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Abstract. Visual computing is a wide area that includes computer graphics and image processing, where the
“eye-ball norm” rules.

This paper discusses two case studies involving numerical methods and analysis applied to this wide domain.
The focus is on highlighting relative strengths in those intersection areas where there are many problems of interest
both to numerical analysts and to researchers in the visual computing community.

The first involves motion simulation and calibration of soft objects such as cloth, plants and skin. The governing
elastodynamics PDE system, discretized in space already at the variational level using co-rotated FEM, leads to a
large, expensive to assemble, dynamical system in time, where the damped motion may mask highly oscillatory
stiffness. Geometric integration and exponential time differencing ideas are making their way into visual computing
research these days in search for more quantitative computations that are required for applications such as control
and 3D-printing.

The other case study involves some image processing problems where there is a premium for local approaches
that do not necessarily use underlying PDEs. The popular paradigm of solving a data fitting problem with a penalty
term involving the gradient or higher derivatives of a function approximating the sought surface is employed in
the visual community much less often than in the numerical analysis community. We explain why. Concepts are
demonstrated and discussed.
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1. Introduction. The purpose of this paper is to examine the relationship and domain
intersections between two communities, namely, visual computing and numerical analy-
sis/applied mathematics. Our hope, and occasional conviction, is that learning from each
other can lead to developing more theoretically solid methods and techniques for visual com-
puting tasks that, importantly, also perform competitively in practice. By visual computing
we mean a rough union of significant subsets of computer graphics and image processing.

Consider for instance a rug spread on our living room floor. Someone has accidentally
stepped on it sideways, creating a ripple as in Figure 6.8 of [2]. Now, regarding the height of
the rug above the floor as an “error” that we wish to extinguish by flattening the rug, it is easy
to imagine scenarios where the L1 norm of this error over the rug domain is rather small, and
yet the ripple is (irritatingly) pronounced and distinguishable. In the eye-ball norm this error
is very different from a random perturbation of the same L1 norm value distributed over the
entire rug.

The usual types of error that numerical analysts consider allow the development of math-
ematically solid techniques to approximate a given process in the aim of reducing such error
sufficiently. In contrast, visual computing computational results are often measured, or appre-
ciated, by their pleasing visual effect. And yet, there are application domains where there is
a mutual interest and exchange of fruitful knowhow between the communities. An important
subdomain of visual computing concerns physics-based computations, e.g., in creating ani-
mations, or in computing specifications for a 3D printing job, and visual computing experts
have often been shopping for numerical techniques for such problems. Likewise, there is an
entire area in numerical analysis that centres on, or at least is motivated by, image processing.
It is in such areas that a reader occasionally finds that one community is well ahead of the
other in some quantitative sense, and a process of mining for knowledge may therefore ensue.
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This paper concentrates on two such areas, considered as wide-scope case studies, in an
attempt to highlight the benefits that different points of view can occasionally yield.

The first (Section 2) involves the simulation and calibration of deformable objects such
as a sofa, or a jacket, or a plant. Physics-based methods have been devised in the visual
computing community that draw on numerical analysis approaches for solving differential
equations, but often with an added twist. As the need for physical accuracy grows, say,
because of targets such as motion control and 3D fabrication, the numerical methods in use
may require adjustment and replacement: quantitative notions gradually replace qualitative
ones. Numerical analysis techniques thus gain new relevance.

The second case study (Section 3) considers image and surface processing methods for
problems such as denoising, deblurring, inpainting and image completion that use PDE-based
regularization to formulate and solve the ensuing inverse problem. Our contention is that in
many situations such techniques do not produce the best visual results and do not necessarily
yield the most efficient algorithms. We propose some simple and general rules for deciding
when to use such techniques and when to opt for better, available ones that may not rely on
PDE solutions and employ more local techniques.

2. Calibration and large-step time integration in elastodynamics. Motion simulation
of structures containing flexible soft objects is ubiquitous in current computer graphics and
robotics research. High quality simulations obtained by using fine meshes in space and time
can be very expensive. Furthermore, the model typically requires calibration, e.g., specifying
Young’s modulus and damping properties. These are expressed as (distributed) parameters in
the elastodynamics differential equations governing the motion. For control and fabrication
tasks one may require more accurate simulations than before.

