoid taking this route despite the
availability of good additional methods for the SPD case. Instead,
we utilize a Rosenbrock-type exponential integrator [22].

3.2 Artificial damping

A pronounced damping effect of the BE and SI methods is often
observed in practice. Here we encapsulate it in an explicit formula
for the simplest case. We then apply a similar analysis to other
methods that have been favoured in computer graphics practice.

Thus, we consider the scalar constant-coefficient ODE

q̈ + dq̇ + ω2q = 0, (3)

where d ≥ 0 is a damping parameter, and ω > d/2 is a real-
valued frequency. Setting q(t) = exp(λt) in Eq. (3) we obtain
the quadratic equation λ2 + dλ+ ω2 = 0, so

λ =
1

2
[−d± ı

√
4ω2 − d2]. (4a)

In particular, for the undamped case d = 0, the modes are exp(λt)
with λ = ±ıω , i.e., these are oscillatory, undamped Fourier-type
modes. Furthermore, for both eigenvalues in Eq. (4a) we have

| exp(λt)| = exp(Re(λ)t) = exp

(
−d

2
t

)
. (4b)

Backward Euler damping of the undamped ODE: The BE and SI
methods coincide here, and using a formula for inverting a 2 × 2
matrix, the method with step size τ at time tn = nτ can be written
as(
qn+1

vn+1

)
=

1

1 + τd+ τ2ω2

(
1 + τd τ
−τω2 1

)(
qn
vn

)
≡ Td

(
qn
vn

)
. (5)

Continuing with the undamped ODE, we set d = 0 in Eq. (5). The
two eigenvalues µ of the propagator matrix T0 are µ = 1/(1 ±
ıτω). The spectral radius of T0 is therefore ρ = max |µ| =
1/
√

1 + (τω)2. We note that ρ < 1 decreases (thus the damping
effect of the numerical method increases) monotonically as the
product τω of the method’s step size and the model’s frequency is
increased.

Next, comparing the damping effect of SI/BE for the undamped
ODE problem to that of a similar damped problem Eq. (3)
with d = dBE > 0, we equate exp(−d

BE

2 nτ) = ρn =
(1 + (τω)2)−n/2. Taking the natural logarithm and cancelling
−n/2 we see that the effect of the BE method is to introduce the
artificial damping level

dBE =
1

τ
ln(1 + (τω)2). (6)

2. The matrixK is constant for linear springs. For quadratic or cubic springs,
K is not constant but it remains SPD. We refer to Algorithms 2 and 3 in [36]
for more details.
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Figure 1 shows dBE/ω as a function of τω for any nonnegative
τ and ω. Note, in particular, that dBE < 2ω for any τω > 0.

Figure 1: The damping coefficient curve dBE/ω, see Eq. (6), as
a function of the product τω of the method’s step size and the
model’s frequency.

For instance, if τ = 1/ω, which is close to where the curve in
Figure 1 attains maximum, then dBE = ω ln(2). The BE method
with this time step applied to the highly oscillatory, undamped
ODE q̈+ω2q = 0, is then best related in terms of damping to the
exact solution (mode) of the ghost ODE

q̈ + ω ln(2)q̇ + ω2q = 0.

Figure 2 demonstrates this effect for initial values q0 = 0, v0 = 1.

Figure 2: The backward Euler solution approximates the solution
of the ghost ODE with damping coefficient given by Eq. (6) rather
than the true, undamped one. Calculated positions are displayed
for ω = 20, τ = 1/ω = .05.

Another instance is the “large step” τ = 1 with ω � 1. An
example is depicted in Figure 3, where through the first time
step the BE solution skips many oscillations and yet lands on
the damped ghost ODE curve.

Conservative methods: The undamped ODE with d = 0 in
Eqs. (3)-(4) is a simple instance of a Hamiltonian system. A
symplectic discretization method such as implicit midpoint (IM)
would therefore not allow any artifical damping. Indeed it can be
easily verified directly that for this method the spectral radius of
the propagator T0 is ρ = 1 for any frequency and step size, and
thus ln(ρ) = 0, yielding dIM = 0.

