SURPRISING COMPUTATIONS

Uri Ascher

Department of Computer Science University of British Columbia ascher@cs.ubc.ca www.cs.ubc.ca/~ascher/

SURPRISING COMPUTATIONS

- Numerical simulations often involve sophisticated algorithms for challenging problems. The process of deriving such algorithms as well as showing that they are robust, stable, accurate and efficient, usually involves a lot of insight and subtle work, but often without great surprises: this does not make such work trivial or unimportant.
- In the course of preparing the text I did nonetheless bump several times into method derivations and computations that surprised me. Some such surprises are briefly described here. It's also an opportunity to consider, or refer to, a bunch of case studies.
- The ones about Hamiltonian systems, splitting NLS and WENO are further developed in my paper "Surprising computations" (2012), please see my home page.

LIST OF SURPRISES

- Quadtrees and Octrees (Chapter 3)
- Cloth simulation (Chapter 2)
- Matlab's ode45 for Hamiltonian systems (Chapters 6 & 2)
- KdV instability (Chapters 5 & 7)
- Splitting cubic NLS (Chapter 9)
- Artificial boundary waves (Chapter 8)
- ENO, WENO and SSP (Chapter 10)
- MEMS device (Chapter 11)

- Quadtrees and Octrees (Chapter 3)
- Cloth simulation
- Matlab's ode45 for Hamiltonian systems
- KdV instability
- Splitting cubic NLS
- Artificial boundary waves
- ENO, WENO and SSP
- MEMS device

NONUNIFORM MESH IN 1D

Handling a nonuniform mesh is relatively straightforward in 1D

NONUNIFORM MESH IN 2D

Significant additional difficulties in several space dimensions, even on a square domain

Uri Ascher (UBC)

QUADTREES

Quadtree mesh (insisting on not using finite elements) can localize refinement in 2D, Octree mesh likewise in 3D

Uri Ascher (UBC)

EXAMPLE: POISSON PROBLEM

۲

$$\min_{u} I(u) = \int_{\Omega} \left[|\nabla u|^2 - 2uq \right] dxdy,$$

on the unit square with BC $u|_{\partial\Omega} = 0$.

• Euler-Lagrange necessary and sufficient

 $\begin{array}{rcl} -\Delta u &=& q,\\ u|_{\partial\Omega} &=& 0. \end{array}$

• Choose $q(x, y) = 2\pi^2 \sin(\pi x) \sin(\pi y)$, then $u(x, y) = \sin(\pi x) \sin(\pi y)$ smooth.

DISCRETIZE THEN OPTIMIZE ON QUADTREE MESH

Obtain $I_h(u) = I(u) + O(h^2)$ by adding cell (finite volume) contributions

$$\begin{split} &\int_{c_l} \left[|\nabla u|^2 - 2uq \right] dxdy = \\ &\frac{1}{2} \left[(u_l^{NE} - u_l^{NW})^2 + (u_l^{SE} - u_l^{SW})^2 \right] + \\ &\frac{1}{2} \left[(u_l^{NE} - u_l^{SE})^2 + (u_l^{NW} - u_l^{SW})^2 \right] - \\ &\frac{h_l^2}{2} \left[u_l^{NE} q_l^{NE} + u_l^{NW} q_l^{NW} + u_l^{SE} u_l^{SE} + u_l^{SW} q_l^{SW} \right] + O(h_l^4). \end{split}$$

Expect 2nd order accuracy in solution as well.

• Obtain $O(h^2)$ error if mesh is uniform ...

- ... surprise: but only O(h) otherwise!
- In fact, this yields an artificial interface (boundary) across which homogeneous Neumann BC hold.

- Obtain $O(h^2)$ error if mesh is uniform ...
- ... surprise: but only O(h) otherwise!
- In fact, this yields an artificial interface (boundary) across which homogeneous Neumann BC hold.

