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Differential equations Goals

Goals of this chapter

• To develop useful methods for simulating initial value ordinary differential
equations;

• to understand several basic concepts and challenges that are central to a
large portion of practical numerical computing today;

• * to get a glimpse at solving problems involving partial differential equations.
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Differential equations Outline
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Differential equations Motivation

Differential equations

• Arise in all branches of science and engineering, economics, finance,
computer science.

• Relate physical state to rate of change. e.g., rate of change of particle is
velocity

dx

dt
= v(t) = g(t, x), a < t < b.

• Ordinary differential equation (ODE): one independent variable (“time”).

• Partial differential equation (PDE): several independent variables.
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Differential equations Motivation

Ordinary differential equations

• ODEs usually arise as a system of differential equations.

• Write in standard form:(
dy
dt

=
)

y′ = f(t,y), a < t < b,

where t is the independent variable, and y = y(t) is sought.

• Note that y(t) is only defined implicitly, through the differential equation.
This makes the task of approximating it more difficult than in previous
chapters.

• To hope for a unique solution (trajectory), must have additional side
conditions.

• Initial value problem: y(a) is given.
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Differential equations Motivation

Example: pendulum
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Differential equations Motivation

Example: pendulum

Newton’s law of motion (masses × accelerations = forces) gives

d2θ

dt2
≡ θ′′ = −g sin(θ),

where g is the scaled constant of gravity, e.g., g = 9.81, and t is time.

• Write as first order ODE system: y1(t) = θ(t), y2(t) = θ′(t). Then
y′
1 = y2, y′

2 = −g sin(y1).
• ODE in standard form for the pendulum:

f(t,y) =
(

y2

−g sin(y1)

)
, y =

(
y1

y2

)
.

• Initial values: θ(0) and θ′(0) are given.

• An alternative not considered further in the slides is a boundary value
problem, where e.g. θ(0) and θ(π) are given.
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Differential equations Motivation

Partial differential equations

• Before we concentrate on methods for initial value ODEs, here are some PDE
prototypes for a more complete general picture.

• Simplest elliptic PDE: Poisson.

∂2u

∂x2
+

∂2u

∂y2
= g(x, y).

• Simplest parabolic PDE: heat.

∂u

∂t
=

∂2u

∂x2
.

• Simplest hyperbolic PDE: wave.

∂2u

∂t2
− ∂2u

∂x2
= 0.
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Differential equations Euler’s method
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Differential equations Euler’s method

Forward Euler

• Simplest method(s) for the initial value ODE

y′ = f(t, y), y(a) = c.

(Consider a scalar ODE for convenience.)

• We use it to demonstrate general concepts:
• Method derivation
• Explicit vs. implicit methods
• Local truncation error and global error
• Order of accuracy
• Convergence
• Absolute stability and stiffness.
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Differential equations Euler’s method

Forward Euler: derivation

• Mesh points t0 < t1 < · · · < tN with h = ti+1 − ti. Approximate solution
yi ≈ y(ti).

• Proceed to march from one mesh point to the next (step by step).

• Recall (Chapter 14) the simplest forward difference

y′(ti) =
y(ti+1)− y(ti)

h
− h

2
y′′(ξi).

Therefore,

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi).

• So, set

y0 = c,

yi+1 = yi + hf(ti, yi), i = 0, 1, . . . , N − 1.
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Differential equations Euler’s method

Forward Euler: simple example

• For the problem y′ = y, y(0) = 1, the exact solution is y(t) = et.

• Forward Euler: y0 = 1, yi+1 = (1 + h)yi, i = 0, 1, . . . .

• In the “typical figure”, red is exact y(t), blue is approximate yi, h = 0.1.