The same conclusion holds also for other conservative methods
such as [23].

These methods are particularly attractive for quality simulations
and using step sizes in the range of τωmax = O(1). For much

Figure 3: Same as Figure 2 but for ω = 200, τ = 1.

larger steps, as mentioned earlier, there are typically difficulties
in solving the nonlinear equations for an ODE system such as
described in Section 3.1. Also, in such circumstances a solution
trajectory can potentially be completely inaccurate despite being
obtained stably.

Generalized α and other compromises: It is popular in practice
to seek methods that have some features of both BE- and IM-
like methods. A weighted average of BE and IM comes to
mind, but more popular in mechanical engineering has been the
generalized α method [10], [27]. It is a Newmark method, and
it can be viewed as a second order accurate method discretiz-
ing a la RK the differential-algebraic representation of Eq. (1),
q̇ = v, v̇ = a, Ma = ftot(q,v). Thus the dependent unknown
vector functions in time are q(t), v(t) and a(t). The method has
a knob, 0 ≤ r ≤ 1, that can be tuned for a given frequency ω and
step size τ to achieve a measured artificial damping. Applied to
our test equation with d = 0 this method readsqn+1

vn+1

an+1

 = T0

qnvn
an

 ,
T0 =

 1 0 −τ2β
0 1 −τγ

(1− αf )ω2 0 (1− αm)

−1 1 τ τ2

2 (1− 2β)
0 1 τ(1− γ)

−αfω2 0 −αm

 ,
where the parameters are given in terms of r as αm = (2r −
1)/(1+r), αf = r/(1+r), α = αm+αf , β = (1−α)2/4, γ =
1/2− α.

Calculating the log spectral radius ln(ρ(T0)) for various values of
τω we obtain the curves displayed in Figure 4.

Note, however, that despite the added flexibility as compared to
BE, the general tradeoff of damping and conservatism is done with
generalized α on similar grounds, since one value of r must be
somehow suitable for the entire wide range of relevant frequencies.

Furthermore, the general problem of simulating elastodynamics
has of course far more complexity than the simple ODE of Eq. (3)
can capture. Exponential integrators, discussed next, in fact solve
the simple model ODE exactly, which still does not make them
perfect.

4 EXPONENTIAL INTEGRATORS

Here we briefly describe exponential integrators as needed for our
purposes. Much more is discussed in [21] and [37].
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Figure 4: The damping coefficient curve dgen alpha/ω, as a
function of τω for the generalized α method.

Variation-of-constants formula: Consider the autonomous ODE

u̇(t) = b(u(t)), u(0) = u0. (7)

Exponential integrators are based on splitting b(u) as

b(u) = Ju + c(u), where J =
∂b

∂u
(u0),

and employing the variation-of-constants formula

u(t) = exp(tJ)u(0) +

∫ t

0
exp((t− s)J)c(u(s))ds. (8)

By approximating the integral in Eq. (8), we can obtain various
exponential integrators.

Exponential Rosenbrock-Euler (ERE) Method: Let us write
Eq. (7) at un = u(tn) as

u̇(t) = Jnu(t) + cn(u(t)),

Jn =
∂b

∂u
(un), cn(u) = b(un)− Jnu(t).

(9)

We then use Eq. (8) to integrate Eq. (9) from tn to tn+1 = tn+τ ,
and restart the linearization process at tn+1. The simplest method
of this form can be constructed by fixing Jn and cn(u(s)) at
s = tn, enabling exact integration in Eq. (8) and thus leading to
the exponential Rosenbrock-Euler (ERE) method

un+1 = exp(τJn)un + τφ1(τJn)cn(un)

= un + τφ1(τJn)b(un) (10)

with φ1(z) = z−1(exp(z)− 1).

