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. . . . . .

Motivation Motivation

.. Surprising computations

Numerical simulations often involve sophisticated algorithms for
challenging problems. The process of deriving such algorithms as well
as showing that they are robust, stable, accurate and efficient, usually
involves a lot of insight and subtle work, but often without great
surprises: this does not make such work trivial or unimportant.

In the course of preparing the text I did nonetheless bump several
times into method derivations and computations that surprised me.
Some such surprises are briefly described here. It’s also an opportunity
to consider, or refer to, a bunch of case studies.

The ones about Hamiltonian systems, splitting NLS and WENO are
further developed in my paper “Surprising computations” (2012),
please see my home page.
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. . . . . .

Motivation Motivation

.. List of surprises

Quadtrees and Octrees (Chapter 3)

Cloth simulation (Chapter 2)

Matlab’s ode45 for Hamiltonian systems (Chapters 6 & 2)

KdV instability (Chapters 5 & 7)

Splitting cubic NLS (Chapter 9)

Artificial boundary waves (Chapter 8)

ENO, WENO and SSP (Chapter 10)

MEMS device (Chapter 11)
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Octrees and quadtrees

.. Outline

Quadtrees and Octrees (Chapter 3)
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KdV instability
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ENO, WENO and SSP

MEMS device
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. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Nonuniform mesh in 1D

Handling a nonuniform mesh is relatively straightforward in 1D
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. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Nonuniform mesh in 2D

Significant additional difficulties in several space dimensions, even on a
square domain
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. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Quadtrees

Quadtree mesh (insisting on not using finite elements) can localize
refinement in 2D, Octree mesh likewise in 3D
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. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Example: Poisson problem

min
u

I (u) =

∫
Ω

[
|∇u|2 − 2uq

]
dxdy ,

on the unit square with BC u|∂Ω = 0.

Euler-Lagrange necessary and sufficient

−∆u = q,

u|∂Ω = 0.

Choose q(x , y) = 2π2 sin(πx) sin(πy), then u(x , y) = sin(πx) sin(πy)
smooth.

Uri Ascher (UBC) Surprising Computations Fall 2012 8 / 67



. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Discretize then optimize on Quadtree mesh

Obtain Ih(u) = I (u) + O(h2) by adding cell (finite volume) contributions∫
cl

[
|∇u|2 − 2uq

]
dxdy =

1

2

[
(uNE

l − uNW
l )2 + (uSE

l − uSW
l )2

]
+

1

2

[
(uNE

l − uSE
l )2 + (uNW

l − uSW
l )2

]
−

h2
l

2

[
uNE
l qNE

l + uNW
l qNW

l + uSE
l uSE

l + uSW
l qSW

l

]
+ O(h4

l ).

Expect 2nd order accuracy in solution as well.
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. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Results

Obtain O(h2) error if mesh is uniform ...

... surprise: but only O(h) otherwise!

In fact, this yields an artificial interface (boundary) across which
homogeneous Neumann BC hold.

Uri Ascher (UBC) Surprising Computations Fall 2012 10 / 67



. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Results

Obtain O(h2) error if mesh is uniform ...

... surprise: but only O(h) otherwise!

In fact, this yields an artificial interface (boundary) across which
homogeneous Neumann BC hold.

Uri Ascher (UBC) Surprising Computations Fall 2012 10 / 67



. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Results

Obtain O(h2) error if mesh is uniform ...

... surprise: but only O(h) otherwise!

In fact, this yields an artificial interface (boundary) across which
homogeneous Neumann BC hold.

Uri Ascher (UBC) Surprising Computations Fall 2012 10 / 67



. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Typical neighboring cells
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. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. Results and explanation

Obtain O(h2) error if mesh is uniform but only O(h) otherwise!

Reason: because of the dangling node * at middle of eastern face of
cell c1

4v∗ − vSW
2 − vNW

3 − (vNE
2 + vSE

3 ) = h2q∗.

This yields an artificial interface (boundary) across which
homogeneous Neumann BC hold.
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. . . . . .

Octrees and quadtrees Nonuniform meshes in dD

.. What to do? How to fix?

