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Semi-discretization Discretizing derivatives

Spatial semi-discretization

Consider the linear initial-value PDE

ut = Lu + q, x ∈ Ω, t > 0

u(0, x) = u0(x).

Discretizing on a mesh in space, obtain

d

dt
vj(t) =

r∑
i=−l

αivj+i (t)

vj(0) = u0(xj), 1 ≤ j ≤ J.

Leads to a method of lines (MOL), for which techniques from
Chapter 2 may be applied.
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Semi-discretization Discretizing derivatives

Spatial semi-discretization: example

A diffusion problem

ut = uxx + q(x , u),

u(0, x) = u0(x), u(t, 0) = g0(t), u(t, 1) = g1(t).

Discretize in space using a uniform mesh width h, obtaining
(l = r = 1 and vj(0) = u0(jh))

dvj
dt

=
vj+1 − 2vj + vj−1

h2
+ q(xj , vj), j = 1, . . . , J.

Use boundary conditions to close the system, setting
v0(t) = g0(t), vJ+1(t) = g1(t).

Obtain a mildly stiff initial-value ODE system of size J.
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Semi-discretization Discretizing derivatives

Difference operator notation

Use the following difference operator notation in space or time:

D+uj = uj+1 − uj Forward

D−uj = uj − uj−1 Backward

D0uj = uj+1 − uj−1 Long centered

δuj = uj+1/2 − uj−1/2 Short centered

µuj = (uj+1/2 + uj−1/2)/2 Short average

Euj = uj+1 Translation.

Difference operator identities:

D+ = E − I , D− = I − E−1,

D+D− = D−D+ = δ2,

µ2 = 1 + δ2/4, µδ = D0/2,

∂x = h−1 log E
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Semi-discretization Discretizing derivatives

Formulae for first derivative

ux , one-sided:

ux =
1

h

(
D+ −

1

2
D2

+

)
u +O(h2)

=
1

h
(uj+1 − uj)−

1

2h
(uj+2 − 2uj+1 + uj) +O(h2)

Just the first term above leads to the 1st order forward difference.
ux , symmetric, centred:

ux =
D0

2h

(
I − 1

6
D+D−

)
u +O(h4)

=
1

2h
(uj+1 − uj−1)− 1

12h
(uj+2 − 2uj+1 + 2uj−1 − uj−2) +O(h4)

Just the first term above leads to the 2nd order centred difference.
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Semi-discretization Discretizing derivatives

Formulae

uxx , symmetric, centred:

uxx =
1

h2

(
δ2 − 1

12
δ4

)
u +O(h4).

Just the first term above leads to the 2nd order centred difference.

Implicit schemes for discretizing derivatives exist as well, e.g. to
obtain 4th order accurate 3-point formulae.

For explicit scheme, need polynomial of degree l for lth derivative.
So, at least l + 1 points must be used. If exactly l + 1 points are
used, the scheme is compact. This is a desirable property.
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Semi-discretization Discretizing derivatives

Compact schemes

In general, we want as narrow a discretization stencil as possible, because:

Generally, boundary conditions are more easily incorporated.

Occasionally, unwanted spurious solution behaviour is avoided.
e.g., for ux =

uj+1−uj−1

2h , consider a sinusoidal fluctuation

{uj} = 0, 1, 0,−1, 0, 1, 0,−1, . . . .

Then on a coarser mesh consisting of only the odd mesh points, ux is
approximated by identically 0.
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Semi-discretization Staggered meshes and finite volumes

Staggered meshes

To avoid using long differences, consider unknowns corresponding to
different solution components to be located at different meshes: It’s all in
our head
Example: diffusion equation in 1D

ut = (a(x)ux)x + q(t, x), x ∈ Ω, t ≥ 0.

Do not write (aux)x = auxx + axux ! Define flux w = aux and discretize:

a(xj+1/2)
vj+1 − vj

h
= wj+1/2,

dvj
dt

=
wj+1/2 − wj−1/2

h
+ q(t, xj).

Eliminating w -values yields the semi-discretization

dvj
dt

= h−1

[
a(xj+1/2)

vj+1 − vj
h

− a(xj−1/2)
vj − vj−1

h

]
+ q(t, xj).
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Semi-discretization Staggered meshes and finite volumes

Integrate then discretize (finite volume)

Write the diffusion equation as

ux = a(x)−1w ,

ut = wx + q(t, x).