- Obtain $O(h^2)$ error if mesh is uniform ...
- ... surprise: but only O(h) otherwise!
- In fact, this yields an artificial interface (boundary) across which homogeneous Neumann BC hold.

TYPICAL NEIGHBORING CELLS

Uri Ascher (UBC)

 Image: Image:

P

< 3 → < 3

RESULTS AND EXPLANATION

- Obtain $O(h^2)$ error if mesh is uniform but only O(h) otherwise!
- Reason: because of the dangling node * at middle of eastern face of cell c1

$$4v_* - v_2^{SW} - v_3^{NW} - (v_2^{NE} + v_3^{SE}) = h^2 q_*.$$

• This yields an artificial interface (boundary) across which homogeneous Neumann BC hold.

What to do? How to fix?

Three options:

- Set value of v_{*} as interpolation of its closest neighbors. However, this generates a nonsymmetric matrix to invert.
- Switch to FEM, replacing c₁ by three triangles, adding edges from red point to opposite corners. Quadtree is still useful in keeping track of activities on this mesh.
- On nothing and live with the reduced order.

- Quadtrees and Octrees
- Cloth simulation (Chapter 2)
- Matlab's ode45 for Hamiltonian systems
- KdV instability
- Splitting cubic NLS
- Artificial boundary waves
- ENO, WENO and SSP
- MEMS device

CLOTH SIMULATION

This is reserved for another talk...

< ∃ > <

- Quadtrees and Octrees
- Cloth simulation
- Matlab's ode45 for Hamiltonian systems (Chapters 6 & 2)
- KdV instability
- Splitting cubic NLS
- Artificial boundary waves
- ENO, WENO and SSP
- MEMS device

HAMILTONIAN SYSTEMS

$$\frac{d\mathbf{q}}{dt} = \boldsymbol{\nabla}_{\mathbf{p}} H(\mathbf{q}, \mathbf{p}), \quad \frac{d\mathbf{p}}{dt} = -\boldsymbol{\nabla}_{\mathbf{q}} H(\mathbf{q}, \mathbf{p}).$$

Example: Henon-Heiles

$$H = rac{1}{2} \left(p_1^2 + p_2^2
ight) + rac{1}{2} \left(q_1^2 + q_2^2
ight) + q_1^2 q_2 - rac{1}{3} q_2^3,$$

∃ ▶

HENON-HEILES

Quasi-periodic orbit [McLachlan & Quispel ('06)]

HENON-HEILES

Same phase portrait by ode45 default tolerances [McLachlan] surprise:

ANOTHER EXAMPLE: FERMI-PASTA-ULAM

 $\omega = 100$; adiabatic invariant I

Hamiltonian systems

FERMI-PASTA-ULAM

Same adiabatic invariant I by ode45 default tolerances surprise:

- The method implemented in ode45 (which is a Dormand-Prince pair of orders 4 and 5) is not symplectic?
- The method becomes unstable for imaginary eigenvalues of the Jacobian matrix?
- The default tolerances are too loose?
- Something else?

- The method implemented in ode45 (which is a Dormand-Prince pair of orders 4 and 5) is not symplectic?
- The method becomes unstable for imaginary eigenvalues of the Jacobian matrix?
- The default tolerances are too loose?
- Something else?

- The method implemented in ode45 (which is a Dormand-Prince pair of orders 4 and 5) is not symplectic?
- The method becomes unstable for imaginary eigenvalues of the Jacobian matrix?
- The default tolerances are too loose?
- Something else?

Is this because:

- The method implemented in ode45 (which is a Dormand-Prince pair of orders 4 and 5) is not symplectic?
- The method becomes unstable for imaginary eigenvalues of the Jacobian matrix?
- The default tolerances are too loose?

• Something else?

- The method implemented in ode45 (which is a Dormand-Prince pair of orders 4 and 5) is not symplectic?
- The method becomes unstable for imaginary eigenvalues of the Jacobian matrix?
- The default tolerances are too loose?
- Something else?