Three options:
...1 Set value of v∗ as interpolation of its closest neighbors.

However, this generates a nonsymmetric matrix to invert.
...2 Switch to FEM, replacing c1 by three triangles, adding edges from red

point to opposite corners.
Quadtree is still useful in keeping track of activities on this mesh.

...3 Do nothing and live with the reduced order.
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Octrees and quadtrees Nonuniform meshes in dD

.. Outline

Quadtrees and Octrees

Cloth simulation (Chapter 2)

Matlab’s ode45 for Hamiltonian systems

KdV instability

Splitting cubic NLS

Artificial boundary waves

ENO, WENO and SSP

MEMS device
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Octrees and quadtrees Nonuniform meshes in dD

.. Cloth simulation

This is reserved for another talk...
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. . . . . .

Matlab’s ode45

.. Outline

Quadtrees and Octrees

Cloth simulation

Matlab’s ode45 for Hamiltonian systems (Chapters 6 & 2)

KdV instability

Splitting cubic NLS

Artificial boundary waves

ENO, WENO and SSP

MEMS device
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Hamiltonian systems

dq

dt
= ∇pH(q,p),

dp

dt
= −∇qH(q,p) .

Example: Henon-Heiles

H =
1

2

(
p2
1 + p2

2

)
+

1

2

(
q2
1 + q2

2

)
+ q2

1q2 −
1

3
q3
2 ,
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Henon-Heiles

Quasi-periodic orbit [McLachlan & Quispel (’06)]
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Henon-Heiles

Same phase portrait by ode45 default tolerances [McLachlan] surprise:
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Another example: Fermi-Pasta-Ulam

ω = 100 ; adiabatic invariant I
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Fermi-Pasta-Ulam

Same adiabatic invariant I by ode45 default tolerances surprise:
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Cause of poor results

Is this because:

The method implemented in ode45 (which is a Dormand-Prince pair
of orders 4 and 5) is not symplectic?

The method becomes unstable for imaginary eigenvalues of the
Jacobian matrix?

The default tolerances are too loose?

Something else?
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. To dissipate or not to dissipate?

Consider integrating a hyperbolic-type PDE over a long time.
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Common wisdom

Common wisdom I: apply a little dissipation (almost conservative)

Common wisdom II: do not apply dissipation (conservative,
symplectic, multisymplectic)

Uri Ascher (UBC) Surprising Computations Fall 2012 24 / 67



. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Common wisdom

Common wisdom I: apply a little dissipation (almost conservative)

Common wisdom II: do not apply dissipation (conservative,
symplectic, multisymplectic)

Uri Ascher (UBC) Surprising Computations Fall 2012 24 / 67



. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Recall: ODE absolute stability region

du

dt
= λu,

λ complex scalar (eigenvalue). Numerical method

un+1 = R(z)un, z = λ∆t.

Region of absolute stability in complex plane of z is where

|un+1| ≤ |un| i .e. |R(z)| ≤ 1.
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. s-stage Runge-Kutta methods of order s

for s = 1, 2, 3, 4
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Amplification factors along imaginary axis

RK4, DP5 and DP4
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Time steps and quality results

Problem Method Steps Result good?

HeHe ode45 def. 5,961 No
ode45 10−5 8,737 Yes
RK4 20,000 Yes
RK4 10,000 No
DP5 10,000 Yes

FPU ode45 def. 112,085 No
ode45 10−5 253,369 No
ode45 10−6 402,045 Yes
RK4 1,000,000 Yes
RK4 200,000 No
DP5 500,000 Yes
DP5 100,000 No
Verlet 200,000 Yes
Verlet 50,000 No
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. . . . . .

Matlab’s ode45 Hamiltonian systems

.. Symplectic Verlet

50,000 steps
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. . . . . .

KdV A nonlinearly unstable method

.. Outline

Quadtrees and Octrees

Cloth simulation

Matlab’s ode45 for Hamiltonian systems

KdV instability (Chapters 5 & 7)

Splitting cubic NLS

Artificial boundary waves

ENO, WENO and SSP

MEMS device
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. . . . . .