Henceforth we will use this method (and not higher order Rosen-
brock3) because we are interested in a qualitatively correct, in-
expensive integrator and are less focused on very small pointwise
errors (unlike [34], for instance). On the other hand, we have found
it necessary, for the applications considered here, to refresh Jn and
re-evaluate its exponential at each time step. Furthermore, we have
considered and discarded use of conservative average vector field
(AVF) methods [44] in the present context, because they also lead
to potentially difficult large-step nonlinear systems. In our context,
where assembling all the forces to form b(u) is the major expense
at a given time step, the use of ERE allows us to concentrate only
on the evaluation of the exponential matrix function times a vector.

3. Higher order methods require additional matrix exponential evaluations
in the internal stages at each time step, similar to RK methods. See, e.g., [21]
for more detail.

4.1 Implementation of ERE

The expression Eq. (10) seems computationally attractive as it only
requires one matrix function evaluation. However, the evaluation
of the function φ1(z) suffers from numerical instability due to
cancellation error when z ≈ 0 [24], [39]. In elastodynamics
simulations, this could happen when the elastic waves are traveling
on different time scales. To avoid computing φ1, we follow [2],
[40] and rewrite Eq. (10) as

un+1 =
[
IN 0N×1

]
exp (τA) ũn, where (11)

A =

[
Jn cn(un)

01×N 0

]
, ũn =

[
un
1

]
,

which only involves one product of a matrix exponential of the
slightly larger matrix with a vector.

4.1.1 Computing the action of the matrix exponential

When computing the product exp(τA)u for a large but sparse
matrix A as in Eq. (11), it is important to avoid forming the
full matrix exponential explicitly. Some of the most efficient
algorithms implement substepping (or scaling) of the form

exp(τA)u = exp(δt1A)exp(δt2A) · · · exp(δtsA)u,
s∑
i=1

δti = τ

(12)
using one of the following methods:

• truncated Taylor series [2],
• Krylov subspace methods [41],
• Leja approximations [9].

The number of stages s or the substeps δti are chosen to opti-
mize the cost and accuracy based on desired tolerance and error
estimation. See [37] for more detail and further justification. The
costs of all three methods grow with the matrix norm ‖A‖, which
in our context is majorized by the system stiffness-density ratio
‖M−1K‖. For the present type of application, we found that
the Krylov subspace based algorithm from [41] performed best,
so we have subsequently used their Matlab toolbox for all the
calculations involving matrix exponentials reported here. At each
substep δti, this algorithm uses the Arnoldi process to project
the exponential operator onto a small Krylov subspace, where a
small matrix exponential is calculated, and projects the result back.
Further details of the algorithm are omitted here, as these are not
contributions of the present paper and may be found in [41].

Let us denote the material stiffness-density ratio

k/m = Young′s modulus/density,

measured in (m/sec)2. This quantity relates to the natural fre-
quency of the material at the rest shape. Figure 5 shows the
relationship between k/m and the cost of computing the action
of the matrix exponential with the Matlab package expv from
expokit by [41]. We make the following observations:

• Substepping of the form Eq. (12) is equivalent to time-
stepping in a linear ODE with system matrix A. Hence,
the growth in number of substeps s and ERE cost is
similar to what is obtained from the stringent time step
requirement for classical explicit methods for ODE sys-
tems with fast travelling waves. However, the cost of
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substepping is cheap (e.g., involving an Arnoldi iteration
and exponentiation of a small matrix when using a Krylov
subspace), whereas small time steps with explicit methods
are expensive (due to force calculations through FEM as-
sembly from per element contribution). More comparisons
with explicit methods are discussed in Section 5.2.

• ERE can become costly when ‖M−1K‖ is very large,
so it is only suitable for materials that are not too stiff.
On the other hand, when ‖M−1K‖ is large, regular im-
plicit methods (e.g., backward Euler or implicit midpoint)
encounter numerical difficulty from solving nonlinear sys-
tems at each time step. In particular, one can implement
a more robust version of Newton’s method by mixing
it with gradient descent or damping the step [30], [33],
but such implementation might increase cost due to loss
of quadratic convergence and involves picking ad hoc
parameters.