Consider integrating a hyperbolic-type PDE over a long time.

COMMON WISDOM

• Common wisdom I: apply a little dissipation (almost conservative)

• Common wisdom II: do not apply dissipation (conservative, symplectic, multisymplectic)

COMMON WISDOM

- Common wisdom I: apply a little dissipation (almost conservative)
- Common wisdom II: do not apply dissipation (conservative, symplectic, multisymplectic)

Matlab's ode45

Hamiltonian systems

RECALL: ODE ABSOLUTE STABILITY REGION

 $\frac{du}{dt} = \lambda u,$

 λ complex scalar (eigenvalue). Numerical method

 $u_{n+1} = R(z)u_n, \quad z = \lambda \Delta t.$

Region of absolute stability in complex plane of z is where

 $|u_{n+1}| \le |u_n|$ i.e. $|R(z)| \le 1$.

Hamiltonian systems

S-STAGE RUNGE-KUTTA METHODS OF ORDER S

for s = 1, 2, 3, 4

Uri Ascher (UBC)

AMPLIFICATION FACTORS ALONG IMAGINARY AXIS

RK4, DP5 and DP4

Uri Ascher (UBC)

TIME STEPS AND QUALITY RESULTS

Problem	Method	Steps	Result good?
HeHe	ode45 def.	5,961	No
	ode45 10^{-5}	8,737	Yes
	RK4	20,000	Yes
	RK4	10,000	No
	DP5	10,000	Yes
FPU	ode45 def.	112,085	No
	ode45 10^{-5}	253,369	No
	ode45 10^{-6}	402,045	Yes
	RK4	1,000,000	Yes
	RK4	200,000	No
	DP5	500,000	Yes
	DP5	100,000	No
	Verlet	200,000	Yes
	Verlet	50,000	No

< ロ > < 同 > < 回 > < 回 >

Symplectic Verlet

50,000 steps

- Quadtrees and Octrees
- Cloth simulation
- Matlab's ode45 for Hamiltonian systems
- KdV instability (Chapters 5 & 7)
- Splitting cubic NLS
- Artificial boundary waves
- ENO, WENO and SSP
- MEMS device

Korteweg-de Vries (KdV) numerical instability

KdV

$$u_t = \alpha(u^2)_x + \rho u_x + \nu u_{xxx}$$

= $V'(u)_x + \nu u_{xxx}$, $V(u) = \frac{\alpha}{3}u^3 + \frac{\rho}{2}u^2$.

A nonlinearly unstable method

Initial conditions $u(x, 0) = u_0(x)$ Boundary conditions: periodic Set $\rho = 0$. Consider Eulerian finite volume/difference discretizations: on a fixed grid with step sizes Δx , Δt .

EXPLICIT NUMERICAL METHOD

[Zabusky & Kruskal ('65)]: Leap-frog – an explicit scheme. With $\mu = \frac{\Delta t}{\Delta x}$

$$\begin{aligned} \mathbf{v}_{j}^{n+1} &= \mathbf{v}_{j}^{n-1} + \frac{2\alpha\mu}{3} (\mathbf{v}_{j-1}^{n} + \mathbf{v}_{j}^{n} + \mathbf{v}_{j+1}^{n}) (\mathbf{v}_{j+1}^{n} - \mathbf{v}_{j-1}^{n}) \\ &+ \frac{\nu\mu}{\Delta x^{2}} (\mathbf{v}_{j+2}^{n} - 2\mathbf{v}_{j+1}^{n} + 2\mathbf{v}_{j-1}^{n} - \mathbf{v}_{j-2}^{n}) \end{aligned}$$

Constant coefficient stability analysis: restrict time step to

$$\Delta t < \Delta x / \left[\frac{|\nu|}{\Delta x^2} + 2|\alpha u_{\mathsf{max}}| \right]$$

イロト イポト イヨト イヨト 二日

NUMERICAL EXAMPLE

• [Zhao & Qin ('00), Ascher & McLachlan ('04,'05)]: Take

$$u_0(x) = \cos(\pi x), \quad u(t,0) = u(t,2),$$

 $\nu = -0.022^2, \ \alpha = -0.5.$

• Try various Δx , Δt satisfying linear stability bound.

 surprise: Obtain blowup for t > 21/π (!) The instability takes time to develop, so results at t = 1 (say) do not indicate the trouble at a later time.