• Measuring obtained error max1≤n≤1/h |yn − y(tn)|, it behaves like O(h).
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Differential equations Euler’s method

Forward Euler: nonlinear example

• A system of 8 ODEs arising in plant physiology. In Matlab define
function f = hires(t,y)
f = y;
f(1) = -1.71*y(1) + .43*y(2) + 8.32*y(3) + .0007;
f(2) = 1.71*y(1) - 8.75*y(2);
f(3) = -10.03*y(3) + .43*y(4) + .035*y(5);
f(4) = 8.32*y(2) + 1.71*y(3) - 1.12*y(4);
f(5) = -1.745*y(5) + .43*y(6) + .43*y(7);
f(6) = -280*y(6)*y(8) + .69*y(4) + 1.71*y(5) - .43*y(6) + .69*y(7);
f(7) = 280*y(6)*y(8) - 1.81*y(7);

f(8) = -280*y(6)*y(8) + 1.81*y(7);

• Integrate from a = 0 to b = 322 starting from
y(0) = y0 = (1, 0, 0, 0, 0, 0, 0, .0057)T .

• Use the script (note: wasteful in terms of storage, but simple)
h = .001; t = 0:h:322;
y = y0 * ones(1,length(t));
for i = 1:length(t)-1

y(:,i+1) = y(:,i) + h*hires(t(i),y(:,i));
end
plot(t,y(6,:))
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Differential equations Euler’s method

Example: hires

Note the simplicity of the code, as well as the rather small h selected, which yields
322,000 time steps.

Resulting plot of 6th component:
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Differential equations Euler’s method

Backward Euler: implicit vs. explicit

• Instead of forward, could use backward difference

y′(ti+1) =
y(ti+1)− y(ti)

h
+

h

2
y′′(ξi).

Therefore,

y(ti+1) = y(ti) + hf(ti+1, y(ti+1))−
h2

2
y′′(ξi).

• So, set

y0 = c,

yi+1 = yi + hf(ti+1, yi+1), i = 0, 1, . . . , N − 1.

• But now, unknown yi+1 appears implicitly!
More complicated and costly to carry out the stepping procedure.

• Forward Euler is an explicit method, backward Euler is an implicit method.
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Differential equations Euler’s method

Forward Euler outline

• Method derivation

• Explicit vs. implicit methods

• Local truncation error and global error

• Order of accuracy

• Convergence

• Absolute stability and stiffness.
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Differential equations Euler’s method

Local truncation error and global error

• Local truncation error, di = the amount by which the exact solution fails to
satisfy the difference equation, written in divided difference form.

• For forward Euler, di = h
2 y′′(ξi).

• The order of accuracy is q if maxi |di| = O(hq).
(The Euler methods are 1st order accurate.)

• Global error

en = y(tn)− yn, n = 0, 1, . . . , N.

• The method converges if max0≤n≤N |en| → 0 as h→ 0.

• For all the methods and problems we consider, there is a constant K s.t.

|en| ≤ K max
i
|di|, n = 0, 1, . . . , N.
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Differential equations Euler’s method

Euler convergence theorem

Let f(t, y) have bounded partial derivatives in a region D = {a ≤ t ≤ b, |y| <∞}.
Note that this implies Lipschitz continuity in y: there exists a constant L such
that for all (t, y) and (t, ŷ) in D we have

|f(t, y)− f(t, ŷ)| ≤ L|y − ŷ|.

Then Euler’s method converges and its global error decreases linearly in h.
Moreover, assuming further that

|y′′(t)| ≤M, a ≤ t ≤ b,

the global error satisfies

|en| ≤
Mh

2L
[eL(tn−a) − 1], n = 0, 1, . . . , N.
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Differential equations Euler’s method

Forward Euler outline

• Method derivation

• Explicit vs. implicit methods

• Local truncation error and global error

• Order of accuracy

• Convergence

• Absolute stability and stiffness
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Differential equations Euler’s method

Absolute stability

• Convergence is for h→ 0, but in computation the step size is finite and fixed.
How is the method expected to perform?

• Consider simplest, test equation

y′ = λy.

Solution: y(t) = y(0)eλt. Increases for λ > 0, decreases for λ < 0.

• Forward Euler:

yi+1 = yi + hλyi = (1 + hλ)yi = . . . = (1 + hλ)i+1y(0).

• So, approximate solution does not grow only if |1 + hλ| ≤ 1. This is
important when λ ≤ 0.

