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Outline

• Conserving invariants and methods on manifolds

• Symplectic and symmetric methods for Hamiltonian ODE systems

• Symplectic and multisymplectic methods for PDEs
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Geometric Integration (GI):

Structure Preserving Algorithms

A dynamical system defined by a differential system (DE) typically

has some structure. A numerical discretization algorithm for the DE

may or may not reproduce this structure exactly.

• Geometrical structure: Properties of the phase space.

• Conservation laws: Conservation of total quantities such as mass,

energy and momentum; casimirs along trajectories; etc.

• Symmetries: Galilean symmetries such as translations, reflexions

and rotations; time reversal; scaling; Lie group symmetries such as

the invariance of a mechanical system to the action of the rotation

group SO(3).
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• Geometrical structure: Properties of the phase space.

• Conservation laws: Conservation of total quantities such as mass,

energy and momentum; casimirs along trajectories; etc.

• Symmetries: Galilean symmetries such as translations, reflexions

and rotations; time reversal; scaling; Lie group symmetries such as

the invariance of a mechanical system to the action of the rotation

group SO(3).

• Asymptotic behaviour: These are the usual dynamical system

features.

• Ordering in the solutions: For instance, the maximum principle and

solution comparisons.
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Instances and examples

• Hamiltonian ODEs: symplectic maps

• Constrained mechanical systems

• Hamiltonian PDEs: symplectic and multisymplectic maps

• Conservation laws
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Hamiltonian ODEs: symplectic maps

q′i =
∂H

∂pi
,

i = 1, . . . , l.

p′i = −
∂H

∂qi
,

In vector form

q′ = ∇pH(q,p), p′ = −∇qH(q,p) .
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Hamiltonian H(q,p) (total energy) remains constant:

H(q(t),p(t)) = H(q(0),p(0)) = H(q0,p0)

Famous applications:

• Celestial mechanics

• Molecular dynamics
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Example: Stiff spring pendulum

H(q,p) =
1

2
pTp + (φ(q)− φ0)

2 + ε−2(r(q)− r0)
2.

This Hamiltonian is in separable form.
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Example: Linear harmonic oscillator

H =
ω

2
(p2 + q2)

yields the linear equations of motion

q′ = ωp, p′ = −ωq

or
(

q
p

)

′

= ωJ

(

q
p

)

, J =

(

0 1
−1 0

)

.

Here ω > 0 is a known parameter. General solution is

(

q(t)
p(t)

)

=

(

cosωt sinωt
− sinωt cosωt

) (

q(0)
p(0)

)

.
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General solution is

(

q(t)
p(t)

)

=

(

cosωt sinωt
− sinωt cosωt

) (

q(0)
p(0)

)

.

Hence, S(t)B is just a rotation of the set B at a constant rate

depending on ω.
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In general,

y′ = J∇H(y) where y =

(

q

p

)

, J =

(

0 I
−I 0

)

.

Jacobian,

Y (t; c) =
∂y(t; c)

∂c

Y ′ = J(∇2H)Y, Y (0) = I.

The flow is called symplectic if

Y TJ−1Y = J−1, ∀t.
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Constrained mechanical systems

q′ = v,

M(q)v′ = f(q,v)−GT (q)λ,

0 = g(q).

• q generalized body positions,

• v generalized velocities,

• λ ∈ IRl Lagrange multiplier functions,
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• g(q) ∈ IRl holonomic constraints,

• G = gq has full row rank at each t,

• M positive definite generalized mass matrix,

• f the applied forces.

This is an index-3 differential-algebraic equation (DAE).

Apply two differentiations to the position constraints:

0 = Gv (= g′),

0 = Gv′ +
∂(Gv)

∂q
v (= g′′) .
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Eliminate Lagrange multipliers:

λ(q,v) = (GM−1GT )−1

(

GM−1f +
∂(Gv)

∂q
v

)

.

Obtain ODE

q′ = v,

Mv′ = f −GT (GM−1GT )−1

(

GM−1f +
∂(Gv)

∂q
v

)

on the manifold defined by constraint and its derivative, g(q) = G(q)v =
0.
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Hamiltonian PDEs:
symplectic and multisymplectic maps

ut = D

(

δH

δu

)

,

H[u] =

∫

H(x,u,ux, . . .)dx

∫

δH

δu
vdx =

(

d

dε
H[u + εv]

)

ε=0

.