Integrating first equation from xj to xj+1 and using midpoint, obtain

vj+1 − vj = ha−1
j+1/2wj+1/2.

Integrating second equation from xj−1/2 to xj+1/2 and using
midpoint, obtain

v ′j = h−1
(
wj+1/2 − wj−1/2

)
+ qj(t).

Substituting, obtain

v ′j ≡
dvj
dt

= h−2
[
aj+1/2

(
vj+1 − vj

)
− aj−1/2

(
vj − vj−1

)]
+ qj(t).
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Semi-discretization Staggered meshes and finite volumes

When is this important?

The finite volume approach becomes important when one of the following
occurs:

The function a(x) has discontinuities.

The function q(t, x) is a point source, i.e., a δ-function, in x .

We wish to extend the discretization to a nonuniform spatial mesh.
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Semi-discretization Staggered meshes and finite volumes

Discontinuous coefficients

dvj
dt

= h−1

[
aj+1/2

vj+1 − vj
h

− aj−1/2
vj − vj−1

h

]
+ q(t, xj).

As before, but how should aj+1/2 be defined?
Harmonic averaging: define aj+1/2 by

1 integrating ux = a−1(x)w , and

2 discretizing (note w is smoother than a and ux):

ideally aj+1/2 = h

[∫ xj+1

xj

a−1dx

]−1

often must use aj+1/2 =

[
a−1
j + a−1

j+1

2

]−1
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Semi-discretization Staggered meshes and finite volumes

Point source

If
q(t, x) = δ(x − x∗), xi∗−1/2 ≤ x∗ < xi∗+1/2

where

q(t, x) = 0 if x 6= x∗,

∫
Ω
q(t, x)dx = 1,

then integrating as before, orbtain

dvj
dt

= h−1

[
aj+1/2

vj+1 − vj
h

− aj−1/2
vj − vj−1

h

]
+ hqj(t)

qj(t) =

{
1 if i = i∗,

0 otherwise
.
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Semi-discretization Staggered meshes and finite volumes

More than one space variable

Discretization principles such as compactness, staggered meshes, and
integrate-then-discretize are extended also to 2D and 3D.

Mesh subintervals are now replaced by mesh cells in 2D or 3D.

Not everything extends smoothly and effortlessly!

Consider examples in 2D.
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Semi-discretization Staggered meshes and finite volumes

Anisotropic diffusion in 2D

ut = (aux)x + (auy )y + q ≡ ∇ · (a∇u) + q

on a square domain Ω : 0 ≤ x , y ≤ 1.

If a is constant, easy:

dvi ,j
dt

=
a

h2
[−4vi ,j + vi−1,j + vi+1,j + vi ,j−1 + vi ,j+1] + qi ,j , 1 ≤ i , j ≤ J.

More generally, rewrite as 1st order system

ut = w x
x + w y

y + q = ∇ ·w + q,

w = a∇u.

Integrate first DE over a control volume

dvi ,j
dt

= h−1[w x
i+1/2,j − w x

i−1/2,j + w y
i ,j+1/2 − w y

i ,j−1/2] + qi ,j .
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Semi-discretization Staggered meshes and finite volumes

Anisotropic diffusion in 2D cont.

dvi ,j
dt

= h−1[w x
i+1/2,j − w x

i−1/2,j + w y
i ,j+1/2 − w y

i ,j−1/2] + qi ,j ,

w x
i+1/2,j =

∫ yj+1/2

yj−1/2

w x(xi+1/2, y)dy , 1 ≤ i , j ≤ J.

For 2nd eqn, e.g. ux = a−1w x , ( w = (w x ,w y )), integrate in x , but
where in y?!
Obtain

dvi ,j
dt

= h−2[ai+1/2,j(vi+1,j − vi ,j)− ai−1/2,j(vi ,j − vi−1,j)

+ ai ,j+1/2(vi ,j+1 − vi ,j)− ai ,j−1/2(vi ,j − vi ,j−1)] + qi ,j ,

where, e.g.,

ai+1/2,j = h

[∫ xi+1

xi

a−1(x , yj)dx

]−1

.
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Semi-discretization Staggered meshes and finite volumes
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Semi-discretization Anisotropic denoising

Example: isotropic denoising

An image is polluted by noise, resulting in u0(x , y).