KdV A nonlinearly unstable method

..

Korteweg-de Vries (KdV) numerical

instability

ut = α(u2)x + ρux + νuxxx

= V ′(u)x + νuxxx , V (u) =
α

3
u3 +

ρ

2
u2.

Initial conditions u(x , 0) = u0(x)
Boundary conditions: periodic
Set ρ = 0. Consider Eulerian finite volume/difference discretizations: on a
fixed grid with step sizes ∆x , ∆t.
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. . . . . .

KdV A nonlinearly unstable method

.. Explicit numerical method

[Zabusky & Kruskal (’65)]: Leap-frog – an explicit scheme. With µ = ∆t
∆x

vn+1
j = vn−1

j +
2αµ

3
(vn

j−1 + vn
j + vn

j+1)(v
n
j+1 − vn

j−1)

+
νµ

∆x2
(vn

j+2 − 2vn
j+1 + 2vn

j−1 − vn
j−2)

Constant coefficient stability analysis: restrict time step to

∆t < ∆x/

[
|ν|

∆x2
+ 2|αumax|

]
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. . . . . .

KdV A nonlinearly unstable method

.. Numerical example

[Zhao & Qin (’00), Ascher & McLachlan (’04,’05)]: Take

u0(x) = cos(πx), u(t, 0) = u(t, 2),

ν = −0.0222, α = −0.5.

Try various ∆x , ∆t satisfying linear stability bound.

surprise: Obtain blowup for t > 21/π (!)
The instability takes time to develop, so results at t = 1 (say) do not
indicate the trouble at a later time.
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. . . . . .

KdV A nonlinearly unstable method

.. Solution components
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KdV A nonlinearly unstable method

.. KdV soliton

Solution progress in time for another set of parameters displaying two
solitons, using a better method
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NLS Splitting method

.. Outline

Quadtrees and Octrees

Cloth simulation

Matlab’s ode45 for Hamiltonian systems

KdV instability

Splitting cubic NLS (Chapter 9)

Artificial boundary waves

ENO, WENO and SSP

MEMS device
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. . . . . .

NLS Splitting method

.. Splitting cubic NLS

Nonlinear Schrödinger equation with a cubic nonlinearity

ψt = ı(ψxx + |ψ|2ψ).

Norm preservation ∥ψ(t)∥2 = ∥ψ(0)∥2

Hamiltonian PDE H(ψ, ψ̄) = ψx ψ̄x − 1
2ψ

2ψ̄2
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. . . . . .

NLS Splitting method

.. An obvious (staggered) splitting

...1
ut = ıuxx

Apply standard 3-point discretization in space and implicit midpoint
in time: symplectic and norm-preserving.

...2
ut = ı|u|2u

Exact ODE solution for each x

u(t + ∆t) = u(t) eı∆t|u|2 .

Composition yields a symplectic, conservative method.
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. . . . . .

NLS Splitting method

.. Example: solitons

Periodic BC on [−20, 80]. IC

ψ(0, x) = eıx/2sech(x/
√

2) + eı(x−25)/20sech((x − 25)/
√

2).

[Hundsdorfer & Verwer (03’)]

t ∆t ∆x Error-Ham Error-norm

200 .1 .1 3.7e-5 4.3e-13
.01 .01 3.9e-9 1.5e-11
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. . . . . .

NLS Splitting method

.. Soliton solution

Solution at time t = 200
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. . . . . .

NLS Splitting method

.. Soliton solution

surprise: Solution at time t = 1000 displays instability in derivative
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. . . . . .

NLS Splitting method

.. Error indicators

t ∆t ∆x Error-Ham Error-norm

200 .1 .1 3.7e-5 4.3e-13
.01 .01 3.9e-9 1.5e-11

1000 .1 .1 5.2e+2 2.9e-12
.01 .01 3.4e+2 7.7e-11
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. . . . . .

NLS Splitting method

.. Recall splitting method

...1
ut = ıuxx

Apply standard 3-point discretization in space and implicit midpoint
in time: symplectic and norm-preserving.

...2
ut = ı|u|2u

Exact ODE solution for each x

u(t + ∆t) = u(t) eı∆t|u|2 .