• For λ < 0 must require

1 + hλ ≥ −1, hence h ≤ 2
−λ

.
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Differential equations Euler’s method

Absolute stability and stiffness

• The restriction on the step size is an absolute stability requirement.

• Note: it’s a stability, not accuracy, requirement.

• If absolute stability requirement is much more restrictive than accuracy
requirement, the problem is stiff.

• Example

y′ = −1000(y − cos(t))− sin(t), y(0) = 1,

The exact solution is y(t) = cos(t): varies slowly and smoothly.

• And yet, applying forward Euler, must require

h ≤ 2
1000

= 0.002,

or else roundoff error will rapidly build up, leading to a useless simulation.
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Differential equations Euler’s method

Backward Euler and implicit methods

• Apply backward Euler to the test equation:

yi+1 = yi + hλyi+1.

Hence

yi+1 =
1

1− hλ
yi.

• Here |yi+1| ≤ |yi| for any h > 0 and λ < 0: no annoying absolute stability
restriction.

• For the example of previous slide, integrating from 0 to π/2 using forward
Euler with h ≥ .001π leads to blowup.
Integrating using backward Euler with h = .001π gives error 3.2e-9.
Using backward Euler with h = .1π still results in respectable error 1.7e-5.
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Differential equations Euler’s method

Stiff problems more generally

• Stiff systems do arise a lot in practice.

• If problem is very stiff, explicit methods are not effective.

• Simplest case of a system: y′ = Ay, with A a constant m×m
diagonalizable matrix.

• There is a similarity transformation T so that

T−1AT = diag(λ1, . . . , λm).

Then for x = T−1y obtain m test equations

x′
j = λjxj , j = 1, . . . , m.

• For forward Euler must require

|1 + hλj | ≤ 1, j = 1, 2, . . . , m.

• The big complication: the eigenvalues λj may be complex!
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Differential equations Runge-Kutta methods

Outline
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Differential equations Runge-Kutta methods

Runge-Kutta methods: higher order

• The Euler methods are only first order accurate: want higher accuracy.

• Can write ODE y′ = f(t, y) as

y(ti+1) = y(ti) +
∫ ti+1

ti

f(t, y(t))dt,

and discretize integral by a basic quadrature rule.

• Use polynomial interpolation for values of y inside the subinterval (as in
quadrature, Chapter 15).

• Implicit trapezoidal method:

yi+1 = yi +
h

2
(
f(ti, yi) + f(ti+1, yi+1)

)

• Easy to see that the local truncation error is di = O(h2).
• But resulting method is implicit!
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Differential equations Runge-Kutta methods

Explicit trapezoidal method

• “Bootstrap”: Use forward Euler to approximate f(ti+1, yi+1) first.

Y = yi + hf(ti, yi),

yi+1 = yi +
h

2
(
f(ti, yi) + f(ti+1, Y )

)
.

• Obtain explicit trapezoidal, a special case of an explicit Runge-Kutta method.

• Can do the same based on the midpoint quadrature rule:

Y = yi +
h

2
f(ti, yi),

yi+1 = yi + hf(ti + h/2, Y ).
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Differential equations Runge-Kutta methods

Explicit trapezoidal & midpoint methods

• Can write explicit trap as

K1 = f(ti, yi),
K2 = f(ti+1, yi + hK1),

yi+1 = yi +
h

2
(K1 + K2) .

• Can write explicit midpoint as

K1 = f(ti, yi),
K2 = f(ti + .5h, yi + .5hK1),

yi+1 = yi + hK2.

• Both are explicit 2-stage methods of order 2.
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Differential equations Runge-Kutta methods

Explicit s-stage RK method

A class of methods is defined by coefficients aj,k, bj , 1 ≤ j ≤ s, 1 ≤ k ≤ j − 1:

K1 = f(ti, yi),
K2 = f(ti + hc2, yi + ha2,1K1),

... =
...