The elastodynamics equations under consideration may be viewed for theoretical pur-
poses as a system of PDEs in time and three space variables describing the deformation
motion of a flexible object [13]. The rather demanding, time-varying object shape invites
a finite element discretization in space, and this is routinely done already at the variational
level, without forming the PDE [33, 36, 7, 6, 37]. Thus we have a tetrahydral (say) 3D mesh
moving in time. Denote the nodes (or vertices) of the mesh by q(t).

The semi-discretized equations for the motion of these nodes describe Newton’s second
law of motion. Thus, masses times accelerations equal forces (v = q̇)

(2.1) M q̈(t) = fels(q) + fdmp(q,v) + fext,

with the elastic and damping forces

fels(q) = −
∂

∂q
W (q(t)), fdmp(q,v) = −Dv(t),

where W (q(t)) is the elastic potential of the corresponding model. In a linear elasticity
model, this elastic potential is quadratic.

Next, we rewrite (2.1) at some time t = tn = tn−1 + h as u̇(t) = b(u(t)) :

u̇(t) ≡
(
q̇(t)
v̇(t)

)
=

(
v

M−1ftot(q,v)

)
(2.2)

=

(
0 I

−M−1K −M−1D

)(
q(t)
v(t)

)
+

(
0

g(u(t))

)
,

where K = − ∂
∂q fels(q) is the tangent stiffness matrix at q = q(t).
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Often there is highly oscillatory stiffness, even though the observed motion is damped
and does not vibrate rapidly. This happens when the scale of the simulation is large, and/or
the material stiffens under a large deformation.

Another instance of this sort, leading to an ODE system of the form (2.1) or (2.2), is
cloth simulation, where the modelling technique often used involves a mass-spring system
rather than a PDE.

We therefore want to discretize this large ODE system using a time step size h that is
commensurate with the damped motion rather than with the invisible high oscillation. Thus,
we can’t use explicit Runge-Kutta (RK) discretization, for instance. Moreover, implicit RK
requires solution of a nonlinear algebraic system at each step: this can be nasty if the step
size h is large. By far the most popular method in use to date is a semi-implicit (SI) method,
i.e., backward Euler (BE) with only one Newton iteration at each time step starting from
un ≈ u(tn) [3]. However, heavy step-size dependent artificial damping is introduced: this is
not easy for an artist to work with, and it affects different materials differently. Indeed, one
may ask, why does it work at all in the presence of such large pointwise solution errors?

In addition to BE and SI (also in stabilized form for extremely stiff materials [35]), it is
possible to consider various other alternatives, as described in [11]. See also the short video
at

https://www.youtube.com/watch?v=oRGuC9GMm8w
From this video it is clear that the large error in BE and SI is not arbitrary or random.

Rather, the animation reflects a less energetic but generally similar motion to that produced by
other methods using the same step size. This is a rather specific way in which “physics-based”
differs from “physics”.

Conservative methods, including symplectic and energy conserving variants, are not ex-
pected to produce any artificial damping. Such methods have been used in the present con-
text; see, e.g., [10, 25]. But some damping is of course useful if really large steps are to
be taken. This can be achieved by introducing an artificial Rayleigh damping component
into fdmp(q,v), or by using a numerical method with a controlled amount of damping. We
proceed to consider the latter using a very simple scalar ODE model.

2.1. Analysis for the simplest case. The simplest case of (2.1) involves a quadratic
elastic energy with a constant symmetric positive definite (SPD) stiffness matrix K, a constant
SPD matrix M and a Rayleigh damping model fdmp(q,v) = (αM + βK)v with α, β ≥ 0
given parameters. This allows for an orthogonal eigen-decomposition, so we next concentrate
on an eigen-pair, for which we have a scalar ODE

q̈ + dq̇ + ω2q = 0,(2.3a)

which in first order form reads (
q̇
v̇

)
=

(
0 1
−ω2 −d

)(
q
v

)
,(2.3b)

where we assume that ω > d/2. See, e.g., [12].
Setting q(t) = exp(λt) in (2.3a) we obtain the quadratic equation λ2 + dλ + ω2 = 0 ,

so

λ =
1

2
[−d±

√
d2 − 4ω2].(2.4a)

In particular, for the undamped case d = 0, the modes are exp(λt) with λ = ±ıω , i.e., these
are oscillatory, undamped Fourier-type modes. Furthermore, by assumption d2 < 4ω2, so we
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have for both eigenvalues in (2.4a) that Re(λ) = −d/2. Hence the magnitude of the mode is

| exp(λt)| = exp (Re(λ)t) = exp

(
−d

2
t

)
.(2.4b)