NUMERICAL EXAMPLE

• [Zhao & Qin ('00), Ascher & McLachlan ('04,'05)]: Take

$$u_0(x) = \cos(\pi x), \quad u(t,0) = u(t,2),$$

 $\nu = -0.022^2, \ \alpha = -0.5.$

• Try various Δx , Δt satisfying linear stability bound.

 surprise: Obtain blowup for t > 21/π (!) The instability takes time to develop, so results at t = 1 (say) do not indicate the trouble at a later time.

NUMERICAL EXAMPLE

• [Zhao & Qin ('00), Ascher & McLachlan ('04,'05)]: Take

$$u_0(x) = \cos(\pi x), \quad u(t,0) = u(t,2),$$

 $\nu = -0.022^2, \ \alpha = -0.5.$

- Try various Δx , Δt satisfying linear stability bound.
- surprise: Obtain blowup for $t > 21/\pi$ (!) The instability takes time to develop, so results at t = 1 (say) do not indicate the trouble at a later time.

Solution components

Uri Ascher (UBC)

 ▲ 王
 ● ○ ○ ○

 Fall 2012
 34 / 67

< 4 ₽ ► < 3 ► ►

KDV SOLITON

Solution progress in time for another set of parameters displaying two solitons, using a better method

Uri Ascher (UBC)

Fall 2012 35 / 67

- Quadtrees and Octrees
- Cloth simulation
- Matlab's ode45 for Hamiltonian systems
- KdV instability
- Splitting cubic NLS (Chapter 9)
- Artificial boundary waves
- ENO, WENO and SSP
- MEMS device

Splitting cubic NLS

Nonlinear Schrödinger equation with a cubic nonlinearity

 $\psi_t = i(\psi_{xx} + |\psi|^2 \psi).$

- Norm preservation $\|\psi(t)\|^2 = \|\psi(0)\|^2$
- Hamiltonian PDE $H(\psi, \bar{\psi}) = \psi_x \bar{\psi}_x \frac{1}{2} \psi^2 \bar{\psi}^2$

A B > A B >

Splitting cubic NLS

Nonlinear Schrödinger equation with a cubic nonlinearity

 $\psi_t = i(\psi_{xx} + |\psi|^2 \psi).$

Norm preservation ||ψ(t)||² = ||ψ(0)||²
 Hamiltonian PDE H(ψ, ψ̄) = ψ_xψ̄_x - ½ψ²ψ̄²

(4) E > (4) E >

Splitting cubic NLS

Nonlinear Schrödinger equation with a cubic nonlinearity

 $\psi_t = i(\psi_{xx} + |\psi|^2 \psi).$

- Norm preservation $\|\psi(t)\|^2 = \|\psi(0)\|^2$
- Hamiltonian PDE $H(\psi, \bar{\psi}) = \psi_x \bar{\psi}_x \frac{1}{2} \psi^2 \bar{\psi}^2$

AN OBVIOUS (STAGGERED) SPLITTING

1

$u_t = \imath u_{xx}$

Apply standard 3-point discretization in space and **implicit midpoint** in time: symplectic and norm-preserving.

$$u_t = \imath |u|^2 u$$

Exact ODE solution for each x

$$u(t+\Delta t)=u(t) e^{i\Delta t|u|^2}.$$

Composition yields a symplectic, conservative method.