Kj = f(ti + hcj , yi + h

j−1∑
k=1

aj,kKk), 1 ≤ j ≤ s

yi+1 = yi + h

s∑
j=1

bjKj .

where cj =
∑j−1

k=1 aj,k, 1 =
∑s

k=1 bk .
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Differential equations Runge-Kutta methods

RK in tableau form

Can usefully record the coefficients aj,k and bk in a tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

where cj =
∑s

k=1 aj,k for j = 1, 2, . . . , s.
The RK method is explicit if the matrix A is strictly lower triangular: aj,k = 0 if
j ≤ k. The method is implicit otherwise.
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Differential equations Runge-Kutta methods

Classical 4th order RK

• The original 4-stage Runge method is explicit:

K1 = f(ti, yi),

K2 = f(ti + h/2, yi +
h

2
K1),

K3 = f(ti + h/2, yi +
h

2
K2),

K4 = f(ti+1, yi + hK3),

yi+1 = yi +
h

6
(K1 + 2K2 + 2K3 + K4) .

• Tableau form

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0
1/6 1/3 1/3 1/6
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Differential equations Runge-Kutta methods

Example with known solution

y′ = −y2, y(0) = 1 =⇒ y(t) = 1/t.
The table shows absolute errors at t = 1 as well as effective convergence rates. To
obtain small errors, the higher order methods are more effective.

h Euler rate RK2 rate RK4 rate
0.2 4.7e-3 3.3e-4 2.0e-7
0.1 2.3e-3 1.01 7.4e-5 2.15 1.4e-8 3.90
0.05 1.2e-3 1.01 1.8e-5 2.07 8.6e-10 3.98
0.02 4.6e-3 1.00 2.8e-6 2.03 2.2-11 4.00
0.01 2.3e-4 1.00 6.8e-7 2.01 1.4e-12 4.00
0.005 1.2e-4 1.00 1.7e-7 2.01 8.7e-14 4.00
0.002 4.6e-5 1.00 2.7e-8 2.00 1.9e-15 4.19

where

rate(h) = log2

(
e(ωh)
e(h)

)
/ log2 ω.
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Differential equations Runge-Kutta methods

Explicit Runge-Kutta methods

• All RK methods are one step methods: they strive to achieve higher accuracy
order by repeated evaluations of f within the current interval [ti, ti+1].

• All RK methods of order at least 1 converge.

• The order q of an explicit s-stage RK method cannot be higher than the
number of stages: q ≤ s.

• Proving the order of accuracy of a given explicit RK method can be really
hard if q ≥ 4.
(In fact, showing that the classical RK method has order 4 is a challenge!)
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Differential equations Runge-Kutta methods

Lotka-Volterra predator-prey model

y′
1 = .25y1 − .01y1y2, y1(0) = 80,

y′
2 = −y2 + .01y1y2, y2(0) = 30.

Integrating from a = 0 to b = 100 using RK4 with step size h = 0.01:
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Differential equations Multistep methods
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Differential equations Multistep methods

Linear multistep methods

• The RK family of methods are one-step, increasing the order of the method
by repeated evaluations of f in [ti, ti+1].

• Another approach for increasing order is to use past values yi+1−j and
corresponding fi+1−j = f(ti+1−j , yi+1−j), j = 0, 1, . . . , s.

• The general linear multistep formula is
s∑

j=0

αjyi+1−j = h
s∑

j=0

βjfi+1−j .

Here, αj , βj are coefficients; set α0 = 1. The method is explicit iff β0 = 0.

• One-step s = 1 examples: forward Euler (α1 = −1, β1 = 1), backward Euler
(α1 = −1, β0 = 1), implicit trapezoid (α1 = −1, β0 = β1 = .5).

• However, the explicit RK2 and RK4 are not in the linear multistep form.
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Differential equations Multistep methods

Adams methods

• Starting with the integral form

y(ti+1) = y(ti) +
∫ ti+1

ti

f(t, y(t))dt,

integrate polynomial interplant of f(t, y) using values
• fi, fi−1, . . . , fi+1−s, which gives an explicit Adams-Bashforth method of order

s; or
• fi+1, fi, fi−1, . . . , fi+1−s, which gives an implicit Adams-Moulton method of

order s + 1.

• e.g. 2-step Adams-Bashforth: yi+1 = yi + h
2 (3fi − fi−1).

• These methods are good for non-stiff problems, where they are often used in
pairs of predictor-corrector.

