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Dispersion PDE dispersion

PDE dispersion

Consider hyperbolic PDEs with smooth solutions.

May require long time integration and conservation of physical
quantities such as energy, Hamiltonian.

Note lack of dissipation in PDE.

Get dispersion when waves associated with different wave numbers
travel at different speed.

Consider (yes, again) the simplest advection equation first, with a
special initial value function:

ut + aux = 0,

u(0, x) = u0(x) = e−ıξx .

Solution:

u(t, x) = eıξ(at−x).

- This is a wave propagating with speed a : the phase velocity.
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Dispersion PDE dispersion

Dispersion relation, phase velocity, group

velocity

More generally (not just for advection), for u0(x) = e−ıξx ,

u(t, x) = eı(ωt−ξx),

where ω = frequency.

Three important basic definitions:

ω = ω(ξ) Dispersion relation

c(ξ) = ω(ξ)
ξ Phase velocity

C (ξ) = dω(ξ)
dξ Group velocity.

For advection, ω = aξ so C = c = a. The advection PDE is
non-dispersive: phase velocity is independent of wave number.
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Dispersion PDE dispersion

Example: linearized KdV

Consider the constant coefficient PDE

ut + ρux + νuxxx = 0.

Dispersion relation: plug in u(t, x) = eı(ωt−ξx), obtaining

ω = ρξ − νξ3.

Phase velocity:
c = ρ− νξ2

Here phase velocity depends on the wave number, so this is a
dispersive PDE. Different waves travel at different speeds.

Group velocity:
C = ρ− 3νξ2.
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Dispersion Numerical dispersion

Dispersion in advection semi-discretization

Consider dispersion in the semi-discretization of the non-dispersive
advection equation: Plug vj(t) = eı(ωt−ξjh) in

dvj

dt
+

a

2h
D0vj = 0.

Obtain dispersion relation

ω =
a

h
sin(ξh).

So, phase velocity

c = a
sin(ξh)

ξh
,

group velocity
C = a cos(ξh).
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Dispersion Numerical dispersion

Dispersion in advection semi-discretization

Semi-discretization

dvj

dt
+

a

2h
D0vj = 0.

Dispersion relation ω = a
h
sin(ξh).

Phase velocity c = a
sin(ξh)

ξh .

Group velocity C = a cos(ξh).

Thus, the semi-discretization is dispersive although the PDE isn’t!

Low wave numbers: C ≈ c ≈ a. So, no difficulty here.

High wave numbers: some waves nearly stationary. These are
parasitic (spurious) waves: difficulty here.
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Dispersion Dispersion and dissipativity

Dispersion in advection full discretization

All full discretizations we have seen for the advection equation exhibit
numerical dispersion!

(After all, they are not meant to approximate high wave number
solution components well.)

Trouble may be delayed, though not fully eliminated, when using
higher order methods.

The big difference is that dissipative methods dampen high wave
number components, hence the spurious waves are dampened too.
For instance, expect more trouble with leap-frog than with
Lax-Wendroff.
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Dispersion Dispersion and dissipativity

Dispersion in leap-frog

Plug vnj = eı(ωnk−ξjh) into vn+1
j = vn−1

j − µa(vnj+1 − vnj−1):

sin(ωk) = µa sin(ξh).

µa = .5:
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Dispersion Dispersion and dissipativity

ut = ux , u0(x) = sin(ηx)e−ηx2.

Set η = 50, µ = 0.5, h = .005π.
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Dispersion Dispersion and dissipativity

ut = ux , u0(x) = sin(ηx)e−ηx2.

Set η = 50, µ = 0.5, h = .01π.
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Dispersion Wave equation

The (nonlinear) wave equation

The PDE is 2nd order in time and space:

φtt = c2φxx − V ′(φ), x0 ≤ x ≤ xJ+1, t > 0,

c > 0 is a constant, V (φ) is smooth, V ′(φ) ≡ dV (φ)
dφ .

Initial conditions

φ(0, x) = φ0(x), φt(0, x) = φ1(x).

Boundary conditions: periodic on [x0, xJ+1] or Dirichlet:

φ(t, x0) = φ(t, xJ+1) = 0.

May also have absorbing, or radiating BC, designed to ensure that
spurious waves do not propagate back into domain.

For V ′ ≡ 0 can write ut +

(

0 c

c 0

)

ux = 0, u =

(

φt

−cφx

)

.

All in all a far more civilized problem than advection.
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Dispersion Wave equation

The wave equation

The PDE is 2nd order in time and space:

φtt = c2φxx − V ′(φ), x0 ≤ x ≤ xJ+1, t > 0.