AN OBVIOUS (STAGGERED) SPLITTING

1

2

$u_t = \imath u_{xx}$

Apply standard 3-point discretization in space and **implicit midpoint** in time: symplectic and norm-preserving.

 $u_t = \imath |u|^2 u$

Exact ODE solution for each x

 $u(t+\Delta t)=u(t) e^{i\Delta t|u|^2}.$

Composition yields a symplectic, conservative method.

AN OBVIOUS (STAGGERED) SPLITTING

1

2

$u_t = \imath u_{xx}$

Apply standard 3-point discretization in space and **implicit midpoint** in time: symplectic and norm-preserving.

 $u_t = \imath |u|^2 u$

Exact ODE solution for each x

 $u(t+\Delta t)=u(t) e^{i\Delta t|u|^2}.$

Composition yields a symplectic, conservative method.

Uri Ascher (UBC)

EXAMPLE: SOLITONS

Periodic BC on [-20, 80]. IC

 $\psi(0,x) = e^{ix/2} \operatorname{sech}(x/\sqrt{2}) + e^{i(x-25)/20} \operatorname{sech}((x-25)/\sqrt{2}).$

[Hundsdorfer & Verwer (03')]

t	Δt	Δx	Error-Ham	Error-norm
200	.1	.1	3.7e-5	4.3e-13
	.01	.01	3.9e-9	1.5e-11

EXAMPLE: SOLITONS

Periodic BC on [-20, 80]. IC

 $\psi(0,x) = e^{ix/2} \operatorname{sech}(x/\sqrt{2}) + e^{i(x-25)/20} \operatorname{sech}((x-25)/\sqrt{2}).$

[Hundsdorfer & Verwer (03')]

t	Δt	Δx	Error-Ham	Error-norm
200	.1	.1	3.7e-5	4.3e-13
	.01	.01	3.9e-9	1.5e-11

イロト イポト イヨト イヨト 二日

Soliton solution

Solution at time t = 200

Uri Ascher (UBC)

SOLITON SOLUTION

surprise: Solution at time t = 1000 displays instability in derivative

Uri Ascher (UBC)

ERROR INDICATORS

t	Δt	Δx	Error-Ham	Error-norm
200	.1	.1	3.7e-5	4.3e-13
	.01	.01	3.9e-9	1.5e-11
1000	.1	.1	5.2e+2	2.9e-12
	.01	.01	3.4e+2	7.7e-11

э

(日)

RECALL SPLITTING METHOD

1

2

$$u_t = \imath u_{xx}$$

Apply standard 3-point discretization in space and **implicit midpoint** in time: symplectic and norm-preserving.

 $u_t = \imath |u|^2 u$

Exact ODE solution for each x

 $u(t+\Delta t)=u(t) e^{i\Delta t|u|^2}.$

Composition yields a symplectic method.

THE FULL ERROR TABLE

t	Δt	Δx	Error-Ham	Error-norm
200	.1	.1	3.7e-5	4.3e-13
	.01	.01	3.9e-9	1.5e-11
1000	.1	.1	5.2e+2	2.9e-12
	.01	.1	3.3e-7	4.2e-12
	.01	.01	3.4e+2	7.7e-11

[Ascher & Reich ('99)]

э

< ∃ > <

Spectral splitting method

Same splitting, but solve $u_t = \iota u_{xx}$ using a spectral method in both space and time:

$$u(t + \Delta t) = \mathcal{F}^{-1}\left(e^{-\imath\xi^2\Delta t}\mathcal{F}(u(t))\right).$$

Discretize: $u(t) \equiv u^n = (u_1^n, \dots, u_j^n)$, $u_j^n \approx u(j\Delta x, n\Delta t)$, $u(t + \Delta t) \equiv u^{n+1}$, and \mathcal{F} is the fast Fourier transform.

With same number ${\color{black}J}$ of Fourier modes as spatial mesh points before, results are

- more accurate before instability sets in;
- however, instability sets in even earlier, and results then are even less accurate.