The BE (here ≡ SI) method gives(
1 −h

hω2 1 + hd

)(
qn
vn

)
=

(
qn−1

vn−1

)
,

which can be written equivalently as(
qn
vn

)
=

1

1 + hd+ h2ω2

(
1 + hd h
−hω2 1

)(
qn−1

vn−1

)
≡ T

(
qn−1

vn−1

)
.(2.5)

Thus, for this simple ODE, given initial values q0, v0,(
qn
vn

)
= Tn

(
q0
v0

)
for any positive integer n. Continuing with the undamped case, we set d = 0 in (2.5),
obtaining (

qn
vn

)
=

1

1 + h2ω2

(
1 h
−hω2 1

)(
qn−1

vn−1

)
.(2.6)

The eigenvalues µ̂ of the matrix appearing in (2.6) satisfy

(1− µ̂)2 = −(hω)2, hence µ̂ = 1± ıhω.

This gives the eigenvalues for the propagator T of (2.6) as

µ =
1± ıhω

1 + h2ω2
=

1

1± ıhω
.(2.7)

Obviously, for both eigenvalues, |µ| = 1/
√
1 + (hω)2 < 1 for any h > 0. This is

therefore the spectral radius

ρ = max |µ| = 1/
√

1 + (hω)2(2.8)

of the discrete operator T .
Next, comparing the damping effect of one step of BE/SI applied to the undamped ODE

problem to that of a similar damped problem of the form (2.3a) with d = dBE > 0, we equate
that mode magnitudes using (2.4b) and (2.8). This gives

exp

(
−dBE

2
nh

)
= ρn =

(
1 + (hω)2

)−n/2
.

To find dBE satisfying this equality, we take the natural logarithm, obtaining upon cancel-
lation of −n/2 that the effect of the BE (SI) method is to introduce the artificial damping
level

dBE =
1

h
ln(1 + (hω)2).(2.9)
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See Figures 1–3 in [11], noting that in (2.9) dBE/ω depends only on the single variable hω.
The fact that, fixing h, for large hω the artificial damping level changes only proportionally
to the logarithm may save the day.

Returning to the general system case of (2.1) with the BE/SI approximation, we cannot
be so specific as in the scalar constant-coefficient case. But simulations suggest a virtual
extension of the results in this section to many practical situations. There is an observed,
unnatural loss of energy when large-step SI is employed, although the resulting animations
do not look like garbage. Rather, they look less “energetic” and more placid. This is probably
why many people are still able and happy to use this method with large time steps.

Conservative methods. A similar analysis for the implicit midpoint (IM) method read-
ily yields an amplification matrix T for which ρ(T ) = 1, hence ln(ρ(T )) = 0, and so
dIM = 0. The method of [25] coincides with IM for the simple ODE (2.3a). Indeed, for all
conservative methods, dmethod = 0 and there is no artificial damping.

Generalized alpha method. Newmark methods are very popular in structural mechan-
ics and related fields. The generalized α method is one such, and it has a knob r, 0 ≤ r ≤ 1,
to control the amount of artificial diffusion per frequency [12, 26]. It is apparently used by
Disney Animation Studios, and is available as part of the finite element tools ABAQUS and
Comsol Multiphysics.

Considering the problem (2.1) in the form M q̈ = f , with f = ftot(q, q̇), let us rewrite it
first as a simple semi-explicit differential-algebraic equation (DAE):

q̇ = v, v̇ = a, 0 = Ma− f(q,v).(2.10)

The method has coefficients to play with: αm ̸= 1, αf , β, and γ. Let α = αm − αf . The
time step unknowns from tn−1 to tn are qn,vn and an+α, i.e., it is a staggered time steppig
for the acceleration if α < 0 (cf. (2.13)). The method reads

qn = qn−1 + hvn−1 +
h2

2
((1− 2β)an−1+α + 2βan+α) ,(2.11a)

vn = vn−1 + h ((1− γ)an−1+α + γan+α) ,(2.11b)
(1− αm)Man+α + αmMan−1+α(2.11c)

= (1− αf )f(qn,vn) + αf f(qn−1,vn−1).

With the staggered interpretation, this is a second order method for q,v and a. It is a one-step
multivalue (and not RK) method.