• They can be highly efficient (more than RK) if high order accuracy is
required for a smooth problem. For everyday use, though, RK is generally
considered more versatile.
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Differential equations Multistep methods

BDF methods

• These methods are called backward differentiation formulas (BDF), and use
f value only at the unknown level i + 1.

• Starting with the form

s∑
j=0

αjyi+1−j = hβ0fi+1,

determine the coefficients using polynomial interpolation of
yi+1, yi, yi−1, . . . , yi+1−s, which gives an implicit method of order s.

• The 1-step BDF is backward Euler. The 2-step BDF is
yi+1 = 4

3yi − 1
3yi−1 + 2h

3 fi+1.

• These methods are particularly good for stiff problems, considered next.
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Differential equations Stiff equations
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Differential equations Stiff equations

Absolute stability and stiffness

• Convergence is for h→ 0, but in computation the step size is finite and fixed.
How is the method expected to perform?

• Consider simple test equation for complex scalar λ (representing an
eigenvalue of an ODE system Jacobian matrix)

y′ = λy.

Solution: y(t) = y(0)eλt. So |y(t)| = |y(0)|eR(λ)t. Magnitude increases for
R(λ) > 0, decreases for R(λ) < 0.

• Forward Euler:

yi+1 = yi + hλyi = (1 + hλ)yi = . . . = (1 + hλ)i+1y(0).

• So, approximate solution does not grow only if |1 + hλ| ≤ 1. Important when
R(λ) ≤ 0.

• This condition means that z = hλ must not lie outside the disk of radius 1
centred at (−1, 0) in the complex plane.

Uri Ascher & Chen Greif (UBC Computer Science) A First Course in Numerical Methods September 13, 2014 38 / 56



Differential equations Stiff equations

Absolute stability: explicit RK

The plot depicts absolute stability regions |R(z)| ≤ 1 in the complex z = hλ-plane
for s-stage explicit RK methods of order s, s = 1, 2, 3, 4. The region is larger for
larger s.
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Uri Ascher & Chen Greif (UBC Computer Science) A First Course in Numerical Methods September 13, 2014 39 / 56



Differential equations Stiff equations

Stiff problem

• The ODE is stiff if an unreasonably small step size h must be used for
forward Euler.

• In this case explicit RK or multistep are inadequate – resort to appropriate
implicit methods.

• Method is A-stable if absolute stability region contains entire left half z-plane.
Both backward Euler and implicit trapezoidal are A-stable.

• Method is L-stable if |R(z)| → 0 as R(z)→ 0.
Backward Euler is L-stable, implicit trapezoidal is not.
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Differential equations Stiff equations

Stiff system

• For a nonlinear ODE system, must look at the eigenvalues of the Jacobian
matrix

J =
∂f
∂y

=


∂f1
∂y1

. . . . . . ∂f1
∂ym

...
. . .

...
...

. . .
...

∂fm

∂y1
. . . . . . ∂fm

∂ym

 .

• Note that since J depends on the unknown y(t), we may not know good
bounds on these eigenvalues in advance.

• Moreover, the stability restriction for an explicit method may dictate different
step sizes at different t.

• An implicit method requires the solution of a nonlinear algebraic system at
each step; see Chapters 3 and 9. Use some variant of Newton’s method (and
not a cheap fixed point iteration).
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Differential equations Stiff equations

Example: the hires system

Return to the “hires” system, for which J(y) =
0

B

B

B

B

B

B

B

B

B

B

B

B

@

−1.71 .43 8.32 0 0 0 0 0
1.71 −8.75 0 0 0 0 0 0
0 0 −10.03 .43 .035 0 0 0
0 8.32 1.71 −1.12 0 0 0 0
0 0 0 0 −1.745 .43 .43 0
0 0 0 .69 1.71 0 .69 0
0 0 0 0 0 −280y8 − .43 0 −280y6

0 0 0 0 0 280y8 −1.81 280y6

0 0 0 0 0 −280y8 1.81 −280y6

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

• At t = 0 where y = y0, the eigenvalues are approximately

0,−10.4841,−8.2780,−0.2595,−0.5058,−2.6745± 0.1499ı,−2.3147.