D corresponds to a skew-symmetric matrix.
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Example: wave equation

qtt = c2qxx −
dV (q)

dq
,

is cast in the Hamiltonian notation using

u =

(

q
p

)

, D =

(

0 1
−1 0

)

, H =
cp2

2
+
cq2x
2

+ c−1V (q).
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Example: Schrodinger equation

ıψt = −ψxx − ψ|ψ|
2.

It is Hamiltonian with

D = ı,

H(ψ, ψ̄) = ψxψ̄x −
1

2
ψ2ψ̄2.
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Example: Korteweg - de Vries (KdV)

ut + (αu2 + ρu+ νuxx)x = 0, −∞ < x <∞, t ≥ 0.

It is Hamiltonian with

D = ∂x,

H = −
α

3
u3 −

ρ

2
u2 +

ν

2
u2

x.
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All of these PDE instances also have multisymplectic structure.

Arises from writing PDE as

Lzt +Kzx = ∇S(z)

K,L antisymmetric (and constant).

“Multisymplectic = symplectic in both space and time”
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Why preserve structure?

Remember: an accurate numerical method typically produces

an accurate numerical solution that therefore accurately reproduces

structure

• Often, some particular structure is more important to reconstruct or

preserve than pointwise accuracy

e.g., Lorentz chaotic dynamics, population dynamics where initial

conditions are unknown, mechanical systems with holonomic

constraints, etc.

• Conservation laws and other invariants may be based on more solid

physical grounds than the DE system itself

22



• Often, some particular structure is more important to reconstruct or

preserve than pointwise accuracy

• Conservation laws and other invariants may be based on more solid

physical grounds that the DE system itself

• Better dynamical features may be recovered by a solution with a

given pointwise accuracy

e.g., better long-time behaviour may occasionally be obtained for

Hamiltonian systems.

• Better numerical stability may be had in some instances
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Wrong reasons to preserve structure

• “Pete made me do it”

e.g., physicists often like to reproduce as many conservation laws as

possible, regardless of whether this buys anything or not.

• “The more structure is preserved, the better”

e.g., insisting on reproducing constant energy in a Hamiltonian

system may actually destroy structure.

• “GI algorithms should be used regardless of computational cost,

because they require, and inspire, a richer, more beautiful

mathematics”
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Numerical examples

• Drawing a circle: the linear oscillator

• Reconstructing a bagel: modified Kepler

• Unstable numerical integration of a mechanical system with

holonomic constraints

• KdV solitons

• When we get it for free: Lorenz butterfly and linear conservation laws
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Drawing a circle: the linear oscillator
Discretizing the Hamiltonian ODE

q′ = p, p′ = −q q(0) = 1, p(0) = 0

to obtain the circle

2H = p2 + q2 = 1.

• Forward Euler: qn = qn−1 + kpn−1, pn = pn−1 − kqn−1

• Backward Euler: qn = qn−1 + kpn, pn = pn−1 − kqn

• Symplectic Euler: qn = qn−1 + kpn−1, pn = pn−1 − kqn

• Verlet: qn = qn−1 + kpn−1/2, pn+1/2 = pn−1/2 − kqn
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Evolution of unit circle w RK4, symplectic Euler & Verlet
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Reconstructing a bagel: modified Kepler

[Sanz-Serna - Calvo, Hairer-Stoffer]

r =
√

q21 + q22 is a radius;

Hamiltonian

H(q,p) =
p2
1 + p2

2

2
−

1

r
−

δ

2r3

Differential system

q′ = Hp = p

p′ = −Hq
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Initial conditions and parameters:

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =
√

(1 + e)/(1− e),

e = 0.6, δ = 0.01

Invariant

h(q,p) = H(q,p)−H(q(0),p(0)) = 0

Implicit midpoint scheme (NB method is symplectic)

qn − qn−1 = kpn−1/2

pn − pn−1 = −kHq(qn−1/2)

qn−1/2 = (qn + qn−1)/2, pn−1/2 = (pn + pn−1)/2
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Exact solution for T = 500
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Midpoint, 5000 uniform steps
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Explicit RK4, 5000 uniform steps
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Verlet, 5000 uniform steps
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Unstable numerical integration of a mechanical system

with holonomic constraints

Ignoring the fact that the corresponding ODE is on a manifold can

cause a numerical integration algorithm to go unstable.
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KdV solitons

ut + 3(u2)x + uxxx = 0,

u0(x) = 6sech2(x),

u(−20, t) = u(20, t).
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When we get it for free: Lorenz butterfly and linear

conservation laws
1. Lorenz equations

y′ = f(y) =





σ(y2 − y1)
ry1 − y2 − y1y3
y1y2 − by3



 ,

σ = 10, b = 8/3, r = 28.

Plot y3 vs. y1 obtaining the famous “butterfly”

Although system is “chaotic” the attractor is robust. Its accurate

numerical construction does not depend strongly on the integration

method
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2. Chemical reaction

Robertson: an extremely stiff ODE

y′1 = −αy1 + βy2y3,

y′2 = αy1 − βy2y3 − γy
2
2,

y′3 = γy2
2 .

α = 0.04, β = 1.e + 4, γ = 3.e + 7.

Conservation law:

3
∑

i=1

yi(t) = constant, ∀t.

Any Runge-Kutta method would reproduce this conservation law!
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Outline

• Conserving invariants and methods on manifolds

• Symplectic and symmetric methods for Hamiltonian ODE systems

• Symplectic and multisymplectic methods for PDEs
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Conserving invariants and methods on manifolds
Consider ODE system

y′ = f(y), y(0) = y0.

Vector function i(y) is a first integral if

iyf(y) = 0, ∀y.

Then i(y(t)) = i(y0),∀t.

Also called invariant and conserved quantity.

Let h(y) = i(y)− i(y0). Then

hyf(y) = 0, ∀y,

h(y(t)) = 0, ∀t.
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Example: In an autonomous Hamiltonian system H(q(t),p(t)) is

invariant.

Example: Mass conservation in a chemical reaction.
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Several problem instances can be written as

y′ = A(y)y, AT = −A, ∀y.

Then

i(y) = yTy = ‖y(t)‖2

is a first integral: solution l2 norm is conserved.

In fact, y can be a matrix: conserve orthogonality with Y (0) = I,

Y T (t)Y (t) = I, ∀t.
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Conserving invariants by Runge-Kutta (RK) methods

Here, we want ODE methods which conserve invariants without

doing anything special.

• Any RK method conserves linear invariants.

• Only methods based on polynomial collocation at Gaussian points

(of which implicit midpoint is the simplest instance) conserve

quadratic invariants.

• No such method conserves a cubic or higher invariant.
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Differential equations on a manifold

For our ODE system, consider a submanifold of IRm,

M = {y;h(y) = 0}

where h : IRm → IRl, l < m, s.t.

if y0 ∈M then y(t) ∈M ∀t

Weaker than requirement of first integral because requires only

hyf(y) = 0, ∀y ∈M.
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Projection methods
For the problem y′ = f(y), y(0) = y0 , h(y(t)) = 0, ∀t:

1. Apply a one-step method of order p with a step size k for the given

ODE

ỹn = φ
f
k(yn−1)

2. Project back to the manifold: find yn closest to ỹn in l2-norm that

satisfies h(yn) = 0.

Can replace projection step by a simpler post-stabilization,

yn = ỹn − F (ỹn)h(ỹn)

45



The smaller ‖I −HF‖ the better; e.g., F = HT (HHT )−1 (one Newton

step of projection) yields HF = I.

Example: For mechanical systems with holonomic constraints,

h(q,v) =

(

g(q)
G(q)v

)

.

can choose

F =

(

GT (GGT )−1 0
0 GT (GGT )−1

)

Then (I − HF )2 = 0, so apply this cheap post-stabilization twice per

step.

See textbook [Ascher-Petzold, ’98]
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Numerical integrators on manifolds

Unfortunately, good long-time behaviour and other dynamical

properties may be destroyed by projection.

See [Hairer, Lubich & Wanner, ’02] for:

Differential equations on Lie groups

Specifically, construct orthogonal matrix functions and solutions that

can be represented as an exponential matrix function.

Methods using Magnus series expansion, Crouch et al., Munthe-

Kaas et al.