For ensured stability, take

With same number ${\color{black}J}$ of Fourier modes as spatial mesh points before, results are

- more accurate before instability sets in;
- however, instability sets in even earlier, and results then are even less accurate.

For ensured stability, take

With same number J of Fourier modes as spatial mesh points before, results are

- more accurate before instability sets in;
- however, instability sets in even earlier, and results then are even less accurate.

For ensured stability, take

With same number J of Fourier modes as spatial mesh points before, results are

- more accurate before instability sets in;
- however, instability sets in even earlier, and results then are even less accurate.

For ensured stability, take

Soliton solution with spectral method

Solution at time t = 1000, $\Delta x = .01$, $\Delta t = .01$

Uri Ascher (UBC)

Fall 2012 47 / 67

Soliton solution with spectral method

Solution at time t = 1000, $\Delta x = .1$, $\Delta t = .0025$

Uri Ascher (UBC)

 Image: Image:

< ∃ >

NLS Split

Splitting method

Soliton solution with attenuated midpoint method

Solution at time t = 1000, $\Delta x = .01$, $\Delta t = .01$, $\varepsilon = h^2$

OUTLINE

- Quadtrees and Octrees
- Cloth simulation
- Matlab's ode45 for Hamiltonian systems
- KdV instability
- Splitting cubic NLS
- Artificial boundary waves (Chapter 8)
- ENO, WENO and SSP
- MEMS device

$$egin{array}{rcl} u_t - u_x &=& 0, & 0 \leq x \leq 1, \ t \geq 0, \ u_0(x) = e^{-100(x-.5)^2}, & u(t,1) = 0. \end{array}$$

Note: problem requires only BC at x = 1, not at x = 0.

- Upwind: need nothing additional
- Lax-Wendroff and leap-frog: require numerical BC at *x* = 0.
- For the latter two choose, reasonably, simple extrapolation

$$egin{array}{rcl} u_t - u_x &=& 0, & 0 \leq x \leq 1, \ t \geq 0, \ u_0(x) = e^{-100(x-.5)^2}, & u(t,1) = 0. \end{array}$$

Note: problem requires only BC at x = 1, not at x = 0.

- Upwind: need nothing additional
- Lax-Wendroff and leap-frog: require numerical BC at x = 0.
- For the latter two choose, reasonably, simple extrapolation

$$egin{array}{rcl} u_t - u_x &=& 0, & 0 \leq x \leq 1, \ t \geq 0, \ u_0(x) = e^{-100(x-.5)^2}, & u(t,1) = 0. \end{array}$$

Note: problem requires only BC at x = 1, not at x = 0.

- Upwind: need nothing additional
- Lax-Wendroff and leap-frog: require numerical BC at x = 0.
- For the latter two choose, reasonably, simple extrapolation

$$egin{array}{rcl} u_t - u_x &=& 0, & 0 \leq x \leq 1, \ t \geq 0, \ u_0(x) = e^{-100(x-.5)^2}, & u(t,1) = 0. \end{array}$$

Note: problem requires only BC at x = 1, not at x = 0.

- Upwind: need nothing additional
- Lax-Wendroff and leap-frog: require numerical BC at x = 0.
- For the latter two choose, reasonably, simple extrapolation

UPWIND PERFORMANCE

Upwind: no artificial wave but inaccurate

LAX-WENDROFF PERFORMANCE

Lax-Wendroff: a little dissipativity helps; results more accurate

Uri Ascher (UBC)

LEAP-FROG PERFORMANCE

Leap-frog: surprise: bad artificial waves; a conservative disaster

- Quadtrees and Octrees
- Cloth simulation
- Matlab's ode45 for Hamiltonian systems
- KdV instability
- Splitting cubic NLS
- Artificial boundary waves
- ENO, WENO and SSP (Chapter 10)
- MEMS device