• On a positive note, according to experimental measure-
ments from [1], [28], [29], there is a wide range of soft
tissues of much current interest that have the material
properties in the range where ERE is efficient. In addition,
soft engineering materials that exhibit highly dynamical
behavior can also be simulated effectively by ERE.

Stability of exponential integrators: For ERE to be stable, a
necessary condition is that all the eigenvalues of the Jacobian
matrix J must have negative real part at every time step [21],
which corresponds to the damping in the system. The elasto-
dynamic system that is being simulated has this property since
elastic objects are naturally damped due to internal friction. In our
implementation we have introduced a minimal amount of damping
using the Rayleigh damping model

fdmp(q,v) = (αM + βK0)v, (13)

(i.e., the damping matrix is D = αM + βK0), where K0 is
the (SPD) stiffness matrix at the initial state and α, β > 0.
In our experience, although the simple Rayleigh damping model
introduced in Eq. (13) does not always guarantee stability, it works
for a wide range of examples. In particular, the stability of ERE
suffers with large ‖M−1K‖, and under large deformation, when
g(q(t)) in Eq. (2) grows larger. In the next section we show
that ERE is stable for a wide range of soft materials that arise
in computer graphics.

5 RESULTS

In this section we demonstrate the performance of ERE on (i) a
linear mass-spring system with linear density 0.1kg/m; and (ii) a
nonlinear neo-Hookean material model with density 1000kg/m3

and Poisson ratio 0.48, discretized using linear displacement tetra-
hedral elements. In both cases we employ the Rayleigh damping
model (13) with α = 0.01 and β = 0.01.4

For each simulation we choose a range of linear stiffness Kl or
Young’s modulus Y 5 and step size τ to demonstrate performance.

4. Note that our linear mass-spring system is only linear in stretch, and
a nonlinear system arises because of rotation, in contrast to the mass-spring
system in [36].

5. Since the material is nonlinear, the stiffness parameters are chosen for the
rest state only.
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(b) Running time of expv vs. matrix size N with
different k/m values for neo-Hookean material under
small strain.
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(c) Running time of expv vs. k/m for neo-Hookean
material under small strain for a system of size 738.

Figure 5: Cost of calculating the matrix exponential action for
ERE on a soft ball with neo-Hookean material under small strain
at step size τ = 1

30 . The matrix exponential actions are evaluated
using expv from expokit [41]. (a) Number of substeps s grows
with the stiffness-density ratio k/m (lines with different color)
and matrix size N (x-axis). (b) s grows (roughly) linearly with N ,
leading to super-linear growth in total runtime. (c) The running
time for computing the action of the matrix exponential depends
on k/m. Nevertheless, soft tissues and soft engineering materials
of much current interest can be simulated effectively by ERE.
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We emphasize that ERE is not limited by the above systems: it
can be applied to the dynamic system of any constitutive model
semi-discretized in the form of Eq. (1).

All reported times t and step sizes τ are in terms of seconds (sec).
For reading clarity we occasionally omit this unit in the sequel.

5.1 Cost of ERE under large deformation

As mentioned in Section 4.1.1, the number of substeps s in eval-
uating the matrix exponential inside ERE depends on ‖M−1K‖,
which depends on material properties. Under large deformation
with a nonlinear material, ‖M−1K‖ can also increase due to
stiffening, and thus plague the performance of ERE. In the
present example, we simulated a neo-Hookean cylinder under both
compression and stretching (Figure 6) and recorded the number of
substeps s used by expv within ERE in Table 1. We observe
that s increases under stiffening only by less than a factor of 3 at
50% compression and by less then a factor of 2 at 100% stretch.
For materials such as soft tissue and organs, the region of elastic
deformation is less then 20%, meaning the cost of ERE will not
change much for practical use.

k/m s2% s50% s100%
compression 103 2 3

104 5 7
105 12 23
106 48 123

stretch 103 2 2 2
104 4 4 5
105 12 12 13
106 47 51 58

Table 1: Number of substeps s used by expv in ERE for com-
pressing and stretching a neo-Hookean cylinder (2383 tetrahedra)
with different k/m at step size τ = 1/30 at 2%, 50% strain along
the cylinder axis. For stretching, 100% stretch is also tested.