Beautiful mathematical concepts at work, but does any of these lead

to something practical?
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Outline

• Conserving invariants and methods on manifolds

• Symplectic and symmetric methods for Hamiltonian ODE

systems

• Symplectic and multisymplectic methods for PDEs
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Symplectic and symmetric methods for Hamiltonian

ODE systems

• Hamiltonian systems

• Symplectic methods

• Properties of symplectic methods

• Pitfalls in highly oscillatory systems

• Reversible maps and symmetric methods

• Varying step size
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Hamiltonian ODEs: symplectic maps

q′

i =
∂H

∂pi
,

i = 1, . . . , l.

p′

i = −
∂H

∂qi
,

In vector form

q′ = ∇pH(q,p), p′ = −∇qH(q,p) .
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In general mechanical systems,

T = T (q,q′): kinetic energy

V = V (q): potential energy

L = T − V : Lagrangian

obey Lagrange equations

d

dt

(

∂L

∂q′

)

=
∂L

∂q

Introducing momenta and Hamiltonian

pi = ∂L
∂q′

i
: moment
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H = pTq′ − L: Hamiltonian

obtain Hamiltonian system.

Important special case: T = 1

2
q′TM(q)q′, where mass matrix M is

symmetric positive definite.

Then p = M(q)q′,⇒ pTq′ = 2T,⇒ H = T +V , Hamiltonian is the total

energy of mechanical system.

If, further, mass matrix is independent of q, then Hamiltonian is in

separable form,

H(q,p) = T (p) + V (q)
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Symplectic methods

• Symplectic Runge-Kutta

• Splitting and composition

Consider a one-step method (qn,pn) = φk(qn−1,pn−1).
Differentiate

Y =
∂(qn,pn)

∂(qn−1,pn−1)

and check symplecticity condition Y TJ−1Y = J−1.
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Symplectic Runge-Kutta

Example: implicit midpoint

yn = yn−1 + kJ∇H((yn + yn−1)/2)

⇒ Y = I +
k

2
J∇2H(Y + I)

⇒ Y = (I −
k

2
J∇2H)−1(I −

k

2
J∇2H)

Easy to check that symplecticity condition holds.
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More generally: polynomial collocation at Gaussian points is

symplectic for same reason that it conserves quadratic invariants.

y′∆(tnj) = J∇H(y∆(tnj)), j = 1, . . . , s.

Therefore, also

Y ′∆(tnj) = J∇2H(y∆(tnj))Y∆(tnj), j = 1, . . . , s.

We obtain Y T
∆

(tn)J−1Y∆(tn) = Y T
∆

(tn−1)J
−1Y∆(tn−1)
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Partitioned Runge-Kutta

No other “normal” RK method is symplectic, but there are symplectic

partitioned RK methods, where one RK method is applied to q′ = ∇pH
and another to p′ = −∇qH.

Example: symplectic Euler. For separable Hamiltonian it becomes

explicit:

qn = qn−1 + k∇pT (pn−1),

pn = pn−1 − k∇qV (qn).
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Splitting and composition

Derive the discrete flow over a time step as a composition of simpler,

symplectic flows. This yields a symplectic map!

If we can write

H = H1 + H2 + . . . + Hs

(yj)′ = J∇Hj(y
j)

and for each component can obtain a symplectic flow then compose:

y1(tn−1) = yn−1,

yj+1(tn−1) = yj(tn), j = 1, . . . , s− 1

yn = ys(tn).
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Particularly useful for separable Hamiltonians

H1 = T (p), H2 = V (q).

Then

(q1)′ = ∇pT (p1), (p1)′ = 0, y1(tn−1) =

(

qn−1

pn−1

)

.

Exact solution: p1 ≡ pn−1 constant, hence q1
n = qn−1 + k∇pT (pn−1).

Now,

(q2)′ = 0, (p2)′ = −∇qV (q2), y1(tn−1) =

(

q1
n

pn−1

)

.

Exact solution: q2 ≡ qn = q1
n constant, hence pn = pn−1− k∇qV (qn).
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Obtain symplectic Euler yet again

(and prove it is symplectic).
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Splitting: Stormer-Verlet for separable Hamiltonian

Error in splitting method is due to splitting: for simple splitting it

depends on

ek(L+M) − ekLekM .