So, h = 0.1 is a safe choice for forward Euler.
• At t ≈ 10.7, the eigenvalues are approximately

−211.7697,−10.4841,−8.2780,−2.3923,−2.1400,−0.4907,−3e−5,−3e−12.

Here, h = 0.005 is required for forward Euler.
• This innocent-looking problem is mildly stiff.
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Differential equations Error control and adaptive step size

Outline

• Differential equations

• Euler’s method

• Runge-Kutta methods

• Multistep methods

• Absolute stability and stiffness

• Error control and estimation

• *Partial differential equations
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Differential equations Error control and adaptive step size

Error control and estimation

• As in Chapter 15, want to build a Matlab function which returns, given
f(t, y), initial value information a, y(a), tolerance tol and a set of output
points t̂1, . . . , t̂N̂ , a corresponding set of solution values accurate at these
points to within tol.

• Unlike in Chapter 15, however, the error here propagates and accumulates
from one time step (or mesh subinterval) to the next, hence the task of
estimating the global error is much more awkward.

• Often in practice, a tolerance on the global error is not known, and we only
want to control the step size hi = ti+1 − ti from the current known (ti, yi) to
the next (ti+1, yi+1).

• Thus, select hi so that the local error in the ith step

li+1 = ȳ(ti+1)− yi+1,

is below a (local) tolerance hi∗tol. Here, ȳ(t) is the local exact (unknown)
ODE solution satisfying ȳ(ti) = yi.

• There are examples where this sort of error control leads to very large global
errors, but in many applications good results are obtained very efficiently!
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Differential equations Error control and adaptive step size

Using a pair of RK methods

• How can we estimate ȳ(ti+1) effectively?

• Suppose we use an RK method of order q for yi+1, given yi.
Then use another RK method of order q + 1 to calculate ŷi+1, given yi, and
estimate

|li+1| ≈ |ŷi+1 − yi+1|.

• Rationale: by order, ŷi+1 is closer to ȳ(ti+1) than to yi+1.

• So, at step i, with h = hi, if

|ŷi+1 − yi+1| ≤ htol

then accept step: set yi+1 ← ŷi+1, i← i + 1.

• If step is not accepted, then set

h← h

(
µh tol

|ŷi+1 − yi+1|

) 1
q

,

and repeat. This selection is based on the asymptotic behaviour li+1 ∼ hq+1.
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Differential equations Error control and adaptive step size

Adaptive stepping

• In the correction formula for h, there is a safety factor µ, e.g. µ = 0.9.

• In Matlab the function ode45 integrates non-stiff problems efficiently using
a pair of explicit RK methods with q = 4 (hence the name) which share inner
stages, hence are more efficient.

• In Matlab, for stiff problems, use the function ode23s, which is based on a
pair of BDF methods. (What is q?)

• Next, we show an example demonstrating great success with this approach.

• However, we caution that there are other examples where a uniform step size
is fine and other challenges are more important.
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Differential equations Error control and adaptive step size

Example: astronomical orbit

The orbit depicted below obeys an ODE system of size 4: see Section 16.6 for
details.
Using RK4 with a uniform step size, about 10,000 steps are needed for a
qualitatively correct approximation.
Using ode45 with default tolerances, 309 steps are required, with
max hi = 0.1892, minhi = 1.5921e− 7.
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Differential equations Error control and adaptive step size

Example: hires for the last time

• Recall that if using a constant step size then, for stability reasons, h ≤ 0.005
is required for forward Euler. Over the interval [0, 322] this leads to at least
64400 steps.

• Stability restrictions on higher order explicit RK are generally not better than
for forward Euler.

• Yet, running Matlab’s ode45 (which uses explicit RK and thus is not
suitable for very stiff problems) with default tolerances, requires only 41525
steps.

• Thus, the adaptive solver automatically senses when a step size is too large
to be stable, and adjusts locally.
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Differential equations * Partial differential equations

Outline

• Differential equations
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Differential equations * Partial differential equations

Partial differential equations

• The area of numerical methods for PDEs is vast and is generally well beyond
a first course, even at a beginning graduate level.