Figure 6: Compressing and stretching a neo-Hookean cylinder
(2383 tetrahedrons)

5.2 Comparison with RK4

For soft material that is not extremely stiff, explicit methods such
as the classical fourth order RK, denoted RK4, can be stable and
efficient because the time step constraint is less stringent. To see
that ERE compares favorably for soft materials nonetheless, we
first test ERE against RK. In this comparison, we simulate one
meter of elastic rope as 50 springs in sequence for 2 seconds and
list the stable step size τrk and the total running time tcrk for
RK4 with different stiffness-density ratios. Results are collected
in Table 2.6 While ERE introduces with the listed step size some
positional error εere, the simulation results are qualitatively correct

6. The solutions from RK4 are used as “ground truth” to calculate the error
for ERE, since RK4 is a fourth order method that is necessarily evaluated using
a much smaller time step.

and the method remains stable for all stiffness parameter values
at step size τere = 1/60 and has shorter total running time tcere.
The results demonstrate that RK4 is much more expensive (twice
to 30 times). This is because calculating the force model (mass-
spring and Rayleigh damping in this case) for small time steps is
expensive, whereas the sub-stepping for the matrix exponential in
ERE is much cheaper.

Kl τere tcere max ‖εere‖ τrk tcrk
100 1/60 5.2278 0.0720 1/180 9.7558
101 1/60 4.9717 0.0210 1/420 19.0327
102 1/60 6.1674 0.0511 1/1080 41.7449
103 1/60 6.6823 0.1424 1/4680 179.1033

Table 2: ERE and RK4 step sizes τ and total running time tc

(measured in CPU seconds) for simulating an elastic rope with
different linear stiffness Kl(N/m) for 2 seconds. Positional error
ε is measured in meters.

5.3 Comparison with semi-implicit method and implicit
methods

Solving nonlinear equations: In the following examples, we used
Newton’s method for the nonlinear equations arising in backward
Euler (BE) and implicit midpoint (IM) integrators. The step is
successful if the iteration’s residual is less then εn = 10−6. If
the residual does not decrease after 3 iterations, then we locally
reduce the time step by half and repeat the procedure over two
half-steps. This is a standard procedure in numerical ODE practice
(see, e.g., [3]) that is a simple instance of a numerical continuation
method, using smaller steps to approximate the path from tn to
tn + τ . Specifically, it leverages the physical structure of the
problem because by reducing the time step the starting guess
un+1/2 is often closer to the desired un+1. This procedure still
guarantees quadratic convergence for small substep problems,
whereas implementing linear search and Hessian fix [33] could
reduce the convergence speed.

It is also possible to apply the semi-implicit approximation (i.e., a
single Newton iteration) to IM rather than to BE. The cost per step
is then the same as SI. However, we have observed that stability
of the implicit midpoint method can be highly effected under this
early termination. A similar effect was observed in [31]. Hence
we do not consider this variant further.

1D Mass-spring systems: We first use the same rope simulation
as described in Section 5.2 to compare the performance of ERE
against the semi-implicit (SI) method and BE method (which both
introduce artificial damping), as well as the IM method (which
does not); see Figure 7. All the methods were run at step size 1/60
and remained stable for all stiffness parameters tested. Figure 7
shows that ERE is cheaper compared to the fully implicit methods
(BE and IM) while having good accuracy (Figure 7b). Figure 7c
shows energy profiles of different methods for the simulation with
linear stiffness Kl = 100N/m. ERE is clearly better then BE and
SI because less artificial damping is introduced.