Generally, for local error

ekLekM − ek(L+M) =
1

2
k2(ML− LM) + O(k3),

so overall O(k) may result if L and M do not commute.

Instead restore second order accuracy using Strang splitting:

ek(L+M) ≈ e
k
2
LekMe

k
2
L.
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For spearable Hamiltonian obtain Stormer-Verlet

qn = qn−1 + k∇pT (pn−1/2),

pn+1/2 = pn−1/2 − k∇qV (qn).

p1/2 = p0 −
k

2
∇qV (q0),

pn = pn−1/2 −
k

2
∇qV (qn).
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Variational integrators

Another approach to symplectic integrators: Use discretized

versions of Hamilton’s principle determining (discrete) equations of

motion from variational principle

Just like splitting-type methods are adaptations of general splitting

methods to symplectic context, here there is also a general principle for

PDE-optimization: discretize first, then derive necessary conditions.
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Properties of symplectic methods

Why is it important to use a symplectic method? Are there

disadvantages?

• Favorable error accummulation properties for long times (many,

small, constant time steps) observed and proved [Sanz-Serna

& Calvo]. The Hamiltonian conservation is particularly well-

approximated (without enforcing it)

• However, for symplectic map the step size must be constant or varied

carefully - a serious practical limitation!

• An implicit (symplectic) method necessitates solving a large system

of possibly nonlinear algebraic equations at each step.
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• An implicit (symplectic) method necessitates solving a large system

of possibly nonlinear algebraic equations at each step. If iterative

methods are used then the symplectic property may be lost unless

the iteration is carried out to a very high accuracy. This may also

contribute to yield an expensive method.

• Roundoff errors exist, and they are not expected to be structured.

Linear accummulation of roundoff errors cannot be avoided, and

when billions of time steps are considered this may become a factor.

• A symplectic method discretizing a Hamiltonian system yields (in

infinite precision) a solution which is arbitrarily close to the exact flow

of a perturbed Hamiltonian system.

Result obtained independently by E. Hairer and S. Reich in the mid

1990’s using backward error analysis.
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Pitfalls in highly oscillatory systems

The excellent results obtained by symplectic methods are for

small (many) time steps. Remember, Hamiltonian systems are

only marginally stable, and so are symplectic methods: unfortunate

perturbations may cause havoc if the time steps are not relatively small

Highly oscillatory Hamiltonian:

H(q,p) =
1

2
pTp + V (q) +

1

2ε2
g(q)Tg(q)

Differential system

q′ = Hp = p

p′ = −Hq = −∇V (q)− ε−2G(q)Tg(q)
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Quest: a numerical discretization that for any step size k and any ε

• conserves the Hamiltonian;

• is stable and efficient;

• never mind pointwise accuracy of solution.

IDEA: let it be constant!

qn = q(0), pn = p(0), n = 0, 1, . . ..

Well, maybe not. But the question is of interest and relevance when

both fast and slow solution features are present and the numerical

scheme ought to approximate slow solution features well.
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Quest: a numerical discretization that for any stepsize k and any ε

• conserves the Hamiltonian;

• is stable and efficient;

• never mind pointwise accuracy of solution.

IDEA: let it be constant!
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scheme ought to approximate slow solution features well.
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Highly oscillatory Hamiltonian systems
and ghost DEs

[Ascher-Reich]

Consider implicit midpoint scheme.

• Linear oscillator with slowly varying frequency

• Stiff spring pendulum

• “Reversed” stiff spring pendulum
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Linear oscillator with slowly varying frequency

q′ = ω2(t)p

p′ = −ε−2q

e.g. ω(t) = 1 + t

Hamiltonian is not constant in t, But adiabatic invariant

J(q, p, t) = H(q, p, t)/ω(t) = ω(t)p2/2 + ε−2ω−1(t)q2/2

satisfies for T = c1 ec2/ε,

[J(t)− J(0)] /J(0) = O(ε).
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Ghost DE

Apply midpoint:

(qn − qn−1)/k = ω(tn−1/2)
2 (pn + pn−1)/2

(pn − pn−1)/k = −ε−2 (qn + qn−1)/2

What DE does this really approach when ε � k → 0?