Want to denoise it, i.e., recover u – something close to the original
(unavailable) image.

Isotropic diffusion: Solve

ut = uxx + uyy ,

u(0, x , y) = u0(x , y),

for appropriate t not too small and not too large!

Difficulty: image edges are indiscriminantly smoothed, too. (Recall
integration of heat equation starting with a step function, Fig. 1.4.)
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Semi-discretization Anisotropic denoising

Instance: camera man
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Semi-discretization Anisotropic denoising

Anisotropic denoising

Smooth only in directions where u does not vary too abruptly!

One way: total variation (TV).

ut = ∇ ·
(

∇u

|∇u|

)
,

u(0, x , y) = u0(x , y).

“Like before” with

a = a(u) = 1 / |∇u|, where |∇u| =
√

u2
x + u2

y .

(The latter expression is modified in regions where u is very flat.)

Common choice

ai+1/2,j = ai ,j+1/2 = h
[
(ui+1,j − ui ,j)

2 + (ui ,j+1 − ui ,j)
2
]−1/2

.

Does not always look great, but often works well.
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Semi-discretization Anisotropic denoising
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Semi-discretization Boundary conditions

Boundary conditions (BC)

In 1D

ut = uxx , 0 ≤ x ≤ 1, t > 0,

u(0, x) = u0(x).

Dirichlet BC: u(t, 1) = g1(t)
Neumann BC: ∂u

∂x (t, 0) = g0(t).

Discretization:

dvj
dt

=
vj+1 − 2vj + vj−1

h2
, j = 0, 1, . . . , J,

vJ+1 = g1(t),
v1 − v−1

2h
= g0(t).

How to handle the ghost unknown v−1?
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Semi-discretization Boundary conditions

Handling Neumann BC

Concentrate on Numann BC at the left interval end:

dv0

dt
=

v1 − 2v0 + v−1

h2
,

v1 − v−1

2h
= g0(t).

Eliminate ghost unknown: v−1 = v1 − 2hg0(t). Substitute into
difference eqn at j = 0:

dv0

dt
=

2v1 − 2v0 − 2hg0(t)

h2
.

Alternatively, do not eliminate: solve differential-algebraic equations
DAE in time.
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Semi-discretization Boundary conditions

Boundary conditions in 2D

Consider example: simplest heat equation

ut = uxx + uyy .

Dirichlet, boundary part of grid: extend directly.

Neumann, boundary part of grid: extend in finite volume fashion.
(Often in practice BC is on the flux, w .)

More complex boundaries: interpolate locally.
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Semi-discretization Boundary conditions

Natural and essential BC

Consider Ritz formulation of elliptic PDE

min
u

∫
Ω

[
a|∇u|2 + bu2 − 2uq

]
dxdy ,

a(x , y) > 0, b(x , y) ≥ 0.

Necessary condition for minimum are the Euler-Lagrange equations

−∇ · (a∇u) + bu = q, in Ω,

∂u

∂n
|∂Ω = 0.

So Neumann BC are natural!

More generally, given Neumann (natural) conditions on part of the
boundary and Dirichlet (essential) on the rest, in the functional
minimization formulation only the essential BC must be explicitly
imposed.
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Semi-discretization Boundary conditions

Natural and essential BC cont.

Can discretize first and only then optimize:

min
v

J∑
i ,j=0

1

2
[ai+1/2,j(vi+1,j − vi ,j)

2 + ai+1/2,j+1(vi+1,j+1 − vi ,j+1)2

+ ai ,j+1/2(vi ,j+1 − vi ,j)
2 + ai+1,j+1/2(vi+1,j+1 − vi+1,j)

2]

+
h2

4

J∑
i ,j=0

[bi ,jv
2
i ,j − 2qi ,jvi ,j + bi+1,jv

2
i+1,j − 2qi+1,jvi+1,j

+ bi ,j+1v
2
i ,j+1 − 2qi ,j+1vi ,j+1 + bi+1,j+1v

2
i+1,j+1 − 2qi+1,j+1vi+1,j+1].