Composition yields a symplectic method.

Uri Ascher (UBC) Surprising Computations Fall 2012 43 / 67



. . . . . .

NLS Splitting method

.. The full error table

t ∆t ∆x Error-Ham Error-norm

200 .1 .1 3.7e-5 4.3e-13
.01 .01 3.9e-9 1.5e-11

1000 .1 .1 5.2e+2 2.9e-12
.01 .1 3.3e-7 4.2e-12
.01 .01 3.4e+2 7.7e-11

[Ascher & Reich (’99)]
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. . . . . .

NLS Splitting method

.. Spectral splitting method

Same splitting, but solve ut = ıuxx using a spectral method in both space
and time:

u(t + ∆t) = F−1
(
e−ıξ2∆tF(u(t))

)
.

Discretize: u(t) ≡ un = (un
1 , . . . , u

n
J ), un

j ≈ u(j∆x , n∆t),

u(t + ∆t) ≡ un+1, and F is the fast Fourier transform.
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. . . . . .

NLS Splitting method

.. Spectral splitting method results

With same number J of Fourier modes as spatial mesh points before,
results are

more accurate before instability sets in;

however, instability sets in even earlier, and results then are even less
accurate.

For ensured stability, take

∆t <
∆x2

π

[Weideman & Herbst, ’86]
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. . . . . .

NLS Splitting method

.. Soliton solution with spectral method

Solution at time t = 1000, ∆x = .01, ∆t = .01

−20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

| ψ
 |

Uri Ascher (UBC) Surprising Computations Fall 2012 47 / 67
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NLS Splitting method

.. Soliton solution with spectral method

Solution at time t = 1000, ∆x = .1, ∆t = .0025
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. . . . . .

NLS Splitting method

..

Soliton solution with attenuated midpoint

method

Solution at time t = 1000, ∆x = .01, ∆t = .01, ε = h2
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. . . . . .

Artificial boundary waves Numerical boundary conditions

.. Outline

Quadtrees and Octrees

Cloth simulation

Matlab’s ode45 for Hamiltonian systems

KdV instability

Splitting cubic NLS

Artificial boundary waves (Chapter 8)

ENO, WENO and SSP

MEMS device
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. . . . . .

Artificial boundary waves Numerical boundary conditions

.. Simple advection with special IC

ut − ux = 0, 0 ≤ x ≤ 1, t ≥ 0,

u0(x) = e−100(x−.5)2 , u(t, 1) = 0.

Note: problem requires only BC at x = 1, not at x = 0.

Upwind: need nothing additional

Lax-Wendroff and leap-frog: require numerical BC at x = 0.

For the latter two choose, reasonably, simple extrapolation

vn
0 = vn

1 , ∀n.
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. . . . . .

Artificial boundary waves Numerical boundary conditions

.. Upwind performance

Upwind: no artificial wave but inaccurate
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. . . . . .

Artificial boundary waves Numerical boundary conditions

.. Lax-Wendroff performance

Lax-Wendroff: a little dissipativity helps; results more accurate
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. . . . . .

Artificial boundary waves Numerical boundary conditions

.. Leap-frog performance

Leap-frog: surprise: bad artificial waves; a conservative disaster
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. . . . . .

Shocks ENO, WENO and SSP

.. Outline

Quadtrees and Octrees

Cloth simulation

Matlab’s ode45 for Hamiltonian systems

KdV instability

Splitting cubic NLS

Artificial boundary waves

ENO, WENO and SSP (Chapter 10)

MEMS device

Uri Ascher (UBC) Surprising Computations Fall 2012 55 / 67



. . . . . .

Shocks ENO, WENO and SSP

.. Conservation laws

System of conservation laws

ut + f(u)x = 0.

Instance: the inviscid Burgers equation

ut +
1

2
(u2)x = 0.
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. . . . . .

Shocks ENO, WENO and SSP

.. Inviscid Burgers

Shock in the inviscid Burgers equation: discontinuous solution develops
from smooth initial data and periodic boundary conditions
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. . . . . .