2D Mass-spring systems: In this example we simulate a piece
of cloth with 121 particles (11 × 11) and simple stretching and
shearing springs. The cloth is dropped with four corners fixed, and
then quickly shaken at t = 1; see Figure 9. In Figure 8 we compare
ERE with SI, BE, and IM, all with step size τ = 1/60, in terms of
running time and maximum position error (RK4 with small time
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(a) Running time of each integrator for the rope simula-
tion with different stiffness parameter.
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(b) ERE gives up some point-wise accuracy; however, it
is close to that of IM and performs significantly better
than BE and SI. The latter also introduce more artificial
damping.
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(c) The energy profile of each integrator in the rope
simulation with Kl = 100N/m. Both SI and BE damp out
the energy significantly, while the energy profile of ERE
follows closely those of IM and the small-step RK4.

Figure 7: These plots compare ERE with SI, BE, IM, and RK4
over 2 seconds of the rope simulation. Compared are the (a)
running time, (b) position error, and (c) energy profile.

step serves as ground truth). Figure 9 depicts the frames at t = 1.7,
after the shaking event at t = 1. The cloth looks more damped
with SI and BE, whereas the ground truth is more responsive and
dynamic. The ERE solution is only slightly damped, and it remains
more faithful to the true solution. Once the SI step size is reduced
down to τsi = 1/120, the simulation error and visual impressions
are similar to ERE with step size τere = 1/60. This is in keeping
with the fact that the damping introduced by SI reduces for a
smaller step size. However, reducing the step size also increases
the total running time (Figure 8a).

In the next example we make the same cloth mesh with linear
stiffness Kl = 100N/m collide with a sphere. The collision is
resolved by projecting each particle onto the closest point on the
sphere. Figure 10 depicts the state of the cloth after the collision.
The cloth responds more dynamically in the simulation using
ERE and IM. Both SI and BE introduce much more damping
into the system, as shown in Figure 11. Table 3 displays the
total simulation running time for each integrator with step size
τ = 1/60. ERE and SI are much cheaper than BE and IM, since
no additional Newton iterations are required.

In Figure 12 we changed half of the cloth to a slightly softer
material Kl = 20N/m and the other half to a stiffer material
Kl = 200N/m. In this mixed material example, both SI and
BE are seen to introduce non-uniform damping, relative to the
stiffness, and fail to capture the state of the cloth even qualitatively,
whereas ERE looks qualitatively similar to IM.

Character Cloth: In this example we simulate a cape (11 × 11)
attached to a dancing character, with step size τ = 1/60 (Figures
13 and 14). From these examples we conclude that ERE is an
efficient explicit method for problems such as cloth simulation
that does not introduce too much damping and responds more
dynamically to user inputs and collision events.
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(a) Running time for simulating 5 seconds of cloth
modeled by a 2D Mass-spring system.
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(b) Max position errors for each integrator during the
simulation.

Figure 8: These plots compare ERE to SI, BE, and IM over 5
seconds of cloth modeled by a mass-spring system. SI with τ =
1/120 is added to demonstrate the τ -dependent damping effect of
this method.

3D Volumetric Bar: Next we use a neo-Hookean material model
to simulate elastic deformation of 3D volumetric bars. For the first
volumetric simulation, we simulate a twisted soft elastic bar with
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(a) ERE τ = 1/60 (b) IM τ = 1/60 (c) RK4 τ = 1/1260

(d) SI τ = 1/60 (e) SI τ = 1/120 (f) BE τ = 1/60

Figure 9: Response of the cloth with (Kl = 100N/m) after the
shaking event using different integrators.

(a) ERE (b) SI

(c) IM (d) BE

Figure 10: Response of the cloth (Kl = 100N/m) after colliding
with a sphere using different integrators.
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Figure 11: Energy profile of each method in the simulation with
cloth collision.

(a) ERE (b) SI

(c) IM (d) BE

Figure 12: Response of the cloth with mixed stiffness, Kl =
20N/m (red) and Kl = 200N/m (blue), after colliding with a
sphere. The highly damping integrators miss the correct qualitative
behaviour.

Integrator Total running time
ERE 8.4187
SI 6.8089
BE 18.9087
IM 29.8337

Table 3: Running time of each method for simulating the cloth
collision scene for 5 seconds.

(a) ERE (b) SI

(c) IM (d) BE

Figure 13: Simulating the cape motion of a dancing character
using different integrators (Kl = 50N/m).