Since we can express vn, using (2.11b), in terms of an+α and known stuff, and since we
can further express qn, using (2.11a), in terms of an+α and known stuff, the nonlinear system
at time level n is only for an+α, i.e., the algebraic nonlinear iteration at the current step has
a minimal number of unknowns, like for BDF methods. Calculating the Jacobian is slightly
more painful than for BE and BDF2, but it is obviously possible, so the method is efficient in
this sense.

In the generalized α method, we choose the four coefficients based on one parameter r,
where r = 0 for maximum damping. The coefficients are then

αm =
2r − 1

1 + r
, αf =

r

1 + r
, β =

(1− α)2

4
, γ =

1

2
− α.(2.12)

Therefore,

−1 ≤ α =
r − 1

r + 1
≤ 0.(2.13)
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For the test equation q̈ + ω2q = 0 we have M = 1 and f = −ω2q. So we get (2.11) in
the form 1 0 −h2β

0 1 −hγ
(1− αf )ω

2 0 (1− αm)

 qn
vn

an+α

 =

 1 h h2

2 (1− 2β)
0 1 h(1− γ)

−αfω
2 0 −αm

 qn−1

vn−1

an−1+α

 .

Thus, we require the spectral radius of the matrix

T =

 1 0 −h2β
0 1 −hγ

(1− αf )ω
2 0 (1− αm)

−1  1 h h2

2 (1− 2β)
0 1 h(1− γ)

−αfω
2 0 −αm

 .(2.14)

A Matlab script can be quickly written to obtain this numerically. Note that the eigenvalues
of T again depend only on the product hω, not on step size or frequency independently.
Damping curves for various values of r are plotted in Figure 2.1 (cf. Figure 4 of [11]). Below

Fig. 2.1: The generalized α curves dgen alpha/ω as a function of hω, for r = 0 : .25 : 1. The smaller
r, the higher the curve (i.e., more damping).

we compare them with those of the method described next and given in Figure 2.2.

Theta methods. The following second order method (2.15), unlike the preceding ones,
is not treated in [11] or elsewhere to our knowledge. Let us first recall that, for the ODE
u̇ = f(u), the simple θ method, depending on a parameter θ, 0 ≤ θ ≤ 1, reads

un = un−1 + h((1− θ)f(un−1) + θf(un)).

Considering the range 0.5 ≤ θ ≤ 1, the value θ = 1 gives BE while the value θ = 1/2
gives the trapezoidal method. So we expect the damping property to be between BE and
midpoint/trapezoidal, depending on the choice of θ (see, e.g., [2]).
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But this method is only first order accurate for θ ̸= 0.5. Instead, we can mix the trapezoid
with BDF2. Letting 0 ≤ θ ≤ 1, we get

un = un−1 + (1− θ)
h

2
[f(un−1) + f(un)] +

θ

3
[un−1 − un−2 + 2hf(un)].(2.15)

It is easy to verify that this method is second order accurate for all θ values on the unit interval.
For the problem q̈ + ω2q = 0 with v = q̇, we have(

qn
vn

)
−
[
2hθ

3
+ (1− θ)

h

2

](
0 1
−ω2 −d

)(
qn
vn

)
=(

qn−1

vn−1

)
+ (1− θ)

h

2

(
0 1
−ω2 −d

)(
qn−1

vn−1

)
+

θ

3

(
qn−1

vn−1

)
− θ

3

(
qn−2

vn−2

)
.

We can define yn = (qn, vn, qn−1, vn−1)
T . Then Byn = Cyn−1, where (assuming d = 0

to reduce notation)

B =


1 −c

cω2 1
1

1

 , C =


1 + θ/3 (1− θ)h/2 −θ/3

−(1− θ)h/2ω2 1 + θ/3 −θ/3
1

1

 ,

with c = 2hθ/3 + (1− θ)h/2.
Next we find ρ(T ) numerically, knowing that it depends on hω but not on h or ω sepa-

rately, and use the formula dθ = − 2
h ln(ρ(T )) for the artificial damping coefficient. Damping

Fig. 2.2: The second order θ method curves dtheta/ω as a function of hω, where h is the time step, for
θ = 0 : .25 : 1. The larger θ, the higher the curve (i.e., more artificial damping).

curves for various values of θ are given in Figure 2.2.
Comparing the θ method just constructed to the generalized α method we find similari-

ties. The two (families of) methods have a similar range of artificial damping behaviour as a
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function of a knob θ = 1 − r, although the damping amount increases faster initially as we
raise θ in Figure 2.2 than when we lower r in Figure 2.1. They are both second order accurate
for any value of θ or r in the given range. At each time step, they both require (upon some
rewriting) the solution of an algebraic nonlinear system of the size of the original ODE system
(i.e., like BE, and not larger). An advantage of generalized α is that it is a one-step method,
so local step size changes are easier and it requires no extra initialization. This appears to
be the winning argument in some engineering applications; however, it is less important in
computer graphics. An advantage of the θ method given in (2.15) and analyzed above is its
simplicity.