Let

un = (−1)nε−1qn, vn = (−1)n+1pn, α =
k2

4ε
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Obtain

(un + un−1)/2 = −ω(tn−1/2)
2 α (vn − vn−1)/k

(vn + vn−1)/2 = α (un − un−1)/k

Observe as k → 0 for a fixed α:

−ω2(t)αv′ = u, αu′ = v

So, the ghost DE is an oscillator with α essentially replacing ε. Hence,

[

Ĵ(t)− Ĵ(0)
]

/Ĵ(0) = O(α)

Ĵ(un, vn, tn) = Ĵ(ε−1qn, pn, tn) = J(qn, pn, tn) .
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Error in adiabatic invariant vs. α = k2

4ε

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

alpha

d
J
_
m
a
x

58



Comments and observations

• Whereas no instability is encountered, these results are misleading.

• More generally, may obtain misleading results for highly oscillatory

problems, where smooth manifold of Hamiltonian system

H(q,p) =
1

2
pTp + V (q) +

1

2ε2
[g(q)]2
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q′ = p

p′ = −∇qV (q)− ε−2GTg(q)

is not solution of DAE

q′ = p

p′ = −∇qV (q)−GTλ

0 = g(q)
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Stiff spring pendulum

q′ = p

p′ = −(φ(q)− φ0)∇φ(q)− ε−2(r(q)− r0)∇r(q))

where

r = |q| =
√

q2
1 + q2

2

cos φ = q1/|q|.

Obtain poor results when discretizing this system by the midpoint

scheme when α = k2

4ε is large, as k → 0, α fixed.
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This is because fast and slow solution modes are strongly coupled!

Here r is fast and φ is slow: transforming first to DE system in r, φ, a
subsequent midpoint discretization works very well.
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Stiff spring pendulum
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“Reversed” stiff spring pendulum

Now r is slow, φ is fast (relevant in molecular dynamics).

q′ = p

p′ = −ε−2(φ(q)− φ0)∇φ(q)− (r(q)− r0)∇r(q))

This combines the previous two sources of trouble: both coupling of

slow and fast modes and poor reconstruction of adiabatic invariant.

Now, even in coordinates r, φ must have α = k2

4ε small: otherwise a

wrong limit ghost DAE is discretized in effect.
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Comments and observations

• Easy to construct examples, not just resonance, where midpoint

method blows up (unstable) when ε � k.

• Distinguish between two aspects:

1. Reproducing slow solution features

2. Coupling of slow solution modes and fast solution modes.

• Of crucial importance is the question to what extent the numerical

method is able to decouple between fast and slow modes.

[Simo-Gonzales, Ascher-Reich]
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Reversible maps and symmetric methods

Let ρ be an invertible linear transformation in phase space of y′ =
f(y). The DE and vector field are called ρ-reversible if

ρf(y) = −f(ρy), ∀y.

Cannical Example: the partitioned system

q′ = f(q,v), v′ = g(q,v)

where f(q,−v) = −f(q,v), g(q,−v) = g(q,v)

Then ρ(q,v) = (q,−v).

This occurs for conservative mechanical systems.
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A numerical map Φk is symmetric or time-reversible if

Φk ◦ Φ−k = I

i.e., if we integrate backwards (replace k by −k and exchange yn and

yn−1) then the same discretization results.

If a numerical method applied to a ρ-reversible DE satisfies

ρ ◦ Φk = Φ−k ◦ ρ

then numerical flow is ρ-reversible iff method is symmetric.
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• All symplectic methods we have seen are symmetric. But also

nonsymplectic methods can be symmetric, e.g., trapezoidal.

• Symplectic does not imply symmetric.

• Collocation is symmetric iff the collocation points are symmetric.

• Can use symmetric composition to construct high order symmetric

methods.

• Can construct symmetric projection for ODE on manifold

• Symmetric Lie group methods

• Energy-momentum conservation methods
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Varying step size

Until now everything has been using a fixed step size. But modern

“normal” codes all use automatic local error control by adapting step

size!

• Reversible adaptive step size selection

• Time transformation

– Symplectic integration

– Reversible integration

None of these techniques come close to the efficiency of

normal step-size control, but they do offer significant performance

improvements for a given local pointwise error tolerance while yielding

qualitatively correct structure preservation.
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