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Discontinuous solutions

Outline

These slides cover a highly abbreviated version of Chapter 10.

We’ll consider, mainly by examples:

Constant coefficient hyperbolic PDEs
Conservations laws: approximating the Burgers equation
What sort of schemes are there?
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Discontinuous solutions Constant coefficient advection

Constant coefficient advection

Recall that a discontinuity in initial value function u0(x) propagates
along characteristic in (t, x).

We saw various methods:

Lax-Wendroff
Leap-frog
dissipated Leap-frog
Lax-Friedrichs
Upwind
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Discontinuous solutions Constant coefficient advection

Example: ut = ux with u0 a square wave

u0 square wave on [.25, .75], k = .5h, h = .01π.
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Discontinuous solutions Constant coefficient advection

Example: ut = ux with u0 a square wave

u0 square wave on [.25, .75], k = .5h, h = .01π, .001π.
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Discontinuous solutions Constant coefficient advection

Observations

Both dissipative and non-dissipative schemes of order (2,2) display
annoying overshoots. (Note Gibbs phenomenon).

The large error in the dissipative ones is more localized.

These overshoots can become much more troublesome for nonlinear
problems.

Both Lax-Friedrichs and upwind are monotone and there are no
overshoots.

However, monotone schemes are only 1st order accurate and feature
significant artificial viscosity/diffusion, especially Lax-Friedrichs.

Observe similar behaviour for parabolic problems with small diffusion
term (“almost hyperbolic”).
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Discontinuous solutions Constant coefficient advection

Example: ut + aux = σuxx with 0 < σ ≪ 1

σ = 1.e-3, a = -1; u(t,−π) = 1, u(t, π) = 0;
u0 = 1 if x ≤ 0, u0 = 0 otherwise .
Crank-Nicolson (CN), k = .0001, h = .0001π.
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Discontinuous solutions Constant coefficient advection

Example: ut + aux = σuxx with 0 < σ ≪ 1

σ = 1.e-3, a = -1; u(t,−π) = 1, u(t, π) = 0;
u0 = 1 if x ≤ 0, u0 = 0 otherwise .
Upwind, k = .01, h = .01π.
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Discontinuous solutions Constant coefficient advection

Constant coefficient system

ut + Aux = 0,

where A is diagonalizable with real eigenvalues

T
−1

AT = Λ = diag(λ1, . . . , λs).

Lax-Friedrichs can be extended directly.
Define |Λ| = diag (|λ1|, |λ2|, . . . , |λs |), and then |A| = T |Λ|T−1.
The upwind method can be written as

vn+1

j = vnj −
µ

2
A(vnj+1 − vnj−1) +

µ

2
|A|(vnj+1 − 2vnj + vnj−1).

Alternatively for upwind,

vn+1

j = vnj − µ[A+
D
−
+ A

−

D+]v
n
j , where

A
+ =

1

2
(A+ |A|), A

− =
1

2
(A− |A|).
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Discontinuous solutions Constant coefficient advection

Example: two advection equations mixed

Λ =

(

−1 0
0 −0.1

)

, T =

(

cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

)

, A = TΛT−1.

Periodic BC on [−π, π] and initial conditions u0 = Tw0, with

w
1
0 (x) =

{

1 .25 ≤ x < .75

0 otherwise
, w

2
0 (x) =

{

2 .5 ≤ x < .7

0 otherwise

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

u1

 

 

exact
LF
Upwind

Uri Ascher (UBC) CPSC 520: Discontinuous solutions Fall 2012 12 / 16



Discontinuous solutions Conservation laws

Outline

These slides cover a highly abbreviated version of Chapter 10.

We’ll consider, mainly by examples:

Constant coefficient hyperbolic PDEs
Conservations laws: approximating the Burgers equation
What sort of schemes are there?
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Discontinuous solutions Conservation laws

The inviscid Burgers equation

ut +
1

2
(u2)x = 0,

is a scalar conservation law with f (u) = 1

2
u
2, a(u) = u.
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Discontinuous solutions Conservation laws

Upwind discretization

ut +
1

2
(u2)x = 0,

hence f (u) = 1

2
u
2, a(u) = u. Characteristic curves are straight lines, but

where they meet a shock discontinuity forms.

Discretize conservation form!

v
n+1

j = v
n
j −

µ

2

{

[(vnj+1
)2 − (vnj )

2] if vnj < 0

[(vnj )
2 − (vnj−1

)2] if vnj ≥ 0
.

Do not discretize “advection form”

v
n+1

j = v
n
j − µvnj

{

[vnj+1
− v

n
j ] if vnj < 0

[vnj − v
n
j−1

] if vnj ≥ 0
.
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Discontinuous solutions Conservation laws

Example

Shock may be located at wrong place unless discretizing conservation form:
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