Before we close this subsection, let us reiterate that there is a growing movement in
the visual computing community to not tolerate any method-dependent artificial damping,
controlling damping instead by introduing a simple damping force as described above. At the
time of this writing the jury may still be out on which approach is best; but the very discussion
in a community that until recently believed only in SI is heartening.

Summary. In conclusion of this section, note that we have seen a case study where the
need to move from qualitative to quantitative has caused the computer graphics community
to get closer to the works of numerical analysts and applied mathematicians, for instance in
geometric integration.

3. Image and surface processing. In this case study we consider common image and
surface processing problems such as denoising, deblurring, inpainting, completion, registra-
tion, and salient feature detection. In the case of an image there is a given data array, say
b ∈ Rm×n, and we typically wish to suitably upgrade it to a cleaner, sharper or more com-
plete image u ∈ Rm×n. We also consider situations where the data b represent a surface of
a 3D object, given as a point cloud or a triangle mesh. The output u of our algorithm would
then be a similar, “cleaned” set of points (or particles) in 3D.

Many researchers have considered for this purpose regularization methods that lead to
problems involving PDEs. Many consider such a regularization where diffusion or anisotropic
diffusion is employed. See [29, 30, 9, 31, 28, 8, 15, 16, 21] for but a few related leading
articles and books. Our own papers in this context include [1, 17] and several others.

Let us write the corresponding problem, which we shall henceforth call “the paradigm”,
as that of solving the inverse problem

min
u

1

2
∥f(u)− b∥2 + βR(u),(3.1a)

R(u) =

∫
Ω

ρ(| gradu|).(3.1b)

In (3.1a), f = f(u) is the forward operator which predicts the data (for instance, f is the
identity in case of denoising, but it can be far nastier in other applications); R is the reg-
ularization operator, or prior, given in (3.1b) and discussed further below; and β ≥ 0 is a
parameter that depends on the perceived relative importance of the prior. A boundary value
PDE arises upon taking the Euler-Lagrange equations of (3.1).

For the popular and simple diffusion prior, i.e., ℓ2 on the (discrete) gradient of the func-
tion u in (3.1b), set ρ(s) = s2. For the also very popular anisotropic diffusion, set ρ(s) = s:
this corresponds to total variation, using ℓ1 on the gradient (see [17] and references therein).
A combination of these two using the Huber switching function was considered in [1] and
elsewhere.

In some applications more complex differential operators are used in the paradigm (e.g.,
[5, 19]). Also, for problems involving surfaces the Laplace-Beltrami operator makes an en-
trance. We include all such variants in the generic discussion that follows.
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3.1. To use or not to use the paradigm? That is the question. We now come to the key
issue considered in the present Section 3. For many numerical analysts who dabble in image
processing the answer to the question posed in the title of the present subsection is “but of
course we use the paradigm! what else is worth considering?” However, many leading visual
computing experts would insist that, on the contrary, this paradigm should be used rarely, if
ever!

Indeed, our own experience in the past fifteen years or so indicates that the visual com-
puting experts have a point here, as we were time and again confronted with problems that
were best solved without the paradigm, achieving higher image or surface quality at a lower
computational cost using often simpler computer codes. What we do next, therefore, is to dis-
cuss when the paradigm is useful and when it’s best avoided. We believe that this discussion
is novel.

We have crystallized the issues into two complaints.
1. The paradigm is indirect: we (i) start with the given discrete image b; (ii) go up

to infinite function spaces; (iii) then manipulate the extended data there, possibly
changing the corresponding Sobolev space; (iv) only to return an image u which
is in precisely the same discrete and finite space as b. This suggests that the intro-
duction of PDEs here is optional, not mandatory. Quality aside, it may well be that
algorithms that visit data locations directly and do not require any preconditioning
could have optimal complexity, unlike those involving inversion of artificial PDE
problems.