CONSERVATION LAWS

System of conservation laws

 $\mathbf{u}_t + \mathbf{f}(\mathbf{u})_{\times} = \mathbf{0}.$

Instance: the inviscid Burgers equation

 $u_t + \frac{1}{2}(u^2)_x = 0.$

Uri Ascher (UBC)

INVISCID BURGERS

Shock in the inviscid Burgers equation: discontinuous solution develops from smooth initial data and periodic boundary conditions

Uri Ascher (UBC)

UPWIND DIFFERENCES

With $\mu = \Delta t / \Delta x$

$$v_j^{n+1} = v_j^n - \frac{\mu}{2} \begin{cases} [(v_{j+1}^n)^2 - (v_j^n)^2] & \text{if } v_j^n < 0\\ [(v_j^n)^2 - (v_{j-1}^n)^2] & \text{if } v_j^n \ge 0 \end{cases}.$$

Can view as:

- Semi-Lagrangian approach, integrating along characteristics;
- ② Forward Euler applied to a one-sided semi-discretization.

UPWIND DIFFERENCES

With $\mu = \Delta t / \Delta x$

$$v_j^{n+1} = v_j^n - \frac{\mu}{2} \begin{cases} [(v_{j+1}^n)^2 - (v_j^n)^2] & \text{if } v_j^n < 0\\ [(v_j^n)^2 - (v_{j-1}^n)^2] & \text{if } v_j^n \ge 0 \end{cases}.$$

Can view as:

- Semi-Lagrangian approach, integrating along characteristics;
- ② Forward Euler applied to a one-sided semi-discretization.

UPWIND DIFFERENCES

With $\mu = \Delta t / \Delta x$

$$v_j^{n+1} = v_j^n - \frac{\mu}{2} \begin{cases} [(v_{j+1}^n)^2 - (v_j^n)^2] & \text{if } v_j^n < 0\\ [(v_j^n)^2 - (v_{j-1}^n)^2] & \text{if } v_j^n \ge 0 \end{cases}.$$

Can view as:

- Semi-Lagrangian approach, integrating along characteristics;
- **2** Forward Euler applied to a one-sided semi-discretization.

Shocks

[Harten et al. ('87)] Higher order one-sided semi-discretization (finite volume or finite difference). Construct divided differences for polynomial interpolation and choose points that minimize size of high divided difference, thus not crossing discontinuity. e.g. for a cubic choose from

ENO. WENO and SSP

to obtain 3rd order.

Combine with higher order discretization in time: which one?

< ロ > < 同 > < 回 > < 回 > < □ > <

STRONG STABILITY PRESERVING (SSP)

[Gottlieb, Shu & Tadmor ('01), Ruuth & Spiteri ('02), Higueras ('04), Gottlieb, Ketcheson & Shu ('09)] Assuming that forward Euler satisfies strong stability

Shocks

ENO. WENO and SSP

 $\|\boldsymbol{v}^{n+1}\| \leq \|\boldsymbol{v}^n\| \quad \forall n,$

require higher order ODE method to satisfy this too. Popular 3rd order method:

STRONG STABILITY PRESERVING (SSP)

[Gottlieb, Shu & Tadmor ('01), Ruuth & Spiteri ('02), Higueras ('04), Gottlieb, Ketcheson & Shu ('09)] Assuming that forward Euler satisfies strong stability

Shocks____

ENO. WENO and SSP

 $\|\boldsymbol{v}^{n+1}\| \leq \|\boldsymbol{v}^n\| \quad \forall n,$

require higher order ODE method to satisfy this too. Popular 3rd order method:

Shocks ENO

ENO, WENO and SSP

Weighted essentially non-oscillatory (WENO)

[Shu ('98), Wang & Spiteri ('07)]

e.g. for a cubic, instead of choosing one from

select a **weighted** combination to obtain one-sided near discontinuity and **5**th order where solution is smooth. Choose weights dynamically. Combine with higher order discretization in time: **which one?**

TIME DISCRETIZATION FOR WENO

- Note that in smooth areas WENO is essentially (close to) being a centred discretization in space. So eigenvalues of semi-discretization are close to being imaginary: forward Euler will not work well!
- (Positive) **surprise:** Can forget about the SSP restrictions in the WENO context.
- Can apply the classical Runge-Kutta RK4, or DP5.