Characteristic curves: dx
dt

= ±c .

For the linear case V ′ ≡ 0, the solution of the Cauchy problem is

φ(t, x) =
1

2
[φ0(x − ct) + φ0(x + ct)] +

1

2c

∫ x+ct

x−ct

φ1(ξ)dξ.

So, it is easy to construct exact solutions if φt(0, x) = 0.

For periodic BC on [−L, L], obtain φ(2lL, x) = φ(0, x) for any integer
l ; for Dirichlet BC on [−L, L], obtain φ(4lL, x) = φ(0, x) for any
integer l .
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Dispersion Wave equation

Hamiltonian semi-discretization

Centred semi-discretization

d2vj

dt2
=

c2

h2
(vj−1 − 2vj + vj+1)− V ′(vj), j = 1, . . . , J.

Can write this as
d2v

dt2
= −Bv − V ′(v),

the matrix B is symmetric positive definite.

This is a (separable) Hamiltonian system with

H(v,w) =
1

2
wTw +

1

2
vTBv + V (v),

(so wj =
dvj
dt
, j = 1, . . . , J).

This semi-discretization yields a symplectic map, and it makes sense
to discretize it in time using a symplectic method.
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Dispersion Wave equation

Leap-frog redux

Apply the symplectic, explicit Verlet method

vn+1
j − vnj

k
= w

n+1/2
j , j = 1, . . . , J,

w
n+1/2
j − w

n−1/2
j

k
=

c2

h2

(

vnj−1 − 2vnj + vnj+1

)

− V ′(vnj ).

Eliminate the w ’s, obtaining (for j = 1, 2, . . . , J)

vn+1
j − 2vnj + vn−1

j = c2µ2(vnj−1 − 2vnj + vnj+1)− k2V ′(vnj ).

This is the leap-frog method! (but unlike for advection it is compact
here).

The leap-frog method is a favourite method for integrating the
classical wave equation (for variable c(x), too).

But what about dispersion?
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Dispersion Wave equation

Leap-frog example: V
′ ≡ 0, α = 1, φt(0) ≡ 0

c = 1, φ(0, x) = e−αx2 , −10 ≤ x ≤ 10; tf = 400, k = .02, h = .04.
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Dispersion Wave equation

Leap-frog example: V
′ ≡ 0, α = 10, φt(0) ≡ 0

c = 1, φ(0, x) = e−αx2 , −10 ≤ x ≤ 10; tf = 400, k = .01, h = .02.
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Dispersion Wave equation

Leap-frog example: V
′(φ) = sin(φ), α = 1

The sine-Gordon eqn: is solution qualitatively correct?
c = 1, φ(0, x) = e−αx2 , −10 ≤ x ≤ 10; tf = 400, k = .005, h = .01.
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Dispersion Wave equation

Spectral methods

An important class of high order methods, introduced here in an
anecdotal fashion.

For the problem uxx = q(x) apply Fourier transform as a solver,
rather than a theoretical tool to analyze stability.

On a uniform mesh, use fast Fourier transform (FFT). Solve pointwise
in Fourier space ξ, then return to x using IFFT.

This gives a very high order of accuracy if the BC are periodic, good
for numerical dispersion.

For our PDE problem with periodic boundary conditions, use
leap-frog in time:

vn+1 = vn−1 + 2vn + k2F−1
(

−ξ2F(vn)
)

− k2V ′(vn).

See Section 7.4 for more.
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Dispersion Wave equation

Spectral l-f: V
′(φ) = sin(φ), α = 1, c = 1

φ(0, x) = e−αx2 , −10 ≤ x ≤ 10; tf = 400, k = .002, J = 2000 (h = .01).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

spectral leap−frog

Uri Ascher (UBC) CPSC 520: Dispersion and dissipation Fall 2012 23 / 26



Dispersion Wave equation

Leap-frog example: V
′(φ) = sin(φ), α = 10, c = 1

φ(0, x) = e−αx2 , −10 ≤ x ≤ 10; tf = 400, k = .005, h = .01.
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Dispersion Wave equation

Spectral l-f: V
′(φ) = sin(φ), α = 10, c = 1

φ(0, x) = e−αx2 , −10 ≤ x ≤ 10; tf = 400, k = .002, J = 2000 (h = .01).
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Dispersion Wave equation

Spectral l-f: V
′(φ) = sin(φ), α = 10, c = 1

φ(0, x) = e−αx2 , tf = 400, k = .001, J = 4000 (h = .005).
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