CPSC 403/542 Assignment 3

U. M. Ascher

Due: Mon, March 12, 2001.

1. Consider the two-point boundary value problem

$$\varepsilon u'' = au' + b(t)u + q(t)$$

$$u(0) = b_1, \ u(1) = b_2$$
 (1)

where $a \neq 0$ is a constant and b, q are continuous functions, all O(1) in magnitude, and $0 < \varepsilon \ll 1$.

- (a) Write the ODE in first order form for the variables $y_1 = u$ and $y_2 = \varepsilon u' au$.
- (b) Letting $\varepsilon \to 0$, show that the limit system is an index-1 DAE.
- (c) Show that only one of the boundary conditions in (1) is needed to determine the reduced solution (i.e. the solution of the DAE).

 Optional: Which one?
- 2. Consider the problem of solving an underdetermined system of nonlinear equations,

$$h(x) = 0$$

where

$$H = \frac{\partial \mathbf{h}}{\partial \mathbf{x}}$$

is a rectangular $m \times l$ matrix $(m \leq l)$ having a full row rank m for any \mathbf{x} .

A linearization a la Newton gives the iteration

$$\mathbf{0} = \mathbf{h}(\mathbf{x}_{\nu}) + H(\mathbf{x}_{\nu})(\mathbf{x}_{\nu+1} - \mathbf{x}_{\nu}) \qquad \nu = 0, 1, \dots$$
 (2)

This is a linear, underdetermined system for $\mathbf{x}_{\nu+1}$, i.e. there are many solutions $\mathbf{x}_{\nu+1}$ to (2). Of course we cannot have our sequence of iterates $(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\nu}, \dots)$ horse around because of this underdetermination.

A common, numerically sound way for pinning down $\mathbf{x}_{\nu+1}$ is to minimize the deviation from the current iterate, $|\mathbf{x}_{\nu+1} - \mathbf{x}_{\nu}|_2$, subject to (2) holding. This gives the iteration

$$\mathbf{x}_{\nu+1} = \mathbf{x}_{\nu} - H^{T} (HH^{T})^{-1} \mathbf{h}(\mathbf{x}_{\nu})$$
(3)

where $H = H(\mathbf{x}_{\nu})$.

- (a) Optional: Verify that the solution of (3) indeed minimizes $|\mathbf{x}_{\nu+1} \mathbf{x}_{\nu}|_2$ subject to satisfying (2).
- (b) Another approach is to consider $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ as defining an invariant set, and to define a dynamical system whose trajectories get attracted to this invariant set. Thus, starting with $\mathbf{x}' = \mathbf{0}$ (the independence of \mathbf{x} on the variable t that we have just dreamt up), we modify according to §9.2 of the text to

$$\mathbf{x}' = -\gamma F(\mathbf{x}) \mathbf{h}(\mathbf{x}) \tag{4}$$

where $\gamma > 0$ is a parameter. The initial value \mathbf{x}_0 for this ODE system is anyone's guess.

Show that by a suitable choice of F and a discretization scheme for (4), the constrained Newton method (3) is obtained.

Optional: Can you think of a better method?

3. Set $\varepsilon = 0$ in Example 9.8 of the text, and solve the resulting DAE numerically. (Take g = 1.) You may use any (justifiable) means you like, including index reduction and/or use of an appropriate software package. Plot the solution and compare with Figure 9.2. Discuss.