• However, some PDEs do appear in our text (and slides) in context.

• Elliptic (“steady state”) PDEs such as the Model Poisson equation require
solution of large and often sparse systems of linear equations. They are used
repeatedly as examples in Chapter 7.

• The model problem for time-dependent parabolic PDEs is the heat equation,
considered in the next example.

• Recall also the nonlinear PDE in the last section of Chapter 14, for which a
spectral Fourier method was used.

• We will also see some examples of treating hyperbolic PDEs next.
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Differential equations * Partial differential equations

Example: heat equation

• Consider

∂u

∂t
=

(
∂2u

∂x1
2

+
∂2u

∂x2
2

)
.

Here 0 ≤ x1, x2 ≤ 1 are spatial variables and t ≥ 0 is time.

• Require boundary conditions, e.g.

u(t, x1, 0) = u(t, x1, 1) = u(t, 0, x2) = u(t, 1, x2) = 0, ∀t ≥ 0,

and initial conditions, e.g.

u(0, x1, x2) = 25, 0 < x1, x2 < 1.

• Discretize in space using uniform step ∆x as in Chapter 7, obtain mesh
function in time satisfying the ODE system

dui,j

dt
=

1

∆x2
(ui+1,j + ui,j+1 − 4ui,j + ui−1,j + ui,j−1), 1 ≤ i, j ≤ M − 1,

ui,j = 0, otherwise.
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Differential equations * Partial differential equations

Example: heat equation cont.

• Reshape ui,j ’s as a vector y(t), obtain linear initial value ODE system

y′ = Ay. y(0) = 25 ∗ 1

with A large and sparse.
• The eigenvalues of A are

λl,m =
1

∆x2
[4− 2 (cos(lπ∆x) + cos(jπ∆x))], 1 ≤ l, j ≤M − 1 ,

giving for forward Euler with step size h the absolute stability condition

h ≤ ∆x2

12
.

• This problem is therefore mildly stiff. Need O(M2) time steps, each costing
O(M2) flops, to advance to t = 0.1 using explicit method.

• Crank-Nicolson: use implicit trapezoidal. Then no stability restrictions, but
take h = O(∆x) for accuracy balancing.

• Must solve linear system at each step. However, so long as this requires less
than O(M3) flops (preconditioned conjugate gradients requires less), the
implicit method wins!
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Differential equations * Partial differential equations

Example: heat equation solution

The solution plot below is at t = 0.1.
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Differential equations * Partial differential equations

Example: advection equation

• This is a simple-looking hyperbolic PDE: for t ≥ 0, −∞ < x <∞,

∂u

∂t
=

∂u

∂x
.

Initial conditions u(t = 0, x) = u0(x).
• Exact solution is

u(t, x) = u0(t + x),

so no smoothing of initial value function for t > 0.
• Compare below solutions for advection (left) and heat (right) for

u0(x) = (1− exp(−x− π))/(1− exp(−π)) for x < 0, = 0 otherwise.
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Differential equations * Partial differential equations

Example: classical wave equation

• Consider the PDE

∂2u

∂t2
− c2 ∂2u

∂x2
= 0, t ≥ 0, x0 < x < xJ+1,

under initial conditions u(0, x) = u0(x), ∂u
∂t (0, x) ≡ 0, and

boundary conditions u(t, x0) = u(t, xJ+1) = 0 ∀t.
• Exact solution

u(t, x) =
1
2
[u0(x− ct) + u0(x + ct)],

where c > 0 is the speed of sound.
• For numerical method use the explicit, two-step leap-frog scheme

un+1
j − 2un

j + un−1
j

∆t2
= c2

un
j+1 − 2un

j + un
j−1

∆x2
, j = 1, 2, . . . , J.

• Stability restriction coincides with CFL condition

c∆t ≤ ∆x.
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Differential equations * Partial differential equations

Example: classical wave equation

The “Waterfall” solution below is for c = 1, u0(x) = exp(−αx2), −10 ≤ x ≤ 10.
We set ∆x = .04, ∆t = .02.
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