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OUTLINE

@ These slides cover a highly abbreviated version of Chapter 10.
@ We'll consider, mainly by examples:

¢ Constant coefficient hyperbolic PDEs
o Conservations laws: approximating the Burgers equation
o What sort of schemes are there?
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Constant coefficient advection
CONSTANT COEFFICIENT ADVECTION

@ Recall that a discontinuity in initial value function wug(x) propagates
along characteristic in (t, x).
@ We saw various methods:
o Lax-Wendroff
Leap-frog
dissipated Leap-frog
Lax-Friedrichs
Upwind
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Constant coefficient advection
EXAMPLE: u; = uy, WITH Uy A SQUARE WAVE

up square wave on [.25,.75], k = .5h, h = .01x.
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Discontinuous solutions

Constant coefficient advection

EXAMPLE: u; = uy, WITH Uy A SQUARE WAVE

up square wave on [.25,.75], k = .5h, h = .0017.
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Constant coefficient advection
EXAMPLE: u; = uy, WITH Uy A SQUARE WAVE

up square wave on [.25,.75], k = .5h, h = .01, .001x.
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Constant coefficient advection
OBSERVATIONS

@ Both dissipative and non-dissipative schemes of order (2,2) display
annoying overshoots. (Note Gibbs phenomenon).

@ The large error in the dissipative ones is more localized.

@ These overshoots can become much more troublesome for nonlinear
problems.

@ Both Lax-Friedrichs and upwind are monotone and there are no
overshoots.

@ However, monotone schemes are only 1st order accurate and feature
significant artificial viscosity/diffusion, especially Lax-Friedrichs.
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Constant coefficient advection
OBSERVATIONS

@ Both dissipative and non-dissipative schemes of order (2,2) display
annoying overshoots. (Note Gibbs phenomenon).

@ The large error in the dissipative ones is more localized.

@ These overshoots can become much more troublesome for nonlinear
problems.

@ Both Lax-Friedrichs and upwind are monotone and there are no
overshoots.

@ However, monotone schemes are only 1st order accurate and feature
significant artificial viscosity/diffusion, especially Lax-Friedrichs.

@ Observe similar behaviour for parabolic problems with small diffusion
term (“almost hyperbolic”).
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Constant coefficient advection
EXAMPLE: u; + au, = cuy,, WITH 0 < 0 < 1

o=1e3, a=-1;u(t,—7m) =1, u(t,7)=0;
ug = 1if x <0, ug = 0 otherwise .
Crank-Nicolson (CN), k = .0001, h = .00017.
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Discontinuous solutions
EXAMPLE: us + auy, = ouy, WITH 0 < 0 < 1 -

oc=1e3, a=-1; u(t,—7m) =1, u(t,7) =0;
up = 1if x <0, ug = 0 otherwise .
CN, k= .01, h = .01~7.
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Constant coefficient advection
EXAMPLE: u; + au, = cuy,, WITH 0 < 0 < 1

o=1e3, a=-1;u(t,—7m) =1, u(t,7)=0;
ug = 1if x <0, ug =0 otherwise .
Upwind, kK = .01, h = .01lx.
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Discontinuous solutions
CONSTANT COEFFICIENT SYSTEM -

u; + Au, =0,
where A is diagonalizable with real eigenvalues

T7IAT = A = diag(\1, ..., \s).
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Constant coefficient advection
CONSTANT COEFFICIENT SYSTEM

u; + Au, =0,
where A is diagonalizable with real eigenvalues

T7IAT = A = diag(Ag, ..., \s).

@ Lax-Friedrichs can be extended directly.
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Constant coefficient advection
CONSTANT COEFFICIENT SYSTEM

u; + Au, =0,
where A is diagonalizable with real eigenvalues

T7IAT = A = diag(Ag, ..., \s).

@ Lax-Friedrichs can be extended directly.
o Define [A| = diag (|A1], |2/, ..., |As|), and then |A| = T|A| T~ 1
The upwind method can be written as

1 H
vitt=v *A( Vi — Vi) + E‘A‘(Vj’,—{—l —2vi + v} ).
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Constant coefficient advection
CONSTANT COEFFICIENT SYSTEM

u; + Au, =0,
where A is diagonalizable with real eigenvalues

T7IAT = A = diag(Ag, ..., \s).

@ Lax-Friedrichs can be extended directly.

o Define [A| = diag (|A1], |2/, ..., |As|), and then |A| = T|A| T~ 1
The upwind method can be written as
1
VfH =vj — *A( Vi — Vi) + §\A\(Vf+1 —2vi + v} ).

o Alternatively for upwind,
vj'-’+1 = v —u[ATD_ + A"Dy]v}, where
1 1
AT = S(AHIA), AT = S(A- A,
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Constant coefficient advection
EXAMPLE: TWO ADVECTION EQUATIONS MIXED

A= (0 00) T (0 ey ) A= TAT

Periodic BC on [, 7| and initial conditions uy = Twyg, with

1 1 25<x<.75 5 2 5<x<.7
Wo (x) = . (0] (x) = .
0 otherwise 0 otherwise

——exact

—— Upwind
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Discontinuous solutions Conservation laws

OUTLINE

@ These slides cover a highly abbreviated version of Chapter 10.
@ We'll consider, mainly by examples:
@ Constant coefficient hyperbolic PDEs

o Conservations laws: approximating the Burgers equation
o What sort of schemes are there?
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Conservation laws
THE INVISCID BURGERS EQUATION

1
us + §(U2)X = O,

is a scalar conservation law with f(u) = 212, a(u) = u.

Characteristics
15
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Conservation laws
UPWIND DISCRETIZATION

1
us + 5(“2))( = O,

hence f(u) = 2u?, a(u) = u. Characteristic curves are straight lines, but
where they meet a shock discontinuity forms.

o Discretize conservation form!

et _n B0 = ()] i v <0
’ T2 v = (v)?] if v >0
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Conservation laws
UPWIND DISCRETIZATION

1
us + §(U2)X = O,

hence f(u) = 2u?, a(u) = u. Characteristic curves are straight lines, but
where they meet a shock discontinuity forms.

o Discretize conservation form!

vl — I [(Vﬂkl)z - (an)z] if an <0
A (R U5 IR
@ Do not discretize “advection form”
ntl oy yn [viig —v] if v <O
: SRR 77 Y B
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Discontinuous solutions Conservation laws

EXAMPLE

Shock may be located

at wrong place unless discretizing conservation form:

Lax-Friedrichs scheme: conservative form
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Lax—Friedrichs scheme: non-conservative form
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Upwind scheme: conservative form
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