2. The paradigm uses a global, not local prior. This is very unlike Photoshop and other
image manipulation software. For instance, consider a photo of a particular person
(it could be you!) on the beach. Manipulating the way the person looks would
typically take priority over manipulating the look of the sand: but in (3.1b), any
square centimeter of the given image has the same importance as any other.

The essential advantage in using the paradigm is that one can often obtain a more solid
theoretical backing to algorithms from this global and generic point of view.

The essential disadvantage, however, is that this approach leads to algorithms that may
be outperformed by more brute force techniques, as described above. This is so especially if
the forward operator f is simple and the data b is of high quality.

These straightforward observations and arguments therefore lead to simple rules for us-
ing the paradigm. For example, if f itself involves a solution of some PDE (see, e.g., [1, 20]),
then it is natural to use the paradigm. In many medical imaging problems the paradigm is
likewise likely to be the way to go. Also, in [32] the authors consider (semi-)blind decon-
volution using time-of-flight data, and this again creates a situation where there is not much
quality to lose, hence the more solid theory that comes with the paradigm gives it the nod.

3.2. Examples where the paradigm underperforms. Below we use examples from
papers we have co-authored, because we know “what is under the hood and what went on in
the kitchen” in these particular works. One outcome of using published work, however, is
that there are very few images in the following, and we will refer to the actual other papers
for much more.

3.2.1. Surface mesh denoising [22, 23]. Consider the task of denoising a surface, rather
than an image. The surface of a 3D object, such as a statue, is described by a triangle mesh:
there is a vertex set V and an edge set E depicting which vertices are nodes of the same
triangle. But the nodes qi ∈ V are noisy, and we wish to remove this noise as much as we
can without destroying (e.g., by over-smoothing) the actual object’s apparent structure.

There is a lot of literature on denoising an image, some already mentioned before, but the
start of the work described in the present subsection was in the papers [34, 27]. The authors
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addressed the case of denoising images with texture, where one wished to be extra careful
not to over-smooth, and used a decomposition theorem of BV spaces to propose multiscale
algorithms that gradually increase fidelity to the (noisy) data.

We had wished, back in 2005, to extend these algorithms to the surface mesh case, but
some months later concluded that this approach would not work. The only part adopted
successfully was the gradual multiscale idea. In fact, there are several differences from image
processing. The most important one is that here there is no separation between mesh locations
(pixels in an image) and intensity heights. As such, the “mesh locations” are also noisy and
there is the danger of vertex drift. Moreover, there is mesh sampling irregularity and potential
volume shrinkage (which is visually observed in case of over-smoothing).

In fact, experience shows that the best denoising algorithms for surface meshes apply
smoothing adjustments at each node essentially in the direction normal to the surface at that
point. The normal direction, in turn, is determined locally, not globally! For each qi ∈ V ,
define the one-ring neighborhoodN (i) ≡ {j | ei,j = qj −qi ∈ E}. Then our vertex normal
ni is calculated as the average of neighbouring (triangle) face normals.1

A denoising iteration is derived as updating each vertex qi by

qi ←− qi + τ∆qi + λi(q̂i − qi),

where {q̂i; i = 1, . . . , N} are the given noisy data. The nonnegative parameters τ and λi are
discussed further below. We choose

∆qi =
∑

j∈N (i)

Wi,jei,j

Wi,j = wi,jnin
T
i .

In this way, all sum contributions are proportional to the normal ni. Our anisotropic Lapla-
cian (AL) algorithm computes hi = {hi,j = eTi,jni | j ∈ N (i)} and defines

∆qi =
1

Ci

 ∑
j∈N (i)

g(hi,j)hi,j

ni.

See [22] for details on determining the “edge stopping” function g, and the robust local scal-
ing factor. This method can be seen as a simplification of bilateral filtering with Gaussian
splitting. Note the optimal algorithm complexity (namely, O(N) operations: this would be
hard to match using any version of the paradigm, because the latter involves inverting a sur-
face PDE).

The AL algorithm is effective so long as there are no excessive texture or sharp edges;
see examples in [22]. Sharp edges are handled in [23]. For problems with intrinsic texture
we have the multiscale AL (MSAL) algorithm briefly described as follows:

For k = 0, 1, 2, . . . ,

qi ←− qi + ξk∆qi + λi(q̂i − qi), i = 1, 2, . . . , N.