Young’s modulus values Y ranging from 10Pa to 10kPa, see
Figure 15.

In our second volumetric example we simulate elastic bars, with
Young’s modulus ranging from 10kPa to 50kPa, dropping with
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Figure 14: Energy profiles of the four integrators for the example
of a cape attached to a dancer.

one end fixed; see Figure 16. Similarly, we plot the running time
of each method in Figure 16a, and the energy profile of the bar
with Young’s modulus 10kPa in Figure 16b. We observe that
the running time for ERE increased as we stiffen the material, as
predicted in Figure 5.

Both these examples clearly demonstrate that our previous conclu-
sions extend to a volumetric simulation, namely, that the BE and
SI methods lose too much energy while the fully implicit methods
are too slow.

Stanford bunny: In our last volumetric simulation we simulate the
Stanford bunny (Y = 100kPa, τ = 1/180) bouncing due to
gravity. Figure 18 shows the energy profile for each integrator in a
similar fashion as before. Similar conclusions are drawn from this
figure, and we recommend watching the associated video clip at
www.cs.ubc.ca/∼aq978063/ere.html

6 CONCLUSIONS AND FUTURE WORK

Conclusions: In this article we have proposed and demonstrated a
low cost algorithm for producing qualitatively correct simulations
of elastodynamic motion involving soft materials. Our algorithm
works well, using large time steps, even when the stiffness matrix
is not positive definite everywhere, and it produces simulations
that do not suffer heavy step size-related damping. Our system
derives its relative efficacy from the fact that in typical soft body
simulations in computer graphics the major cost per time step is
in the assembly of the forces rather than in evaluating products
with matrix exponentials. The need of solving nontrivial nonlinear
systems of algebraic equations at each time step is avoided as
well. The performance of our system has been demonstrated in
Section 5; please see also our animation video clip.

Currently, the majority of researchers employ the semi-implicit
(SI) method of [4] for similar simulation purposes. This method is
attractive for several reasons: it is very simple, constraints are nat-
urally incorporated at the end of each step, and stability is typically
not an issue (though not always [3]). However, it is also well-
known that a significant artificial damping is introduced by this
method, thus making an artist using such a simulation tool having
to deal with implementation-dependent artifacts and introducing
distortion in the resulting animation. In simple cases the obtained
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(e) Energy profile of different methods
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(f) Running time

Figure 15: These plots compare ERE to SI, BE, and IM in the
twisted bar simulation.

motion often looks realistic, but with a heavier damping than
desired, and this effect is demonstrated analytically in Section 3.2.
In the experiments of Section 5, ERE shows a clear advantage
over SI for cloth simulation: the step size dependent damping
introduced by SI could significantly change the cloth response
to external force, whereas ERE keeps the solution qualitatively
similar to that of the physical model, even when using large steps
in time. In addition, since ERE is explicit, popular constraints for
cloth motion [8], [16] can be easily imposed.

Limitations and future work: As demonstrated in Figure 5 and
discussed more generally in Section 4, our algorithm loses efficacy
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(a) Running time of each method for simulating a elastic bars
with Young’s modulus from 10kPa to 50kPa.
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(b) Energy profile of different methods for the elastic bar with
Young’s modulus 10kPa.

Figure 16: These plots compare ERE to SI, BE, and IM in the
simulation of a volumetric bar with one end fixed.
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Figure 17: Energy profile of each method for the bunny with
Young’s modulus 100kPa.

Figure 18: This plot compare the energy in ERE to SI, BE, and
IM in the simulation of the Stanford bunny.

when the material gets too stiff, although there is a comfortable
practical range of applications where it wins.

Future work may include extension to higher order Rosenbrock-
Euler methods and general-purpose constraint handling by step-
end projection. We would also like to develop better physically-
based damping models for elastodynamics to enhance the stability
of ERE. There are also the interesting quest for cost-reducing di-
mensional reduction methods for the exponentiation, and possible
extension of methods such as [13] to problems with non-convex
energy.
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