Shocks ENO, WENO and SSP

.. Upwind differences

With µ = ∆t/∆x

vn+1
j = vn

j − µ

2

{
[(vn

j+1)
2 − (vn

j )2] if vn
j < 0

[(vn
j )2 − (vn

j−1)
2] if vn

j ≥ 0
.

Can view as:
...1 Semi-Lagrangian approach, integrating along characteristics;
...2 Forward Euler applied to a one-sided semi-discretization.
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. . . . . .

Shocks ENO, WENO and SSP

.. Essentially non-oscillatory (ENO)

[Harten et al. (’87)] Higher order one-sided semi-discretization (finite
volume or finite difference). Construct divided differences for polynomial
interpolation and choose points that minimize size of high divided
difference, thus not crossing discontinuity. e.g. for a cubic choose from

xj−5/2 xj−3/2 xj−1/2 xj+1/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2

xj−3/2 xj−1/2 xj+1/2 xj+3/2

to obtain 3rd order.
Combine with higher order discretization in time: which one?

Uri Ascher (UBC) Surprising Computations Fall 2012 59 / 67



. . . . . .

Shocks ENO, WENO and SSP

.. Strong stability preserving (SSP)

[Gottlieb, Shu & Tadmor (’01), Ruuth & Spiteri (’02), Higueras (’04), Gottlieb,

Ketcheson & Shu (’09)]

Assuming that forward Euler satisfies strong stability

∥vn+1∥ ≤ ∥vn∥ ∀n,

require higher order ODE method to satisfy this too. Popular 3rd order
method:

0 0 0 0
1 1 0 0
1
2

1
4

1
4 0

1
6

1
6

2
3
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. . . . . .

Shocks ENO, WENO and SSP

..

Weighted essentially non-oscillatory

(WENO)

[Shu (’98), Wang & Spiteri (’07)]

e.g. for a cubic, instead of choosing one from

xj−5/2 xj−3/2 xj−1/2 xj+1/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2

xj−3/2 xj−1/2 xj+1/2 xj+3/2

select a weighted combination to obtain one-sided near discontinuity and
5th order where solution is smooth. Choose weights dynamically.
Combine with higher order discretization in time: which one?
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. . . . . .

Shocks ENO, WENO and SSP

.. Time discretization for WENO

Note that in smooth areas WENO is essentially (close to) being a
centred discretization in space. So eigenvalues of semi-discretization
are close to being imaginary: forward Euler will not work well!

(Positive) surprise: Can forget about the SSP restrictions in the
WENO context.

Can apply the classical Runge-Kutta RK4, or DP5.
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. . . . . .

MEMS A magic transformation

.. Outline

Quadtrees and Octrees

Cloth simulation

Matlab’s ode45 for Hamiltonian systems

KdV instability

Splitting cubic NLS

Artificial boundary waves

ENO, WENO and SSP

MEMS device (Chapter 11)
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. . . . . .

MEMS A magic transformation

.. MEMS device

[Guo, Pan & Ward (’06)]

ut = ∆u − λ

(1 + u)2
, (x , y) ∈ Ω,

subject to homogeneous Dirichlet BC and zero initial data.
If λ > λ∗ then u will reach value −1 at some point in finite touchdown
time T∗.
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. . . . . .

MEMS A magic transformation

.. MEMS touchdown

Solution u(T∗, x , y), λ = 2, T∗ = .1975
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. . . . . .

MEMS A magic transformation

.. MEMS device transformation

Obviously, obtaining this solution by discretizing the given PDE
directly will require at least a very fine (or highly nonuniform) mesh.

(Positive) surprise: Can transform the PDE first!

w =
1

3λ
(1 + u)3,

yields the PDE

wt = ∆w − 2

3w
|∇w |2 − 1.

Note that w has touchdown value 0, and importantly, unlike u it
varies gently in x everywhere. Hence there is no serious numerical
difficulty in solving this problem anymore.

The figure was obtained by solving for w and transforming pointwise
back to u.
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. . . . . .

Conclusion Conclusion

.. Conclusion

Strange computations can lead to interesting observations.

In theory, practice and theory are close. In practice, they may
not be.
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