We set the step size τ = ξk, 0 < ξ < 1, so as to reduce the effect of smoothing gradually.
We also set 0 < λi ≤ 1 to accumulate smoothing contributions monotonically. Specifically,

1If there is no triangle mesh, just a point cloud, then a similar process ensues to determine the normal at vertex
i using principal component analysis (PCA). The normal is then determined as the singular vector corresponding to
the smallest singular value, the other two spanning the tangent space at this vertex or node.
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λi = σi/σ̄, σ̄ = max{σj ; j = 1, . . . , N}, since we want more data fidelity where there is
more fine scale action.

As k → ∞ the process converges at steady state to the given data q̂. Of course in
practice we stop the iteration much sooner (typically, up to 4 iterations suffice). We suggest,
immodestly, that the algorithm just described, which requires astonishingly few Matlab lines
to code, would be hard to beat both in terms of quality of results and in terms of efficiency by
any algorithm based on the paradigm.

3.2.2. Salient features and tele-registration [24]. Suppose we are given an image of
several broken pieces of a plate, and we wish to “put it together”, in the sense of producing an
output image depicting an approximation of the original, unbroken plate (Figure 5 in [24]).
Or we want to clone a mermaid from photos of a girl and a fish (Figure 14 there). Or we
are given a photo of a statue occluded in part, and we wish to use texture from the non-
occluded part of the statue to obtain a more complete image in a sense (Figure 6 there).
Another application is where the input is a photo of an existing ancient mural, where the
block pieces have moved over the centuries with respect to each other (Figure 8 in [24] and
Figure 3.1 below). They should be realigned before an image completion and inpainting job
is applied. These examples all call for an algorithm involving tele-registration to align the
pieces, followed by a structure-driven image completion to fill in the gaps.

The algorithm proposed in [24] has the following outline:
1. Detect salient curves inside each image piece.
2. Attempt to find for each salient curve a matching curve from an adjacent piece,

across the gap.
3. Use this to construct an ambient vector field surrounding all the pieces.
4. Transform (translation, rotation and scaling) each piece so salient curves line up.
5. Construct smooth bridging curves that connect such pairs across gaps.
6. Fill the gaps using structure-driven synthesis, while any remaining inside/outside

holes are completed using standard inpainting tools [4, 14].
We will not dwell further on our previously published paper. Let us instead add the

following:
• While working on this paper we were tempted to use our existing code based on the

method described in [1] for finding the salient curves, as this sort of task is what total
variation is famed for (see, e.g., [17]). However, experiments frustratingly revealed
that the method of [18], which is not based on total variation, performs better for
this task.

• Figure 3.1 was not included in [24] because it was deemed to be less impressive than
other figures there. However, its processing steps can be found in the online project
page related to this work.

Summary. In conclusion of this section, note that we have seen a case study containing
several examples where better quantitative results are obtained using more localized tech-
niques that do not involve solving PDEs. This is often (though not always) the case in visual
computing tasks.

4. Conclusions. We conclude with the following comments and observations:
• Incorporating more mathematically sound techniques into methods and algorithms

for computer graphics and image processing can be a rather worthwhile cause.
• Significant practical advantages have been gained in visual computing using tech-

niques involving physics-based simulation and data-driven model calibration.
• One may occasionally be able to use mathematical analysis to obtain solid justifica-

tion of algorithms: both on when they work and on when they won’t.
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Fig. 3.1: Visual archaeology: a photograph (top left) of a wall in the archaeological park of Banteay
Chhmar, Cambodia. The blocks making up the wall have moved over the centuries, and the relief cor-
respondingly requires adjustment to make sense (observe in particular the highlighted neighborhoods).
The recovery result of our algorithm is shown in the bottom subfigure. The blocks have been shifted us-
ing tele-registration, and inpainting was subsequently applied. The quality is clearly higher than direct
inpainting (top right) can achieve.

• Occasionally it is even possible to bridge the gap between qualitative and quantita-
tive (which is our secret dream).

• However, at the same time, our advice to our younger colleagues is not to get swayed
by sheer mathematical prowess.

• Watch out for situations where the gap between physics and physics-based appears
to be too wide (e.g., in finding fluid viscosity or damping of a soft body).

• Insisting on solving differential equations or satisfying mathematical topology theo-
rems might lead to inferior algorithms for visual tasks: let us remember to keep our
eyes on the ball, so to speak.
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