TIME DISCRETIZATION FOR WENO

- Note that in smooth areas WENO is essentially (close to) being a centred discretization in space. So eigenvalues of semi-discretization are close to being imaginary: forward Euler will not work well!
- (Positive) **surprise:** Can forget about the SSP restrictions in the WENO context.
- Can apply the classical Runge-Kutta RK4, or DP5.

- Quadtrees and Octrees
- Cloth simulation
- Matlab's ode45 for Hamiltonian systems
- KdV instability
- Splitting cubic NLS
- Artificial boundary waves
- ENO, WENO and SSP
- MEMS device (Chapter 11)

MEMS DEVICE

[Guo, Pan & Ward ('06)]

$$u_t = \Delta u - \frac{\lambda}{(1+u)^2}, \quad (x, y) \in \Omega,$$

subject to homogeneous Dirichlet BC and zero initial data. If $\lambda > \lambda_*$ then *u* will reach value -1 at some point in finite touchdown time T_* .

→ 3 → < 3</p>

MEMS DEVICE

[Guo, Pan & Ward ('06)]

$$u_t = \Delta u - \frac{\lambda}{(1+u)^2}, \quad (x,y) \in \Omega,$$

subject to homogeneous Dirichlet BC and zero initial data.

If $\lambda > \lambda_*$ then *u* will reach value -1 at some point in finite touchdown time T_* .

MEMS TOUCHDOWN

Solution $u(T_*, x, y), \lambda = 2, T_* = .1975$

MEMS DEVICE TRANSFORMATION

- Obviously, obtaining this solution by discretizing the given PDE directly will require at least a very fine (or highly nonuniform) mesh.
- (Positive) surprise: Can transform the PDE first!

$$w=\frac{1}{3\lambda}(1+u)^3,$$

yields the PDE

$$w_t = \Delta w - \frac{2}{3w} |\nabla w|^2 - 1.$$

- Note that *w* has touchdown value 0, and importantly, unlike *u* it varies gently in *x* everywhere. Hence there is no serious numerical difficulty in solving this problem anymore.
- The figure was obtained by solving for *w* and transforming pointwise back to *u*.

MEMS DEVICE TRANSFORMATION

- Obviously, obtaining this solution by discretizing the given PDE directly will require at least a very fine (or highly nonuniform) mesh.
- (Positive) surprise: Can transform the PDE first!

$$w=\frac{1}{3\lambda}(1+u)^3,$$

yields the PDE

$$w_t = \Delta w - \frac{2}{3w} |\nabla w|^2 - 1.$$

- Note that *w* has touchdown value 0, and importantly, unlike *u* it varies gently in *x* everywhere. Hence there is no serious numerical difficulty in solving this problem anymore.
- The figure was obtained by solving for *w* and transforming pointwise back to *u*.

MEMS DEVICE TRANSFORMATION

- Obviously, obtaining this solution by discretizing the given PDE directly will require at least a very fine (or highly nonuniform) mesh.
- (Positive) surprise: Can transform the PDE first!

$$w=\frac{1}{3\lambda}(1+u)^3,$$

yields the PDE

$$w_t = \Delta w - \frac{2}{3w} |\nabla w|^2 - 1.$$

- Note that *w* has touchdown value 0, and importantly, unlike *u* it varies gently in *x* everywhere. Hence there is no serious numerical difficulty in solving this problem anymore.
- The figure was obtained by solving for *w* and transforming pointwise back to *u*.

- Strange computations can lead to interesting observations.
- In theory, practice and theory are close. In practice, they may not be.