Necessary conditions - equate gradient to 0: obtain previous 5-point
discretization plus Neumann BC automatically.

Essential BC are used to move known boundary values to right hand
side of linear system.

Advantage: the obtained matrix is symmetric positive definite!
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Semi-discretization Boundary conditions

Outline

Semi-discretization

Discretizing derivatives
Staggered meshes and finite volumes
Handling boundary conditions

Full discretization

Order, stability and convergence
General stability
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Full discretization (linear PDE) order, stability, convergence

Full discretization

Explicit one-step scheme

vn+1
j =

r∑
i=−l

βiv
n
j+i .

Can write this in (potentially infinite) matrix-vector notation

vn+1 = Qvn

Implicit one-step scheme
r∑

i=−l
γiv

n+1
j+i =

r∑
i=−l

βiv
n
j+i ,

Can write concisely as

Q1v
n+1 = Q0v

n
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Full discretization (linear PDE) order, stability, convergence

Order of accuracy

Local truncation error:

τ(t, x) = k−1

[
r∑

i=−l
γiu(t + k , x + ih)−

r∑
i=−l

βiu(t, x + ih)

]
.

Pretend grid function v is defined at every point. Difference method is

accurate of order (p1, p2) if

‖τ(t)‖ = ‖τ(t, ·)‖ ≤ c(t) (kp1 + hp2)

consistent if ‖τ(t)‖ → 0 as k, h→ 0.
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Full discretization (linear PDE) order, stability, convergence

Example: heat equation

For heat equation ut = uxx , discretize in space by centred O(h2) scheme.
Next, discretize in time:

Forward Euler

1

k
(vn+1

j − vnj ) =
1

h2
(vnj+1 − 2vnj + vnj−1)

– order (1, 2).

Crank-Nicolson: apply trapezoidal

1

k
(vn+1

j − vnj ) =
1

2h2
(vn+1

j+1 − 2vn+1
j + vn+1

j−1 + vnj+1 − 2vnj + vnj−1)

– order (2, 2) and better stability properties, but implicit: must solve
a tridiagonal linear system at each time step.

Backward Euler? – at first glance, combines worst of both worlds,
but...
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Full discretization (linear PDE) order, stability, convergence

Same methods using operator notation

Set µ = k/h2.
Forward Euler:

vn+1
j = vnj + µD+D−v

n
j

Trapezoidal (CN):

vn+1
j = vnj +

µ

2
D+D−(vnj + vn+1

j )

Backward Euler:

vn+1
j = vnj + µD+D−v

n+1
j
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Full discretization (linear PDE) order, stability, convergence

Stability and convergence

Method is

stable if there are constants K̃ and α̃ such that

‖v(t)‖ ≤ K̃ eα̃t‖v(0)‖.

convergent if

u(t, x)− v(t, x)→ 0, k , h→ 0.

Lax Equivalence Theorem:
If the linear evolutionary PDE is well-posed and the difference method is
consistent then

convergence⇐⇒ stability.

In fact, if the method is stable then the solution error inherits the order of
accuracy.
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Full discretization (linear PDE) General stability

General linear stability

Generally, with Q = Q−1
1 Q0, can write

vn+1 = Q(nk, h)vn = · · · = Πn
l=0Q(lk , h)v0 = Sk,h(tn+1, 0)v0.

The stability condition is

‖Πn
l=0Q(lk , h)‖ ≤ K̃ eα̃nk ∀n, k, nk ≤ tf .

If Q does not depend on t

‖Q(h)n‖ ≤ K̃ eα̃nk .

This is satisfied if for all k and h small enough,

‖Q‖ ≤ eα̃k = 1 + O(k).
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Full discretization (linear PDE) General stability

Low order terms

Difficult in general to show that ‖Qn‖ ≤ K̄ . Fortunately, can
sometimes ignore lower order derivatives:

Theorem: If the scheme

vn+1 = Q̂vn

is stable and Q̃ is a bounded operator then the scheme

vn+1 = (Q̂ + kQ̃)vn

is stable as well.

Good for ut = ux + b(x)u and for ut = uxx + bu, but not for
ut = uxx + aux .
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