CPSC 403 /542

Assignment 4 - Solutions
1. (a) Differentiating
y' =1(ty)
with respect to ¢ we have by the chain rule

y. =fyye, wherey.= @_y
¢ dc

Differentiating y(0) = ¢ with respect to ¢ gives y.(0) = I. Denoting
Y(t) = ye(t) we get

Y' = AQ)Y
Y(0) = 1
where A(t) = fy (¢, y(;¢)).
(b) Let
Z=y —Y.

We know that z(¢) = O(e) (from the fundamental theorem of IVPs). A
Taylor expansion of f(y) about f(y) then yields

2 = £(1,%) — £(L,y) = A1)z + O(¢)

The O(€e?) term can be considered (for € small enough) as an inhomogeneity
for the linear problem for z which has the initial conditions

z(0) = ed.

So,
z(t) = Y (1)d + O(e?).

For the jth initial value alone we look at the vector d” = (0,...,0,1,0,...,0),
i.e. the jth unit vector. Thus, Y(¢)d is the jth column of Y (¢). If the
modes are separated then this would be the jth mode.

(¢) For the boundary value problem we are looking at
Boy(0) + Byy(b) = b + ed

For z = y — y the same differential equation holds as in the IVP case, but
with boundary conditions

Byz(0) 4+ Byz(b) = ed
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So, define the fundamental solution ®(t) by

@/
Bo®(0) + B,®(b)

A()®
I

(which we assume to exist and be bounded). Clearly, ® =y, indicating
that this is the sensitivity matrix function with respect to the boundary
data, and we also obtain

y(1) = y(t) + €@(t)d 4+ O(¢?)

2. (a) Using the trapezoidal scheme on a given mesh we have
y(tn) — ¥n = c1h> + coh? +e3h® + ...

So, if we halve each step and repeat the computation we get
We can now divide each step to 3 or 4 equal pieces and repeat. To be
concrete, subdivide to 4 and call the result y;:

Y(tn) — S’4TL = C1hi/16 + Cth/QS + Cghi/le + ...
These three expressions can be used to eliminate ¢; and ¢y, yielding
644, — 20¥2, + Yu
(tn) = =g = O(h) + O(")
(b) For the problem of Examples 8.1 and 8.3 we get the results in the ta-

bles below. These results are qualitatively similar to those obtained for

N T X error rate| A error rate| XA  error rate

07T .33e8 50 .50e-T 500 .19

20 bHle-10 6.0 9de-2 2.4 A2 .66

40 80e-12 6.0 H%-3 4.0 14 =22

80 20e-13 5.3 A7e-4 5.1 83e-1 .75

Table 0.1: Maximum errors for Example 8.1 using extrapolation: uniform meshes.

collocation at 3 Gaussian points.

Comment: Note that the nonuniform meshes used here and in the text are
very ad hoc. Belter meshes can certainly be constructed.

3. This is a 'do it any way you can’ question, more difficult than usual.
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N A error rate]| A error rate
10 150 .34e-2 500 .35e-2

20 22e-3 3.9 22e-3 4.0
40 62e-5 5.1 A7e-4 3.7
80 .10e-6 6.0 24e-4 0.5

Table 0.2: Maximum errors for Example 8.1 using extrapolation: nonuniform meshes.

(a) It is useful to read Exercise 7.4 for this particular question. The problem
on a semi-infinite interval can be approximated in the following 3 ways:

e Solve

4
v"—l—;v’—l—(tv—l)v = 0, 0<t< L
v'(0) =0, v(L)=0.

This is the simplest approach, and it is suggested in Exercise 7.4. Here
L is a large enough interval size, e.g. L = 10.

e The solution v decays exponentially. Thus, for ¢ large, %v’ and tv?
are negligibly small, and we get v & v, so v(t) & e¢~*. This can be
enforced by replacing the boundary condition v(L) = 0 by

o' (L) +v(L)=0.

Note also that the above argument justifies assuming that L = 10 is

“large enough”: because e™'? is close enough to 0.

e It is also possible to apply a nonlinear transformation of the indepen-
dent variable:

r=1/(t+1)

r=t/(t+1).

Then the problem in 7 is defined on [0, 1]. But singularities arise and
have to be dealt with. This idea still works for this simple example.
But more generally, it seems less robust than the previous options.

I chose the first of these reformulations. Note that if the trapezoidal scheme
is used then we end up evaluating % at ¢ = 0. No difficulty arises if Gauss
collocation is used. But for the trapezoidal scheme the trouble is not
serious either: By L’Hopitalle’s rule we have



and this is used to modify the discretized differential equation at ¢ = 0.

Some trial and error for the choice of initial solution followed, to avoid the
trivial solution. With the initial guess

o(t) = 14212 -1), t<2
= & t>2

collocation at 3 Gaussian points and 80 uniform mesh points yields the
results in the following figure.

2.5

7 8 9 10

Figure 0.1: Nontrivial soltion for problem on semi-infinite interval

(b) The famous van der Pol equation
u" = (1 —u*)u' —u

can be integrated using, e.g. the Matlab default IVP solver starting from,
say, u(0) = u’(0) = 1. The trajectory gets attracted to the limit cycle, and
the figure below is produced.

If we integrate this IVP up to ¢ = 100 then the obtained solution value,
u(0) = 2.0078,u'(0) = —.056, can be assumed to be on the limit cycle to
our working accuracy.

Next we want to find the period. Obviously, we cannot simply specify
u(0) = u(b),u'(0) = u'(b), because b is unknown and the problem is thus
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van der Pol limit cycle
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_3 1 1 1 1 1 1 1 1 1
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

Figure 0.2: Limit cycle of the van der Pol equations

underdetermined. We first redefine the independent variable: 7 = /b,
where b is the period that we want to find. Denoting by @ the derivative
of u with respect to 7, we get the system

Y = byz
go = (1= y})y2 — i
b = 0

y1(0) = 2.0078, yy(1) = 2.0078, y,(0) = —.056

This is solved, starting from an appropriate initial guess (the initial guess
y1 = y1(0) cos(n7), y2 = y1(0)sin(w7), b = 10, worked for me), and the
resulting solution is checked to make sure it makes sense (i.e. check that

y2(1) = y2(0) and b > 0). This yields the period
b~ 6.6633

Comment: This approach is definitely ad hoc and hard to automate. There
are better, more general, systematic approaches to finding periodic solu-
tions, which are not covered in the text.

Note that here too, there is a trivial solution b = 0 to avoid.

(c¢) This problem is simple. Obtain, using a general-purpose code,

A~ 3.456287 .



